# Economic Dispatch Using Modified Hybrid BA/ATS

# Suppakarn Chansareewittaya<sup>1</sup>

# ABSTRACT

In this paper, a new modified algorithm is proposed. This modified algorithm is BA/ATS. The main modifications are including negative value into the main equation of the bee algorithm (BA) and integrating adaptive tabu search (ATS) into BA. BA/ATS aims to improve the performance of hybrid BA/TS. The economic dispatch (ED) is set as the main problem to solve with the proposed algorithm. The operation of each generator is limit by constraints. All test results indicate that the overall costs of operation when using the proposed algorithm are better than test results from other compared algorithms. This means the modified hybrid BA/ATS is a good algorithm for the solving the ED problem.

**Keywords**: Hybrid Algorithm, Optimization, Bee Algorithm, Adaptive Tabu Search, Economic Dispatch

# 1. INTRODUCTION

Nowadays, electricity is indispensable for daily living. Industrial electricity demand is are the main factor that causes increased load demands. Many solutions are used to serve these demands such as building a new power plant and extending power network. These solutions will need a long time to complete. Another interesting solution is to increase the performance of the operation of the system by increasing total transfer capability (TTC) using the modern heuristics algorithm [1]. Algorithms can be used to optimize the performance of the power system. Also, an optional part of this solution is to install external devices such as Flexible Alternating Current Transmission System (FACTS) controller [2-4] or DG [5] with optimal allocation. The increased TTC can serve the minimum load demand.

The cost of operation must be determined. The engineer or operator must consider this cost and should optimize the TTC per ED to control the overall cost of operation. This challenge is well-known as an economic dispatch (ED) problem [6]. An interesting solution to optimize the ED is to use an optimization al-

Manuscript received on June 19, 2019 ; revised on October 29, 2019.

DOI 10.37936/ecti-cit.2020141.198845

gorithm. In past, the classical optimization technique such as linear programming was used [7]. Currently, modern heuristics algorithms are used [8, 9].

However, these algorithms have disadvantages. For example, their convergence cannot evaluate the global answer. There are chances of sticking in local area of search space. The values from this local area will give the local answer. To deal with this issue, tabu search (TS) algorithm was developed [10, 11]. The main ability of TS is anti-back tracking of the trajectory of searching. Also, the TS is improved to be adaptive tabu search (ATS). The adaptive radius mechanism is integrated into TS to extend the performance of the original TS [12]. In addition, many concepts are used to improve the performance of these algorithms such as modifying the perturbation equation directly [13] or applying the hybrid concept.

In this paper, the modified hybrid algorithm of BA and the adaptive tabu search (ATS) are developed. The main modifications are applied negative value into the main equation of BA and the adaptive radius mechanism of ATS is integrated, respectively. The main objective of this development is to improve the performance of hybrid BA/ATS. Better ED results are expected from the proposed algorithm. The practical Taiwan power company (TPC) 15 unit system [14] and practical TPC 40 unit system [15] are used as test systems for ED. Test results of ED when using modified hybrid BA/ATS are compared with results from the GA, PSO, original BA and hybrid BA/TS [16].

## 2. PROBLEM FORMULATION

# 2.1 Objective function

Economic dispatch (ED) is defined as the intentional objective function of this paper. The general purpose of ED is to consider the optimal power of operation of generators to serve the system load demand. This operation should be done at the lowest possible lowest cost. The main important subject is the operation must be operated under the operational constraints [17]. Two types of constraints are used. The constraints are quality and inequality constraints, respectively. The value of each parameter is limited by these constraints. This limit control can ensure the safety of the operation.

The ED without loss is set as the first objective function. This objective function is expressed in (1) [18].

Final manuscript received on January 10, 2020.

<sup>&</sup>lt;sup>1</sup> The author is with School of Information Technology, Mae Fah Luang University, Chiang Rai, Thailand., E-mail: suppakarn.cha@mfu.ac.th

$$\min F = \sum_{i=1}^{m} F_i(P_i) = \sum_{i=1}^{m} (a_i P_i^2 + b_i P_i + c_i)$$
 (1)

Where

F the total fuel cost of generator,

 $F_i$  the cost of the *i*th generator,

 $P_i$  the power output of the *i*th generator,

m the number of generators in the system,

 $a_i$ ,  $b_i$ , and  $c_i$  the cost coefficients of the *i*th generator. The ED objective function with losses from the valve point effect is set as the second objective function. This objective function is expressed in (2) [19].

$$\min F = \sum_{i=1}^{m} F_i(P_i) = \sum_{i=1}^{m} (a_i P_i^2 + b_i P_i + c_i) + |d_i \times \sin(e_i \times (P_{i,\min} - P_i))|$$
(2)

Where  $d_i$ , and  $e_i$  the co-efficients of fuel cost.

