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ABSTRACT

This paper proposes a photovoltaic (PV) power
forecasting model, using the application of a Gaussian
blur algorithm filtering technique to estimate power
output and the creation of a stochastic forecasting
model. As a result, affected power can be forecasted
from stochastic factors with machine learning and an
artificial neural network. This model focuses on very
short-term forecasting over a five minute period. As
it uses only endogenous data, no exogenous data is
needed.

To evaluate the model, results were compared to
the persistence model, which has good short-term
forecasting accuracy. This proposed PV forecasting
model gained higher accuracy than the persistence
model using stochastic factors.
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1. INTRODUCTION

Energy is an essential factor in the development of
a countrys economy, especially electrical energy. Fos-
sil fuels have generated traditional electricity, caus-
ing environmental problems such as carbon dioxide
and other greenhouse gasses (GHG), global warming,
and climate change[1]. A worldwide effort to mitigate
these issues resulted from the 2015 United Nations
Climate Change Conference (COP21), known as the
Paris Agreement. Many countries formed a consen-
sus to the Paris Agreement by agreeing to reduce the
release of GHG and CO2 to zero in the second half
of 21st century. This is needed to limit the global
warming problem and make sure the world remains
livable in the future[2].

To replace conventional power generation by fos-
sil fuels, energy must be gathered from a renewable
source which can naturally replenish itself. Solar en-
ergy is a promising resource for power generation for
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residential, commercial, and industrial use[3]. Solar
PV systems convert solar radiation into electric power
using PV cells. This technology was exclusively used
by satellites in space until solar PV came down to
earth and became widely used around the world in
the energy field [4].

Solar PV has gained exponential growth. Installa-
tion for power generation as can be seen Fig. 1, which
shows Solar PV global capacity from solar PV instal-
lations from 2007 to 2017. Initially, power increased
from 8 to 40 GW from 2007 to 2010 and then again
from 40 to 402 GW from 2010 to 2017, thus demon-
strating significant growth in the PV global capacity.
The future growth rate will increase largely due to the
increasing competitiveness of PV power generation,
rising electricity demand in developing countries, and
the potential of solar PV to mitigate pollution [5].
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Fig.1: PV power output generated by solar PV in-
stallations between 2007 and 2017.

Solar PV power generation output can be uncer-
tain due to many stochastic environmental factors,
such as cloud movement, solar irradiance, and atmo-
spheric conditions. In the power grid system, it is
crucial to have an accurate forecast of future out-
put from PV power plants, so authorities can man-
age grids to provide enough power for consumption.
Many researchers have used various techniques and
inputs to forecast power output with a high degree of
accuracy. The origin of inputs, the forecasting types,
and forecasting horizons are important considerations
for this purpose.

There are two forecasting methods based on dif-
fering input origins. The first method uses only en-
dogenous data. This includes current or lagged time
series generated by PV power plants[6, 7]. The second
method uses exogenous data. This includes meteoro-
logical measurements[8], satellite data[9], numerical
weather prediction (NWP)[10], and neighboring PV
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plants[11].

There are two types of PV power generation fore-
casting. The first one is the direct forecasting of
power that a PV should generate. The second one
is indirect forecasting, which forecasts the solar ir-
radiance and then uses simulation software to calcu-
late the power output of the PV. Most PV power
forecasting research has focused on direct forecast-
ing with various techniques including the persistence
model[12], statistical approaches[13]|, machine learn-
ing approaches[14], and hybrid techniques[15]. Mit-
suru et al. [16] already studied both direct and in-
direct methods to compare their efficiencies. It has
been found that direct forecasting yields higher accu-
racy than indirect forecasting.

