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ABSTRACT

Kernel principal component analysis (KPCA) is
a kernelized version of principal component analysis
(PCA). A kernel principal component is a superposi-
tion of kernel functions. Since the number of kernel
functions equals the number of samples, each compo-
nent is not a sparse representation. Our purpose is
to sparsify coefficients expressing in linear combina-
tion of kernel functions. Two types of sparse kernel
principal component are proposed in this paper. The
method for solving the sparse problem is comprised
of two steps: (a) we start with the Pythagorean the-
orem and derive an explicit regression expression of
KPCA, and (b) two types of regularization, l1-norm
or l2,1-norm, are added into the regression expres-
sion in order to obtain two different sparsity forms,
respectively. As the proposed objective function is
different from elastic net-based sparse PCA (SPCA),
the SPCA method cannot be directly applied to the
proposed cost function. We show that the sparse
representations are obtained using iterative optimiza-
tion by conducting an alternating direction method
of multipliers. Experiments on toy examples and real
data confirm the performance and effectiveness of the
proposed method.

Keywords: Principal Component Analysis, Sparse
Principal Component Analysis, Kernel Principal
Component Analysis, Alternating Direction Method
of Multipliers

1 INTRODUCTION

Principal component analysis (PCA) [1] is a
widely-used linear method for dimensionality reduc-
tion. It has been used in many engineering fields,
including signal processing, image processing, statis-
tical analysis, data compression, and pattern recog-
nition.

Two main perspectives are usually used to charac-
terize PCA [2]. The first viewpoint is the maximum
variance derivation. The idea here is to determine a
lower-dimensional linear subspace that captures the
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largest variance of the data under the orthonormal
constraint. Another explanation is the mean squared
error (MSE) derivation that minimizes the average
distance between the data samples and their pro-
jection under the low rank matrix with orthonormal
columns. These two different derivations result in the
eigendecomposition of the covariance matrix of the
data. This yields the subspace spanned by the eigen-
vectors of the covariance matrix corresponding to the
largest eigenvalues. However, PCA cannot discover
nonlinear data structures because of its linear limita-
tion. For such a nonlinear structure, the kernelized
version of principal component analysis (KPCA) [3]
successfully copes with this difficulty. In KPCA, all
data is embedded into a reproducing kernel Hilbert
space (RKHS) [4] by means of a nonlinear map. To
get rid of the nonlinear map, the kernel trick is ap-
plied to execute PCA in RKHS.

KPCA, however, encounters a problem that the
principal components (PCs) involve all of the data
samples, which may lead to overfitting and memory
overflow. It is thus necessary to reduce the number
of samples used for PCs while keeping the original
quality of the standard KPCA.

The sparsification of KPCA proposed so far can be
categorized into two types [5–13]. The first type fol-
lows the idea of a reduced subset of the dataset. For
example, Tipping [8] solved this problem by approx-
imating the covariance matrix in feature space. This
idea comes from probabilistic PCA [14] by means
of a maximum-likelihood estimation to obtain the
sparse form of the covariance matrix. This kind of
method is not aimed to generate sparse representa-
tion for PCs, however. “Sparse greedy matrix ap-
proximation” (SGMA) [6] has been proposed to con-
struct a compressed matrix approximation of the ker-
nel matrix in order to minimize the Frobenius norm
of the residual between these two matrices. The re-
constructed matrix is achieved by seeking a subset of
the dataset and the projection matrix. SGMA can
be thought of as a form of sparse training algorithm
[15]. Further, Hussain and Shawe-Taylor [13] stated
that SGMA aims to yield a sparse KPCA, and proved
its equivalence from a matching pursuit perspective.
They followed two steps—quotient maximization and
deflation—to achieve compression set indices from the
data set and without the need of a projection ma-
trix. The compressed kernel matrix can be computed
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by the compression set [16]. Note that feature ex-
tractors as expansions in terms of mapped samples,
Schölkopf et al. [7] considered reduced-set methods to
drop unimportant mapped data. One selection is to
eliminate unimportant mapped data from the expan-
sion while allowing for an error caused by this elim-
ination. Another selection is to enforce an l1-norm
on an approximated expansion coefficient. Neverthe-
less, both selections have high computational costs.
Following a similar idea, Xu et al. [12] proposed a
method that selects the dissimilarity among all of the
mapped data under the squared distance measure-
ment criterion, and then used identified subset data
and training data to perform KPCA. This type of
sparsification mainly focuses on evaluating dissimi-
larities of samples while ignoring the MSE.