# 2.2 Constraints

Equation 3 is the power balance constraint.

$$\sum_{i=1}^{m} P_i = P_D + P_{Losses}, \quad i = 1, \dots, m$$
 (3)

$$P_{losses} = \sum_{i=1}^{m} \sum_{j=1}^{m} P_i B_{ij} P_j + \sum_{i=1}^{m} B_{0i} P_i + B_{00}$$
 (4)

Equation 5 is the generator constraint.

$$P_i^{\min} \le P_i \le P_i^{\max} \tag{5}$$

Where

 $P_D, P_{losses}$  power demand and system losses of the system

 $B_{ij}$ ,  $B_{0i}$ ,  $B_{00}$  co-efficiency of system losses, and

 $P_i^{\min}, P_i^{\max}$  the minimum and maximum generation limit of unit i.

# 3. PROPOSED ALGORITHM

# 3.1 Bee algorithm

The bee algorithm (BA) proposed by Karaboga in 2005 [20] which is one of the well-known bio-inspired algorithms. There are many different names of BA such as artificial bee colony (ABC), bee colony optimization (BCO).

#### 3.2 Tabu search

In 1986, F. Glover published the tabu search (TS) and algorithm [21]. The special feature of TS is to increase the efficiency of searching according to the trajectory by using the list. This list is named the tabu list. Tabu list is used to remember the solutions that have been solved and accepted these answers.

# 3.3 Hybrid bee algorithm and tabu search

The hybrid BA/TS was developed by S. Chansa-reewittaya. This algorithm is used to solve the ED problem in [16]. The initialize of this algorithm is evaluated by using (6).

$$x_{ij} = x^{\min} + random(0, 1) \times (x^{\max} - x^{\min})$$
 (6)

Where

 $x_{ij}$  ith parameter of jth bee, and

 $x^{\min}, x^{\max}$  minimum and maximum value of x.

These parameters are used to evaluate objective function values. After that, the tabu list is created. The parameters are put into the tabu list for use by of the anti-back tracking mechanism.

# 3.4 Adaptive tabu search

The adaptive tabu search (ATS) is an improved enhanced derivative of TS [12]. This enhanced ability is the result of adding an adaptive radius mechanism [22-24]. The radius means the range of feasible search area. The range will be decreased when the current solutions are found in the tabu list. The aim of this reducing process is to limit the search space area. Equations 7 and 8 present the equations of the adaptive radius mechanism.

$$radius_{new} = \frac{radius_{old}}{DF} \tag{7}$$

$$radius_{new}^{\min} \le radius_{new}^{\max} \le radius_{new}^{\max}$$
 (8)

Where

 $radius_{new}$  new range of search space,  $radius_{old}$  previous range of search space, DF decreasing factor equals 2,  $radius_{new}^{\min}$  new minimum value of search space, and

 $radius_{new}^{\max}$  new maximum value of search space.

# 3.5 Modified hybrid bee algorithm and adaptive tabu search

The modified hybrid BA/ATS was developed from hybrid BA/TS [16]. The main equation of the BA is modified. According to equation 6, the value of each parameter is only increased. If the value reaches the maximum value, the new value is generated by randomizing. The improvement proposed in this paper is to modification is include a minus sign in the range of random numbers. The range of random numbers is between minus one to one instead of zero to one. This changed the various values of parameters of each bee. Equation (9), (10), and (11) are used as the evaluation equation for modified hybrid BA/ATS.

$$x_{new}^{\min} = radius_{new}^{\min} \tag{9}$$

$$x_{new}^{\max} = radius_{new}^{\max} \tag{10}$$

$$x_{i,j} = x^{\min} + random(-1,1) \times (x_{new}^{\max} - x_{new}^{\min})$$
 (11)

Where

 $x_{new}^{\min}$  new lowest value of x, and

 $x_{new}^{\text{max}}$  new highest value of x.

The flowchart of the proposed method to evaluate the ED problem is shown as Fig. 1.

## 4. EXPERIMENTAL RESULTS

The practical TPC 15 unit system [14], and practical TPC 40 unit system [15] are used for the comparing of the GA, PSO, original BA, hybrid BA/TS, and proposed algorithm. Number of the population is 50 and others parameters are shown in table 1.