Some work has achieved high accuracy in one lo-
cation, although the same set of variables might have
resulted in lower accuracy at other PV power plant
locations. They has led to gathering and testing of
variables suitable for each area. To obtain the vari-
ables for meteorological data, sensors have been used
at PV power plants. For accurate data, the sen-
sors must be properly maintained, which is tedious
work to do. Furthermore, some sensors have been
affected by weather conditions, causing measurement
error and lower forecasting efficiency. For example,
pyranometers, which have been used to measure solar
radiation flux density, have been affected by moisture.
After precipitation occurs, the data from pyranome-
ters should not be used for prediction until the mois-
ture is removed or vaporized from the equipment[17].

Thus, some researchers have focused on PV power
forecasting using only endogenous data without ex-
ogenous data to avoid the problems with data from
meteorological measurement devices [6,7,13,18,19].
Some power plants have also had insufficient meteoro-
logical data due to negligence of sensor maintenance.

In PV power generation, the effect of stochastic
factors on power output data has been shown. In so-
lar power generation, as shown in Fig. 2, a dashed
line shows the power that should be generated by PV
without stochastic factors. The PV power would be
generated when the sun rises and steadily increase to
maximum power when the sun is at its peak in the
daytime, and then gradually decrease until the sun
sets, and then no more power is generated. The shape
of the power output graph is a bell shaped curve.
However, in the real world, power output is affected
by stochastic factors. The factors causing the power
output generation to become unsteady can be seen in
Fig. 2, where the lower output line is not the same as
the complete bell shaped curve. We hypothesize that
prediction performance can be improved by consider-
ing stochastic factors in the forecasting model.

As a result, this work focused on creating a fore-
casting model using endogenous data to predict power
output at 5 minute intervals as affected by stochas-
tic factors. Intra-Hour forecasting can assist power
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Fig.2: PV power output graph. The dashed line
represents expected power output, with no affect from
stochastic factors. The lower line is measured power
output as affected by stochastic factors.

plant operators in foreseeing ramping events that
might occur, and allows for proper planning to han-
dle the events to occur [20]. The forecasting model
for power output uses two internal models: one with-
out stochastic factors, and another model to predict
power affected by stochastic factors by applying an
artificial neural network (ANN) which has been used
in previous various forecasting works [13]. All the
experiments for this study were developed in Python
with the aid of Keras and Sci-Py.

The rest of the paper is organized as follows. Sec-
tion 2 contains the methodology used in the experi-
ments and a dataset. Section 3 presents the results
and discussion. Finally, the conclusion is drawn in
section 4.

2. METHODOLOGY
2.1 Dataset

This work used a public dataset for validation
of solar power model output forecasting from the
National Renewable Energy Laboratory (NREL)[17],
collected at five minute intervals from flat-plate PV
modules installed in three different climatic locations
in the United States of America: Colorado, Florida
and Oregon. The selected PV data was from Eu-
gene, Oregon from 2013 to 2014. Missing values were
extrapolated using linear interpolation. Then the
dataset size was reduced by choosing a subset of time
between 9:00 and 17:00. The 2013 data was used for
modeling, and 2014 data was used for model valida-
tion. All the data in the experiment was normalized
with feature scaling.
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2.2 Persistence model

The persistence model is the simplest model for
forecasting time series data and is commonly used
as a performance benchmark with other models[2].
As is stated in the name, the expected values in
the future of the time series are calculated and this
method assumes other environment variables remain
unchanged. Thus, a time series under this study is
stationary.

The persistence model assumes that the forecasted
power will be the same as the previously measured
value. For example, for 5 minutes ahead of the hori-
zon, the power at 9:05 will be the same as power
generation output at 9:00 as in Equation 1.

P(t + At) = P(t) (1)

P(t+ At) is the predicted power in a time interval of
At and P(t) is the measured power at .

2.3 Proposed model

Coimbra et al.[21] explained that the PV power
output is not stationary as in the persistence model.
They proposed that the output power is the sum of
expected power generation output under clear sky
conditions and power influenced by stochastic factors
as shown in Equation 2.

P(t) = Pes(t) + Ps(1) (2)

P.s(t) is the expected power generation output under
clear sky conditions and Py (t) is affected power from
stochastic factors.