The second type aims to find a sparse approxi-
mation to eigenvectors in feature space. Smola et
al. [5] applied an l1-constraint on coefficients to sparse
components, named sparse kernel feature analysis
(SKFA). Based on SKFA, Jiang et al. [9] proposed
accelerated kernel feature analysis (AKFA) to ex-
tract features, which is superior to the time complex-
ity of SKFA. However, both method has the prob-
lem that the first component only using one train-
ing sample, leading to bad interpretation of the PC.
Vollgraf et al. [10] introduced the regularization term
consisting of the square of the ratio of the l1- and
the l2-norm of the coefficient vector. The cost func-
tion was minimized by the so-called hyper-ellipsoidal
conjugate gradient descent method (HECGD). This
algorithm includes heuristics, however, and the solu-
tion depends on a small positive value to shrink it
toward zero. Suykens et al. [17] formulated KPCA
for use with least squares support vector machines
(LS-SVM). The links between KPCA and LS-SVM
are established through the primal and dual prob-
lem. Alzate et al. [18] extended KPCA to a general-
ized form of kernel component analysis (KCA) with
a general underlying loss function and proposed two
algorithms to sparsify KPCA. The first algorithm in-
troduces an epsilon-insensitive zone [19] into the loss
function and the sparseness can be obtained by ep-
silon value. The second one considers a loss function
of the weighted form [20]. Sparseness is obtained by
computing the weight when the value is equal to zero.
However, these two algorithms need to observe the
distribution of the score values to decide the epsilon
value, which uses a heuristic. The preliminary work
of this paper falls in this category [21]. Recently, a
new sparse KPCA via sequential method (SSKPCA)
has been proposed [22].

Several online adaptive extensions have been in-
troduced to KPCA [23, 24]. The main concept is to
consider whether the incoming data sample should
be added into a dictionary or not, thus leading to a
sparse representation. However, so far little atten-
tion has been paid to simultaneously establishing a

connection between the approximation property and
the sparsity of coefficients that can cope with the
drawbacks of the two types of sparsification previ-
ously mentioned. In this paper, we propose a novel
sparsification of KPCA that evaluates the MSE cri-
terion while promoting sparsity in the representation
of PCs. We show that in the case of KPCA, MSE
criterion can be turned into a regression model. The
sparse coefficients can be obtained by imposing either
l1-norm or l2,1-norm onto the regression model. This
can be regarded as an extension of the elastic net [25]
regularization of the sparse linear PCA was proposed
by Zou et al. [26]. Since the proposed cost function is
different from sparse linear PCA, the SPCA method
cannot be directly applied to the proposed cost func-
tion. To this end, we use an alternating direction
method of multipliers (ADMM) [27] method in its
iterative optimization to yield sparse solutions.

In the following sections, we summarize PCA,
KPCA, and elastic net-based sparse PCA in Section
2. The main focus of the paper, two types of spar-
sity algorithms of KPCA, are described in Section 3.
Experiments are provided in Section 4, and the con-
clusion of the paper is given in Section 5.

2 PRINCIPAL COMPONENT ANALYSIS,
ITS KERNELIZATION, AND SPARSIFI-
CATION: REVIEW

2.1 Principal Component Analysis

Denote a dataset {xi}Ni=1 belong to Rd with zero
mean. Suppose the set of vectors {ui}Mi=1 is a ba-
sis for space U , where U is a subspace of Rd, that
is M < d. We project xi onto subspace U to ob-
tain UTxi, where U = [u1, . . . ,uM ]. The maxi-
mum variance derivation is to capture maximum vari-
ance of the projected data. To this end, we define:

S =
1

N

N∑
i=1

xix
T
i =

1

N
XTX and X = [x1, . . . ,xN ]T .

We maximize the projected variance
M∑
i=1

uT
i Sui un-

der the constraint that UTU = IM×M , where IM×M

is the identity matrix. The constrained maximiza-
tion of the variance can be performed by solving the
eigenvalue problem for S:

Sui = λiui

where λi is an eigenvalue of S indexed such that λ1 ≥
. . . ≥ λM ≥ 0, and ui is an eigenvector corresponding
to λi. For any sample x, the kth principal component
(PC) is uT

k x.