Table 1: The parameters of used algorithm.

|                              | Number<br>of sites | Number<br>of<br>selected<br>sites | Number<br>of best<br>site | Number<br>of bees<br>around<br>the best<br>sites | Number<br>of bees<br>around<br>other<br>selected<br>sites |
|------------------------------|--------------------|-----------------------------------|---------------------------|--------------------------------------------------|-----------------------------------------------------------|
| GA                           | -                  | -                                 | -                         | -                                                | -                                                         |
| PSO                          | -                  | -                                 | -                         | -                                                | -                                                         |
| Original<br>BA               | 30                 | 30                                | 5                         | 20                                               | 10                                                        |
| Hybrid<br>BA/TS              | 30                 | 30                                | 5                         | 20                                               | 10                                                        |
| Modified<br>hybrid<br>BA/ATS | 30                 | 30                                | 5                         | 20                                               | 10                                                        |

The evaluation of each algorithm is set as a batch. Each batch contains 10 sub-evaluations for the minimum value, average value, maximum value, and coefficient of variation.

# 4.1 Practical Taiwan power company 15 unit system

The first test system of this paper is a practical TPC 15 unit system [14]. The ED with flat fuel cost

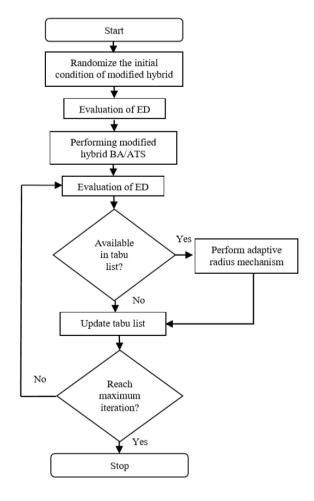



Fig.1: The flowchart of the modified hybrid BA/ATS to evaluating ED problem.

and without loss is set for this test system. The load demand for this test system is 2600MW. The tabu list size of this test system is 5000. In this test system, the 4 prohibited operating zones are used and shown in Table 2.

The data of TPC 15 unit system with flat fuel cost is shown in table 3.

The minimum cost, average cost, maximum cost and co-efficient of variation of TPC 15 unit system comparing modified hybrid BA/ATS and competing algorithms are shown in table 4.

The results from the TPC15 unit system indicate that modified hybrid BA/ATS gives a better minimum fuel cost of operation (\$/h) than the other compared algorithms. Although the average fuel cost and maximum fuel cost are higher than the results of Hybrid BA/TS, these values are still lower than the results from GA, PSO, and original BA. The total fuel cost, total power, and power of each generator of the TPC 15 unit system using modified hybrid BA/ATS and the other compared algorithms are shown in table 5

Table 2: Prohibited zones of TPC 15 unit system.

| Unit | Zone 1 (MW) | Zone 2 (MW) | Zone 3 (MW) |
|------|-------------|-------------|-------------|
| 2    | [185,225]   | [305,335]   | [420,450]   |
| 5    | [180,200]   | [260,335]   | [390,420]   |
| 6    | [230,255]   | [360,395]   | [430,455]   |
| 12   | [30,55]     | [65,75]     |             |

Table 3: Data of TPC 15 unit system with flat fuel cost.

| Unit | ai                     | bi       | ci      | $P_{i,min}(MW)$ | $P_{i,max}(MW)$ |
|------|------------------------|----------|---------|-----------------|-----------------|
|      | (\$/MW) <sup>2</sup> h | (\$/MWh) | (\$/h)  | , , ,           |                 |
| 1    | 0.000299               | 10.07    | 671.03  | 150             | 455             |
| 2    | 0.000183               | 10.22    | 574.54  | 150             | 455             |
| 3    | 0.001126               | 8.80     | 374.59  | 20              | 130             |
| 4    | 0.001126               | 8.80     | 374.59  | 20              | 130             |
| 5    | 0.000205               | 10.40    | 461.37  | 150             | 470             |
| 6    | 0.000301               | 10.10    | 630.14  | 135             | 460             |
| 7    | 0.000364               | 9.87     | 548.20  | 135             | 465             |
| 8    | 0.000338               | 11.50    | 227.009 | 60              | 300             |
| 9    | 0.000807               | 11.21    | 173.72  | 25              | 162             |
| 10   | 0.001203               | 10.72    | 175.95  | 20              | 160             |
| 11   | 0.003586               | 11.21    | 186.86  | 20              | 80              |
| 12   | 0.005513               | 9.90     | 230.27  | 20              | 80              |
| 13   | 0.000371               | 13.12    | 225.28  | 25              | 85              |
| 14   | 0.001929               | 12.12    | 309.03  | 15              | 55              |
| 15   | 0.004447               | 12.41    | 323.19  | 15              | 55              |