Our work used the idea as shown in (2), which
has both the expected power forecasting model in
clear sky conditions and the affected power forecast-
ing model including stochastic factors, but we ap-
plied a Gaussian blur filtering technique to Clear-sky
model modeling. This was different from the method
of Coimbra et al., which manually smoothed the sur-
face of the solar power output graph. This manual
smoothing technique was unspecified, so their work
cannot be replicated in other locations.

The proposed model framework is shown in Fig. 3.
The measured power (P) was transformed with Gaus-
sian blur filtering technique. The expected power P,
under clear sky conditions was generated from a pre-
vious process. Then, a Clear-sky model for P, was
created. After P., data was obtained, it was used
to calculate Py by decomposing P.s from P. Conse-
quently, an ANN was applied to create a Stochastic
forecasting model. Therefore, there were two mod-
els, a Clear-sky model and a Stochastic forecasting
model. Both models were combined to forecast PV
power output.
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Fig.3: Our modeling process included 2 previous
models. One was the Clear-sky model to forecast
the expected power output under clear sky conditions.
The other was a Stochastic forecasting model to fore-
cast power affected by stochastic factors.

Create stochastic

2.3.1 Clear-sky model

The PV power output is dependent on power plant
location, technology, orientation of solar panels, and
atmospheric conditions. All these factors can be used
in forecasting models except atmospheric conditions,
which occur randomly and thus cannot have predeter-
mined exact values. Consequently, some researchers
have assumed solar PV power output does not change
with varying atmospheric conditions. They assume
clear sky conditions. As a result, the Clear-sky model
was created. Usually, Clear-sky models can be devel-
oped using the Radiative Transfer model[?] and the
European Solar Radiation Atlas (ESRA) model[23].

Coimbra et al.[21] manually created a Clear-sky
model from historical data, then created a function
by linear interpolation. However, this study used a
Clear-sky model and applied a filter technique. A
Gaussian blur was used to remove noise from the PV
power output and calculate new expected power out-
put data from neighboring PV historical data.

To create the model we did the following steps:

« First, power output was represented as the pair of
P(Day,Time). Day was transformed to be day se-
quence number starting from 0 up to 365. Time was
the measured time in 24 hour clock time. For exam-
ple, Fig.4(a) is the measured power output of subset
January 2013, Day from 0 to 30 and Time from 9.00
to 17.00 represented in a surface graph, which fluc-
tuated and was not smooth like the expected power
under clear sky conditions.

o Secondly, a Gaussian blur was applied to measured



(a)Power output surface graph as a function of P(Day, Time)
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(b)Power output surface graph smoothed by a Gaussian blur
filtering technique for expected power output as function of
P.s(Day, Time).

Fig.4: Surface graph as function of (Day, Time)

data, calculated with neighboring P(Day, Time).
The data from this calculation was used to create
an interpolation function to be used as a Clear-sky
model as a function P.s(Day, Time), which is repre-
sented in the graph shown in Fig. 4(b). Both Fig.
4(a) and Fig. 4(b) were created in the python pro-
gram and function P.,(Day, Time) was created to be
used for the later experiments.

2.3.2 Stochastic forecasting model

An ANN was used for stochastic forecasting model-
ing from Py; data. The input of the ANN was Ps; data
in a time-series format. For example, a one lagged
time series (¢t — 1),(t) — (t + 1) with a sequence of
affected power ]Dstla Rstza ]Dstg, Pst47 Pst5 was trans-
formed into five inputs for each P,; as shown in table
1 for five P,;. In table 1, input patterns No 1 and 2
were not complete, as there were no previous inputs
for them and so they could not be used. The usable
patterns with complete input interval steps were 3, 4
and 5.