2.2 Kernel Principal Component Analysis

For nonlinear data, we employ a map ϕ to embed
the data into an RKHS, that is xi → ϕ(xi), which is
considered to be an element of an RKHS. For the sake
of simplicity, the dataset {ϕ(xi)}Ni=1 is assumed to be
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centered. The covariance matrix C in the feature
space can be expressed as:

C =
1

N

N∑
i=1

ϕ(xi)ϕ(xi)
T . (1)

The eigenvalue λk and eigenvector vk of C satisfy:

Cvk = λkvk, k = 1, . . . ,M. (2)

From Cvk =
1

N

N∑
i=1

ϕ(xi)(ϕ(xi)
Tvk) = λkvk, we ob-

serve that eigenvector vk belongs to the set of mapped
data {ϕ(xi)}Ni=1. In other words, eigenvector vk is the
linear combinations of {ϕ(xi)}Ni=1:

vk =
N∑
i=1

aikϕ(xi) (3)

where aik are the linear combinaton coefficients. By
substituting vk in (2), we obtain:

1

N

N∑
i=1

ϕ(xi)ϕ(xi)
T

N∑
j=1

ajkϕ(xj) = λk

N∑
i=1

aikϕ(xi).

(4)
Since the inner product in an RKHS is given by kernel
function ϕ(xi)

Tϕ(xj) = k(xi,xj), by left-multiplying
ϕ(xl)

T on both sides of (4), we obtain:

1

N

N∑
i=1

k(xl,xi)
N∑
j=1

ajkk(xi,xj) = λk

N∑
i=1

aikk(xl,xi)

for all l = 1, . . . , N . In matrix form, we have K2ak =
NλkKak, where K is a “Gram matrix” whose ele-
ment is Kij = k(xi,xj), and ak = (ak1 , . . . , akN )T ,
which satisfies the following eigenvalue problem [3]:

Kak = Nλkak.

If vk has the unit norm, say, vT
k vk = 1, then ak

satisfies:

λkNaTk ak = 1.

Finally, the nonlinear PCs can be calculated by:

ϕ(x)Tvk =
N∑
i=1

aikk(xi ,x). (5)

Remark 1: As mentioned earlier, the data is as-
sumed to be centered. If that condition is not true,

then we replace matrix K by K̄ = K − 1

N
K1N1TN −

1

N
1N1TNK +

1

N2
1N1TNK1N1TN , where 1N denotes an

N -dimensional column vector of all ones. K̄ is called
a conditionally positive definite matrix [15].

2.3 Elastic Net-based Sparse PCA

Zou, Hastie, and Tibshirani [26] proposed sparsi-
fication for PCA via elastic net regularization. They
point out that the PCA may be turned into a re-
gression problem where the sparse coefficients may be
obtained by imposing l1-norm regularization. Specif-
ically, PCA minimizes the criterion of MSE:

min
U

N∑
i=1

∥xi − UUTxi∥2 s.t. UTU = IM×M (6)

where U and IM×M as previously mentioned. The
cost function (6) may be changed into the following
form:

min
U,B

N∑
i=1

∥xi − UBTxi∥2 + λ
M∑
k=1

∥bk∥2

s.t. UTU = IM×M (7)

where B = [b1, . . . ,bM ] is a matrix of rank M , and
λ > 0 is a parameter. The relation between (6) and
(7) has been proved in Theorem 3 in [26]. The role
played by the ridge penalty is to ensure the recon-
struction of PCs rather than to penalize the regres-
sion coefficients. Note that:

N∑
i=1

∥xi − UBTxi∥2 = ∥X −XBUT ∥2F ,

where ∥ · ∥F denotes the Frobenius norm. Since U is
orthonormal, let U⊥ be an orthonormal matrix such
that [U ;U⊥] is d× d orthonormal. Then, we obtain:

∥X −XBUT ∥2F = ∥(X −XBUT )[U ;U⊥]∥2F
= ∥XU −XB∥2F + ∥XU⊥∥2F

=
M∑
k=1

∥Xuk −Xbk∥2 + ∥XU⊥∥2F .

Given U , then the optimal solution B of (7) is mini-
mized by

min
B

M∑
k=1

∥Xuk −Xbk∥2 + λ
M∑
k=1

∥bk∥2 (8)

which is equivalent to the M independent sub-
optimal problems. According to Theorem 1 in [26],
after normalization such that each column of B has
unit length, the optimal solution bk is proportional
to uk. Therefore, we can weaken criterion (6) into (7)
in order to cope with PCA. Furthermore, through the
above explanation, the first M sparse PCs can be ob-
tained by adding l1-norm of bk into (8):

min
uk,bk

M∑
k=1

∥Xuk −Xbk∥2 + λ
M∑
k=1

∥bk∥2 +
M∑
k=1

λ1,k∥bk∥1

s.t. UTU = IM×M

(9)
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where λ1,k > 0 are parameters, thus tuning the com-
promise between variance and sparseness.