**Table 4:** Minimum fuel cost, average fuel cost, maximum fuel cost and co-efficiency variation of cost of TPC 15 unit system by competing algorithms and modified hybrid BA/ATS.

| Value/          | Minimum fuel | Average fuel    | Maximum fuel | Co-efficient of |
|-----------------|--------------|-----------------|--------------|-----------------|
| Algorithm       | cost         | $\mathbf{cost}$ | cost         | variation       |
|                 | (\$/h)       | (\$/h)          | (\$/h)       |                 |
| GA              | 125418.7861  | 131726.0931     | 145797.6982  | 0.0598098       |
| PSO             | 124347.1194  | 130920.2793     | 136075.7061  | 0.0287794       |
| Original BA     | 119476.9652  | 132429.4328     | 140843.3734  | 0.0518447       |
| Hybrid          | 87679.0713   | 98396.1344      | 107798.0255  | 0.0814923       |
| BA/TS           |              |                 |              |                 |
| Modified hybrid | 87553.0516   | 117670.5192     | 129035.1257  | 0.105993        |
| BA/ATS          |              |                 |              |                 |

**Table 5:** Best of the total fuel cost, total power, and power of each generator of TPC 15 unit system using the other compared algorithms and modified hybrid BA/ATS.

| Value/                 | GA          | PSO         | Original BA | Hybrid BA/TS | Modified hybrid |
|------------------------|-------------|-------------|-------------|--------------|-----------------|
| Algorithm              |             |             |             |              | BA/ATS          |
| Total fuel cost (\$/h) | 125418.7861 | 124347.1194 | 119476.9652 | 87679.0713   | 87553.0516      |
| Total Power (MW)       | 3125.7109   | 3076.5189   | 3018.2216   | 2696.6251    | 2659.3042       |
| P1 (MW)                | 385.0772    | 401.3470    | 376.6764    | 133.7904     | 203.1099        |
| P2 (MW)                | 376.7234    | 375.4470    | 378.1822    | 364.0002     | 226.2309        |
| P3 (MW)                | 111.8623    | 129.6142    | 105.7314    | 110.8106     | 119.3311        |
| P4 (MW)                | 121.2500    | 117.4798    | 117.3985    | 105.3153     | 118.7939        |
| P5(MW)                 | 403.0129    | 398.8761    | 389.3135    | 376.2651     | 467.3252        |
| P6 (MW)                | 450.8022    | 376.8905    | 382.5793    | 368.0623     | 418.9479        |
| P7 (MW)                | 396.4503    | 381.2205    | 393.6212    | 372.4926     | 419.4026        |
| P8 (MW)                | 254.8466    | 254.7579    | 286.0592    | 270.2752     | 224.9989        |
| P9 (MW)                | 157.9616    | 154.6706    | 135.0072    | 139.0365     | 73.6774         |
| P10 (MW)               | 144.3562    | 159.7730    | 155.1990    | 135.5966     | 129.8800        |
| P11 (MW)               | 77.4988     | 75.7158     | 68.2492     | 71.6811      | 48.9021         |
| P12 (MW)               | 68.9743     | 78.8339     | 71.0162     | 71.8016      | 76.9914         |
| P13 (MW)               | 81.2660     | 68.5890     | 69.1949     | 76.1474      | 59.2600         |
| P14 (MW)               | 45.3114     | 48.9605     | 44.0384     | 49.2434      | 22.2338         |
| P15 (MW)               | 50.3177     | 54.3431     | 45.9550     | 52.1068      | 50.2192         |

# 4.2 Practical Taiwan power company 40 unit system

The second test system of this paper is the practical TPC 40 unit system [15]. This problem of this test system is ED with flat fuel cost and without loss. In this test system, the prohibited operating zones are released. The load demand for this test system is 8900 MW. The tabu list size of this test system is 8000. The losses co-efficient of the TPC 40 unit system with flat fuel cost function are shown in table 6.