Table 1: Ezample of one lagged time series format

No | inputl | input2 | output
1 - - Pgi1
2 - Pg1 P2
3 Psi 1 Pgt2 Pq:3
4 Pst2 Pst3 Psi4d
5 Pgt3 P4 Pstb

To find suitable ANN parameters, input formats
between two lagged and five lagged time series were
tested with one hidden layer ANN containing differ-
ent numbers of hidden nodes including three, five,
and seven nodes, as shown in table 2.

The performance and accuracy of the model could
be evaluated via several performance metrics. The

metrics were used for performance comparison be-
tween different models. Each metric focused on a
particular point distribution. Thus, there was not a
unique metric that could use for all situations. Zhang
et al[24] described various metrics for solar PV assess-
ment. We used Root Mean Square Error (RMSE)
as shown in (3). It penalizes significant errors in a
square order.

RMSE =

P is the predicted power output and P is the mea-
sured power output.

Another metric used for assessment is the Coeffi-
cient of Determination (R?), also know as Pearsons
coefficient. It shows how correlated the forecasted
and real values are, as shown in (4) where Var is
Variance. Lower R? means lower accuracy and more
error from predicted data, which reflects model fore-
cast performance.

R _1_ Var(P - P) ()
Var(P)

In table 2 various ANN parameters were tested
to find a suitable parameter. The two lagged time
series input format and five hidden nodes gained bet-
ter performance compared to the other parameters.
Thus the two lagged time series format and five hid-
den nodes were determined to be suitable parameters
to be used in the stochastic forecasting model. The
ANN structure in our stochastic forecasting model
has three layers: an input layer with two nodes, a
hidden layer with five hidden nodes, and one node
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output layer. For the activation function in ANN,

Table 3: Predicted power in Fig 6 area A.

Rectified Linear units (ReLu) was used. Time | Measured | Proposed | Persistence

11.00 | 83.526 82.7372 82.3744
Table 2: ANN experiment parameters 11.05 | 84.5517 83.9049 83.526

Hidden 2 lagged 5 lagged 11.10 | 85.4103 84.8544 84.5517
nodes | RMSE | R* | RMSE | R? 11.15 | 86.1621 85.5379 85.4103
3 nodes 8.50 0.84 8.50 0.84 11.20 | 86.6192 86.3027 86.1621
5 nodes 8.15 0.86 8.26 0.85 11.25 | 87.6981 86.5591 86.6192
7 nodes 8.07 0.86 8.16 0.86 11.30 | 88.6026 88.088 87.6981
11.35 | 89.0831 88.8868 88.6026
11.40 | 89.6491 89.0939 89.0831
3. RESULT AND DISCCUSSION 11.45 | 89.7733 89.734 89.6491
11.50 | 90.0941 89.4349 89.7733
11.55 | 89.7658 89.9324 90.0941
Predicted power(P) at 12.00 | 89.7816 89.03 89.7658

Day, Time(t+1)

.

Historical power data of
Day and #,#-1to f-n

A

( Clear-sky model )—E{r},}’“ (t-1)..P., (f-n)l
4

Table 4: Predicted power in Fig 6 area B.

Y +

|: Po(t+1) ;l |: P(t+1) ;l
{
[ ]

Fig.5: Forecasting process to get predicted power P
at Day and Time(t+1)

Our model
v

P(i+1)

The developed forecasting model was applied to
a very-short time power generation forecast and its
performance was compared against the persistence
model.

The process for power prediction P of Day and
Time(t + 1) is show in Fig. 5. Our model consisted
of two components. First, the power from clear sky
conditions P.s(t + 1) was generated with the Clear-
sky model. Next, the power affected by stochastic
factors Py (t 4+ 1) used historical power at a 2 lagged
time series format back from Time (¢) format (¢ —
2,t —1,t = t+ 1) to be the model input and got
P.s(t), P.s(t—1) and P.s(t—2). Then we decomposed
P(t), P(t — 1) and P(t — 2) with P.s(¢),Pes(t — 1)
and P.s(t — 2) to get Py (t),Pst(t — 1) and Py (t — 2)
to predict Pg(t 4+ 1). Finally, both P (t + 1) and