The optimization problem (9) can be solved
through an alternating algorithm as follows [26]:

• Given U : Each bk in (9) is obtained as

min
bk

∥Xuk −Xbk∥2 + λ∥bk∥2 + λ1,k∥bk∥1,

and define matrix B = [b1, . . . ,bM ].
• Given B: Compute the singular value decomposi-
tion (SVD) of (XTX)B as

(XTX)B = EDFT

and set U = EFT .
These two steps are repeated alternately until con-
vergence is achieved.

On the other hand, according to (9), an alternat-
ing algorithm for optimizing uk and bk is introduced
sequentially in [28]. First, for fixed uk, which is as-
sumed to be orthonormal, say, uT

k uk = 1, then bk

can be calculated by:

min
bk

∥Xuk −Xbk∥2 + λ∥bk∥2 + λ1,k∥bk∥1. (10)

For fixed bk, the solution of uk is given by:

min
uk

∥Xuk −Xbk∥2 s.t. uT
k uk = 1, uT

kU(k−1) = 0

where U(k−1) is a d × (k − 1) matrix corresponding
to the previously found (k − 1) solutions uk, such
that UT

(k−1)U(k−1) = I. The optimal uk is given by

uk =
s√
sT s

, where s = (I − U(k−1)U
T
(k−1))X

TXbk.

Compared to the method introduced by Zou et al.
[26], Sjöstrand et al. [28] deem this method a se-
quential method. Consider estimating k components
and (k + 1) components, respectively, the simulta-
neous algorithm provides different PCs results from
k to k + 1. The sequential method, however, keeps
the first k PCs unchanged when the (k + 1)th PC is
computed.

So far we have introduced the PCA, KPCA and
elastic net-based sparse PCA (SPCA). PCA is ex-
plained via an eigendecomposition of the covariance
matrix S. For KPCA, the data is mapped into RKHS
and we perform PCA in terms of a kernel trick. On
the other hand, because of elastic net regularization,
SPCA is more convenient than PCA for interpreting
PCs. In the following section we will explain how
KPCA can be rewritten as a regression problem with
explicit expression, and then we wil employ the l1-
norm and l21-norm of coefficients to achieve a sparse
representation.

3 TWO NOVEL SPARSENESS ALGO-
RITHMS FOR KPCA

Denote Φ = [ϕ(x1), . . . , ϕ(xN )], V = [v1, . . . ,vM ],
and A = [a1, . . . ,aM ] for notational simplicity. Then

we have matrix notation V = ΦA according to (3)
and the Gram matrix K = ΦTΦ. Our intent is to
sparsify the coefficient matrix A and unveil PCs with
matrix A. In other words, each vi can be represented
by a smaller number of observed samples than is the
case with standard KPCA.

To this end, first we rewrite the cost function using
the Pythagorean theorem. In detail, we reformulate
KPCA according to reference [29]. In the same way
as PCA, KPCA minimizes the MSE:

J [V ] =
N∑
i=1

∥ϕ(xi)− V V Tϕ(xi)∥2

s.t. V TV = ATKA = IM×M .

Suppose that Φ is fixed, such that optimizing V is
equivalent to optimizing A. Let R(·) be the span of
an operator, and PR(Φ) be the orthogonal projector
onto R(Φ). From the Pythagorean theorem, we have:

J [V ] =
N∑
i=1

{∥PR(Φ)(ϕ(xi)− V V Tϕ(xi))∥2

+ ∥PR(Φ)⊥(ϕ(xi)− V V Tϕ(xi))∥2},

since PR(Φ) = Φ(ΦTΦ)−1ΦT . The first term in the
brackets may be written as [29]:

∥PR(Φ)(ϕ(xi)−V V Tϕ(xi))∥2 = ∥K− 1
2 (hi−KAAThi)∥2,

where hi = ΦTϕ(xi). If K is rank-deficient, then we

employ the pseudoinverse of K
1
2 [7]. The second term

in the brackets may be written as:

∥PR(Φ)⊥(ϕ(xi)− V V Tϕ(xi)))∥2 = ∥PR(Φ)⊥ϕ(xi)∥2.