Table 6: Data of TPC 40 unit system with flat fuel

| Cost.<br>Unit |               | $\mathbf{b_{i}}$ | 0.             | <b>D</b>                   | D.                         |
|---------------|---------------|------------------|----------------|----------------------------|----------------------------|
| Onit          | $(\$/MW)^2$ h | (\$/MWh)         | $c_{i}$ (\$/h) | P <sub>i,min</sub><br>(MW) | P <sub>i,max</sub><br>(MW) |
| 1             | 0.03073       | 8.3360           | 170.44         | 40                         | 80                         |
| 2             | 0.025028      | 7.0706           | 309.54         | 60                         | 120                        |
| 3             | 0.023028      | 8.1817           | 369.03         | 80                         | 190                        |
| 4             | 0.00342       | 6.9467           | 135.48         | 24                         | 42                         |
| 5             | 0.09693       | 6.5595           | 135.19         | 26                         | 42                         |
| 6             | 0.01142       | 8.0543           | 222.33         | 68                         | 140                        |
| 7             | 0.00357       | 8.0323           | 287.71         | 110                        | 300                        |
| - 8           | 0.00492       | 6.9990           | 391.98         | 135                        | 300                        |
| 9             | 0.00573       | 6.6020           | 455.76         | 135                        | 300                        |
| 10            | 0.00605       | 12.908           | 722.82         | 130                        | 300                        |
| 11            | 0.00515       | 12.986           | 635.20         | 94                         | 375                        |
| 12            | 0.00569       | 12.796           | 654.69         | 94                         | 375                        |
| 13            | 0.00421       | 122.504          | 913.40         | 125                        | 500                        |
| 14            | 0.00752       | 8.8412           | 1760.40        | 125                        | 500                        |
| 15            | 0.00702       | 9.1575           | 1728.30        | 125                        | 500                        |
| 16            | 0.00708       | 9.1575           | 1728.30        | 125                        | 500                        |
| 17            | 0.00708       | 9.1575           | 1728.3         | 125                        | 500                        |
| 18            | 0.00313       | 7.9691           | 647.85         | 220                        | 500                        |
| 19            | 0.00313       | 7.9550           | 649.69         | 220                        | 500                        |
| 20            | 0.00313       | 7.9691           | 647.83         | 242                        | 550                        |
| 21            | 0.00313       | 7.9691           | 647.81         | 424                        | 550                        |
| 22            | 0.00298       | 6.6313           | 785.96         | 254                        | 550                        |
| 23            | 0.00298       | 6.6313           | 785.96         | 254                        | 550                        |
| 24            | 0.00284       | 6.6611           | 794.53         | 254                        | 550                        |
| 25            | 0.00284       | 6.6611           | 794.53         | 254                        | 550                        |
| 26            | 0.00277       | 7.1032           | 801.32         | 254                        | 550                        |
| 27            | 0.00277       | 7.1032           | 801.32         | 254                        | 550                        |
| 28            | 0.52124       | 3.3353           | 1055.10        | 10                         | 150                        |
| 29            | 0.52124       | 3.3353           | 1055.10        | 10                         | 150                        |
| 30            | 0.52124       | 3.3353           | 1055.10        | 10                         | 150                        |
| 31            | 0.28095       | 13.052           | 1207.80        | 20                         | 70                         |
| 32            | 0.16766       | 21.887           | 810.79         | 20                         | 70                         |
| 33            | 0.26350       | 10.244           | 12.47.70       | 20                         | 70                         |
| 34            | 0.30575       | 8.3707           | 1219.20        | 20                         | 70                         |
| 35            | 0.18362       | 26.258           | 641.43         | 18                         | 60                         |
| 36            | 0.35563       | 9.6956           | 1112.80        | 18                         | 60                         |
| 37            | 0.00722       | 7.1633           | 1044.40        | 20                         | 60                         |
| 38            | 0.23915       | 16.339           | 832.24         | 25                         | 60                         |
| 39            | 0.23915       | 16.339           | 834.24         | 25                         | 60                         |
| 40            | 0.23915       | 16.339           | 1035.2         | 25                         | 50                         |

The minimum fuel cost, average fuel cost, maximum fuel cost and co-efficiency of variation of TPC 40 unit system comparing between modified hybrid BA/ATS and other compared algorithms are shown in table 7.

The results from the TPC 40 unit system indicate that modified hybrid BA/ATS gives a better overall total cost of operation (\$/h) than the other compared algorithms. Especially, the minimum fuel cost is lower than the lowest result from the compared algorithms by about 2.17%. This means the mechanism of the proposed algorithm can perform well. This mechanism can give a better objective function

value.

The total fuel cost, total power, and power of each generator of the TPC 40 unit system using modified hybrid BA/ATS and the other compared algorithms are shown in table 8.