Time | Measured | Proposed | Persistence
14.10 | 72.872 73.0582 74.3088
14.15 | 71.1757 71.1457 72.872
14.20 | 69.6444 69.3096 71.1757
14.25 | 68.3058 67.8221 69.6444
14.30 | 65.8827 66.7656 68.3058
D . - 14.35 | 63.9132 63.5887 65.8827
ecom position with P
for 14.40 | 61.0715 61.9846 63.9132
P.. (,P.ft-1)..P.A1-n) 14.45 | 56.9015 58.601 61.0715
v 14.50 | 52.9941 53.7329 56.9015
(Stochastic: fomcasting) 14.55 | 42.7255 50.0806 52.9941
model 15.00 | 28.4719 38.323 42.7255
15.05 | 32.1711 27.8727 28.4719
15.10 | 18.7843 31.8015 32.1711

P.s(t+ 1) were used to calculate the predicted power
P at Day and Time(t + 1).

Fig. 6. shows the solar power output graph in-
cluding measured power shown as a continuous line,
the power from our model as the dotted line, and
the predicted power from the persistence model as a
dashed line. The graph shows power generation for a
typical day, where the power graph is not smooth
like the bell-shaped curve mentioned for clear sky
conditions. Area A (table 3), which includes both
our model and the persistence model from 11.00 to
13.00, shows almost identical power output yields, so
the plots nearly overlap into one line. This implies
that under clear sky conditions with no effect from
severe stochastic factors, both models give a satisfac-
tory prediction. However, when sky conditions are
not normal, as can be seen in area B (table 4) from
14.00 to 15.00, the power initially slowly decreased
until, at 14.40, power output rapidly decreased. The
persistence model could not yield accurate data com-
pared to our model. As can be seen, the gap between
measured data and the persistence model is more sig-
nificant than the difference between our model and
measured data. Our model provided better power
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forecasted power by the proposed model, and forecasted power by persistence model

output prediction with lower error, even with stochas-
tic factors included, when compared to the persis-
tence model.

Table 5: Model performance evaluation

Model RMSE | R?
Persistence model | 8.87 0.89
Proposed model 7.26 0.94

Furthermore, the results from table 5 showing the
model performance evaluation of both models based
on the 2014 dataset with evaluation metrics RMSE
and R? indicate that the proposed model outper-
formed the persistence model with R? = 0.94, while
the persistence model gave R? = 0.89 and the RMSE
indicated greater error. The proposed model had bet-
ter performance because our model included stochas-
tic factors and handled other conditions that affected
the solar power generation better than the persistence
model, which uses the assumption that future condi-
tions will remain the same as those measured previ-
ously and thus yield the same output. In the case of
severe fluctuation of stochastic factors, the assump-
tion of the persistence model means it cannot perform
as well as the proposed model, which aims to handle
stochastic factors related to PV power generation.

4. CONCLUSION

This work proposes a PV power forecasting model
which considers the stochastic factors relevant to
PV power generation output using only endogenous
data. The model forecasts expected power output
under clear sky conditions and power output af-
fected by stochastic factors. It then combines both

of the forecast calculation results to predict power
output 5 minutes into the future. In the experi-
ment, the model obtained R%?= 0.94 and RMSE =
7.26, which outperformed the persistence model. As
can be seen from the results, Clear-sky model cre-
ation with Gaussian Blur and error correction from
the Stochastic forecasting model with ANN gives ac-
ceptable performance with simple techniques which
can be replicated. It also demonstrates that consid-
eration of stochastic factors can increase forecasting
performance when compared to existing model meth-
ods which do not include them, as described in the
hypothesis.

This study used standard Gaussian Blur and ANN
from the Python library without any special modifi-
cations. In the future, a proper estimation and ap-
proximation function will be investigated, and tests
for other ANNs will be performed to gain higher fore-
casting accuracy.
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