#### 5. CONCLUSION

According to the experimental results, the results from modified hybrid BA/ATS show that the overall total cost of operation of generators is lower than those from GA, PSO, original BA, and hybrid BA/TS. The modified equation of BA and the adaptive radius of ATS improve the performance compared to plain hybrid BA/TS. Also, the algorithm of modified hybrid BA/ATS can push the parameter forward resulting in non-duplicate values by using antiback tracking of ATS. By using this mechanism and generator constraints, the suitable value of any parameters in a feasible search space can be found. New and better answers can be evaluated. For economic dispatch problems, the modified hybrid BA/ATS algorithm is more effective for the ED problem than the other compared algorithms. Future work would be to integrate the multi-objective function solving into the BA/ATS algorithm.

# ACKNOWLEDGEMENT

This research is sponsored by Mae Fah Luang University.

## References

- [1] K. Y. Lee and A. E. Mohamed, *Modern Heuristics Optimizaion Techniques*, New York, John Wiley & Sons, 2008.
- [2] FACTS Terms & Definitions Task Force of the FACTS Working Group of the DC and FACTS Subcommittee, "Proposed Terms and Definitions for Flexible AC Transmission System (FACTS)," *IEEE Transactions on Power Delivery*, vol. 12, no. 4, October. 1997.
- [3] H. Ren, D. Watts, Z. Mi, and J. Lu, "A Review of FACTS' Practical Consideration and Economic Evaluation," 2009 Asia-Pacific Power and Energy Engineering Conference, Wuhan, pp.1-5, 2009.
- [4] S. Chansareewittaya, "Optimal Power Flow for Enhanced TTC with Optimal Number of SVC by using Improved Hybrid TSSA," ECTI Transactions on Computer and Information Technology (ECTI-CIT), vol.13, no.1, pp.9-20, 2019.
- [5] R. Jomthong, P. Jirapong and S. Chansareewittaya, "Optimal Choice and Allocation of Distributed Generations using Evolutionary Programming," *Proceeding of CIGRE-AORC 2011*, Chiang Mai, Thailand, October 2011.
- [6] S. Chansareewittaya, "Hybrid MODE/TS for Environmental Dispatch and Economic Dispatch," ECTI Transactions on Electrical Engineering,

Table 7: Minimum cost, average cost, maximum cost and co-efficient variation of cost of TPC 40 unit system comparing between other compared algorithms and modified hybrid BA/ATS.

| Value/          | Minimum          | Average          | Maximum          | Co-efficiency variation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------|------------------|------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Algorithm       | fuel cost (\$/h) | fuel cost (\$/h) | fuel cost (\$/h) | , and the second |
| GA              | 148409.7348      | 148694.9487      | 148896.5905      | 0.00102676                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| PSO             | 149671.8809      | 149942.6141      | 150186.8391      | 0.00116543                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Original BA     | 151997.1436      | 161469.7742      | 174413.6699      | 0.0420747                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Hybrid          | 144143.1207      | 146693.0412      | 149409.9144      | 0.0118104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| BA/TS           |                  |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Modified hybrid | 141001.9598      | 142144.7558      | 142908.6029      | 0.00433793                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| BA/ATS          |                  |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

**Table 8:** Best of the total fuel cost, total power, and power of each generator of TPC 40 unit system by using compared algorithms and modified hybrid BA/ATS.

| Value/                 | GA          | PSO         | Original BA | Hybrid BA/TS | Modified hybrid BA/ATS |
|------------------------|-------------|-------------|-------------|--------------|------------------------|
| Algorithm              |             |             |             |              |                        |
| Total fuel cost (\$/h) | 148409.7348 | 149671.8809 | 151997.1436 | 149649.0835  | 141001.9598            |
| Total Power (MW)       | 9000.7604   | 9004.0885   | 9136.4970   | 9003.1893    | 9006.3419              |
| P1 (MW)                | 58.7542     | 60.0132     | 177.4344    | 61.6262      | 54.1346                |
| P2 (MW)                | 102.7210    | 105.2806    | 96.5394     | 97.5440      | 84.2052                |
| P3 (MW)                | 139.5562    | 157.4645    | 166.6773    | 157.1399     | 183.7015               |
| P4 (MW)                | 31.1409     | 34.3565     | 28.4775     | 35.4303      | 25.8905                |
| P5 (MW)                | 31.5243     | 33.6079     | 33.6506     | 37.1005      | 30.3992                |
| P6 (MW)                | 122.4404    | 119.7957    | 106.5369    | 105.2766     | 114.6353               |
| P7 (MW)                | 271.2250    | 228.4411    | 204.5996    | 227.3278     | 220.2041               |
| P8 (MW)                | 220.8069    | 225.1184    | 239.4308    | 225.3657     | 187.7040               |
| P9 (MW)                | 246.3506    | 238.2982    | 296.6910    | 225.2751     | 194.1401               |
| P10 (MW)               | 220.2298    | 225.3881    | 243.5040    | 225.0929     | 249.7423               |
| P11 (MW)               | 286.6444    | 281.5438    | 297.3507    | 282.0700     | 287.5553               |
| P12 (MW)               | 275.1570    | 281.9553    | 346.4599    | 282.6250     | 272.7527               |
| P13 (MW)               | 412.7977    | 379.0468    | 371.7032    | 375.8001     | 309.1612               |
| P14 (MW)               | 366.5028    | 388.3166    | 332.2306    | 375.2783     | 340.3030               |
| P15 (MW)               | 372.6690    | 375.2566    | 376.7835    | 375.0538     | 325.4064               |
| P16 (MW)               | 368.8997    | 375.6078    | 311.5548    | 392.8036     | 436.9524               |
| P17 (MW)               | 367.8824    | 375.7368    | 367.3033    | 375.2495     | 315.7000               |
| P18 (MW)               | 370.8300    | 383.5533    | 303.9885    | 445.3560     | 444.9003               |
| P19 (MW)               | 438.7717    | 447.0332    | 368.1377    | 375.7956     | 327.9012               |
| P20 (MW)               | 441.5195    | 413.1159    | 380.2607    | 456.5184     | 431.9973               |
| P21 (MW)               | 409.7549    | 413.6756    | 438.8088    | 467.7457     | 479.6636               |
| P22 (MW)               | 402.9833    | 487.2516    | 544.8428    | 414.8584     | 502.1133               |
| P23 (MW)               | 490.0043    | 412.8194    | 505.8595    | 416.9520     | 510.3524               |
| P24 (MW)               | 408.9050    | 458.9811    | 414.9816    | 413.0876     | 526.8585               |
| P25 (MW)               | 403.9089    | 413.0354    | 503.5252    | 434.2198     | 450.8715               |
| P26 (MW)               | 476.3457    | 443.6007    | 405.7365    | 461.3983     | 464.5521               |
| P27 (MW)               | 449.0320    | 413.1398    | 439.8245    | 434.5188     | 502.8982               |
| P28 (MW)               | 109.9440    | 112.6190    | 103.1733    | 112.7793     | 91.4339                |
| P29 (MW)               | 110.3144    | 112.7383    | 111.1607    | 112.5886     | 92.4504                |
| P30 (MW)               | 110.6863    | 112.5301    | 123.6477    | 112.6528     | 91.3734                |
| P31 (MW)               | 51.6006     | 52.5660     | 54.2473     | 52.5578      | 49.2190                |
| P32 (MW)               | 51.3393     | 52.7517     | 58.9144     | 52.6525      | 44.3284                |
| P33 (MW)               | 58.5758     | 52.6751     | 47.5852     | 52.7017      | 60.1674                |
| P34 (MW)               | 51.7693     | 52.6102     | 54.1632     | 52.6206      | 45.1905                |
| P35 (MW)               | 44.9235     | 45.0410     | 44.5138     | 50.4520      | 36.3898                |
| P36 (MW)               | 44.1690     | 45.0055     | 42.3110     | 46.8908      | 41.5354                |
| P37 (MW)               | 44.7387     | 45.0449     | 48.8045     | 45.1893      | 46.8684                |
| P38 (MW)               | 44.3791     | 50.0173     | 53.2938     | 45.3405      | 39.9672                |
| P39 (MW)               | 44.3838     | 45.2566     | 53.2071     | 45.0502      | 39.6792                |
| P40 (MW)               | 46.5792     | 53.7992     | 38.5818     | 45.2031      | 53.0425                |

- Electronics, and Communications (ECTI-EEC), vol.17, no.1, pp.78-86, 2019.
- [7] Q. N. H., S. Chand, H. K. Singh and T. Ray, "Genetic Programming With Mixed-Integer Linear Programming-Based Library Search," *IEEE Transactions on Evolutionary Computa*tion, vol.22, Issue 5, 2018.
- [8] L. L. Lai, Intelligent System Applications in Power Engineering: Evolutionary Programming and Neural Networks, New York, John Wiley & Sons, 1998.
- [9] M. R. AlRashidi and M. E. El-Hawary, "Applications of Computational Intelligence Techniques for Solving The Revived Optimal Power Flow Problem," *Electric Power Systems Research*, vol.79, issue 4, pp.694-702, 2009.
- [10] F. Glover, "Tabu Search, Part I," ORSA Journal on Computing, vol.1, no.3, pp. 190-206, Summer, 1989.
- [11] F. Glover, "Tabu Search, Part II," ORSA Journal on Computing, vol.2, no.1, pp. 4-32, Winter, 1990.
- [12] S. Chansareewittaya, "Hybrid BA/ATS for Economic Dispatch Problem," Proceeding of the 22nd International Computer Science and Engineering Conference (ICSEC) 2018, Chiang Mai, Thailand, November 2018.
- [13] S. Chansareewittaya, K. Soponronnarit and P. Boonyanant, "Modified DE/Sin for Economic Dispatch and Environmental Dispatch," Proceeding of International Conference on Business and Industrial Research (ICBIR) 2018, Bangkok, Thailand, pp.297-302, May 2018.
- [14] J. P. Chiou, "Variable Scaling Hybrid Differential Evolution for Large-Scale Economic Dispatch Problems," *Electric Power Systems Research*, vol. 77(3-4), pp.212-218, March 2007.
- [15] J. P. Chiou, C. F. Chang and C. C. Wang, "Hybrid Differential Evolution for Static Economic Dispatch," 2014 International Symposium on Computer, Consumer and Control, Taichung, pp.950-953, June 2014.
- [16] S. Chansareewittaya, "Hybrid BA/TS for Economic Dispatch Considering the Generator Constraint," Proceeding of International Conference on Digital Arts, Media and Technology (IC-DAMT) 2017, Chiang Mai, Thailand, March 2017.
- [17] Uğur Güvenç, "Combined Economic Emission Dispatch Solution using Genetic Algorithm Based on Similarity Crossover," Scientific Research & Essays, vol. 5(17), pp. 2451-2456, October 2010.

- [18] S. Chansareewittaya, "Hybrid Differential Evolutionary/Tabu Search for Economic Dispatch and Environmental Dispatch," Proceeding of ECTI-CON2018, Chiang Rai, Thailand, pp.9-12, July 2018.
- [19] C. Jiejin, M. Xiaoqian, L. Lixiang and P. Haipeng, "Chaotic Particle Swarm Optimization for Economic Dispatch Considering The Generator Constraints," *Energy Conversion and Management*, vol.48, pp.645-653, 2007.
- [20] D. Karaboga and B. Basturk, "A Powerful and Efficient Algorithm for Numerical Function Optimization: Aritificial Bee Colony (ABC) Algorithm," *Journal of Global Optimization*, vol. 39, no. 3, pp. 459-471, 2007.
- [21] S. Chansareewittaya and P. Jirapong, "Power Transfer Capability Enhancement with Multitype FACTS Controllers using Hybrid Particle Swarm Optimization," *Electrical Engineering*, vol.97, Issue 2, pp. 119-127, 2015.
- [22] S. Sujitjorn, T. Kulworawanichpong, D. Puangdownreong and K. N. Areerak, "Adaptive Tabu Search and Applications in Engineering Design," Proceedings of the 2006 conference on Integrated Intelligent Systems for Engineering Design, pp.233-257, 2006.
- [23] S. Suwannarongsri and D. Puangdownreong, "Adaptive Tabu Search for Traveling Salesman Problems," International Journal of Mathematics and Computers in Simulation, vol. 6, issue 2, pp.274-281, 2012.
- [24] T. Kulworawanichpong, D. Puangdownreong, and S. Sujitjorn, "Finite Convergence of Adaptive Tabu Search," ASEAN Journal on Science and Technology for Development, vol.21, no.2&3, pp. 103-115, 2004.
- [25] T. Phongkidakarn and D. Rerkpreeapong, "Economic Dispatch using Cuckoo Search Algorithm," Kasetsart Engineering Journal. 27, 90 (Oct.-Dec. 2014), pp. 57-66



Suppakarn Chansareewittaya received his B.Eng. in Electrical Engineering from King Mongkut's Institute of Technology Ladkrabang in 2001and M.Eng. and Ph.D. from Chiang Mai University, Thailand in 2007 and 2016, respectively, all in Electrical Engineering. He is currently a lecturer at the School of Information Technology, Mae Fah Luang University, Chiang Rai, Thailand. His areas of interest are approximate the school of Information Technology, Mae Fah Luang University, Chiang Rai, Thailand. His areas of interest are approximately.

plied to modern heuristics methods, various optimization techniques, and electrical power system optimization.