Therefore, J [V ] can be rewritten as J [V ] = J1[A]+J2,
where:

J1[A] =
N∑
i=1

∥K− 1
2hi −K

1
2AAThi∥2

and:

J2 =
N∑
i=1

∥PR(Φ)⊥ϕ(xi)∥2.

Again, J2 is a constant, which can be ignored, so we
focus on the J1[A]. If we set yi = K− 1

2hi, then we

have AThi = ATK
1
2yi. J1[A] can be rewritten as:

J1[A] =
N∑
i=1

∥yi−QQTyi∥2 s.t.QTQ = IM×M (11)

where Q = [q1, . . . ,qM ] = K
1
2A or:

qk = K
1
2 ak. (12)
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Note that:

[y1,y2, . . . ,yN ] = [K− 1
2h1,K

− 1
2h2, . . . ,K

− 1
2hN ]

= K− 1
2ΦT [ϕ(x1), ϕ(x2), . . . , ϕ(xN )]

= K− 1
2K = K

1
2 .

Obviously, matrix K
1
2 is composed of N column vec-

tors y1,y2, . . . ,yN . Based on the above analysis, we
see that from the Pythagorean theorem, optimizing
J [V ] is equivalent to optimizing J1[A]. It should also
be noted that the condition links between A and Q
via (12). We propose two types of sparsifications for
A. One is based on the l1-norm, while the other is
based on the l2,1-norm. We have shown a prelimi-
nary result based on the l1-norm in [21]. In the fol-
lowing, we describe a more detailed derivation for the
l1-norm regularization and a newly proposed sparsi-
fication based on the l2,1-norm.

3.1 Sparse KPCA via l1-norm

As was done in the derivation of sparse PCA, to ob-
tain a sparse solution, we weaken (11) as a regression-
type optimization problem as follows:

min
P,Q

N∑
i=1

∥yi − PQTyi∥2 + λ
M∑
k=1

∥qk∥2

s.t. PTP = IM×M (13)

where P = [p1, . . . ,pM ], and λ > 0 is a parameter.
In fact in (11), it is just another form of (6) except
for the different denotation, so in (13) we first fol-
low the procedure of sparse PCA to make sure P has
orthonormal columns, then relax P = Q and add a

ridge penalty term λ
M∑
k=1

∥qk∥2. Suppose P is given,

the optimal solution Q of (13) can be obtained by
minimizing:

1

2

M∑
k=1

∥K 1
2pk −K

1
2qk∥2 +

λ

2

M∑
k=1

∥qk∥2. (14)

The factor of 1/2 is included for convenience. As
shown in Section 2.3, after normalization the qk is
proportional to pk. Our next step is to obtain sparse
solutions for the coefficient matrix A. Note that ak is
a coefficient vector in terms of (3) and satisfies (12).
We enforce l1-norm of ak onto (14) and minimize the
cost function:

Jl1 [P,Q] =
1

2

M∑
k=1

∥K 1
2pk −K

1
2qk∥2 +

λ

2

M∑
k=1

∥qk∥2

+
M∑
k=1

λ1,k∥ak∥1

subject to PTP = IM×M or we can consider optimiz-
ing them sequentially:

Jl1 [pk,qk] =
1

2
∥K 1

2pk −K
1
2qk∥2 +

λ

2
∥qk∥2

+ λ1,k∥ak∥1
s.t. PTP = IM×M

(15)

where λ1,k > 0 is the trade-off parameter of MSE and
sparseness. Cost function (15) is quadratic with re-
spect to either pk or qk, both of which are minimized
by alternating minimization. For pk, only the first
term is considered: pk can be solved using the same
technique as uk for SPCA, as shown in Section 2.3.
For qk, we cannot apply the same scenario as SPCA
described in Section 2.3, since the l1-norm includes
a matrix K− 1

2 , which is generally not diagonal. For
this case, the ADMM [27] can be applied to (12) and
(15) using an augmented Lagrangian method. We
form the augmented Lagrangian by combining (12)
and (15):

Lρ(qk,ak, tk) =
1

2
∥K 1

2pk −K
1
2qk∥2 +

λ

2
∥qk∥2

+ λ1,k∥ak∥1 + tTk (K
− 1

2qk − ak)

+
ρ

2
∥K− 1

2qk − ak∥2

where tk is the Lagrange multiplier and ρ > 0 is a
penalty parameter. ADMM consists of the iterations:

qj+1
k = argmin

qk

Lρ(qk,a
j
k, t

j
k)

= (K + λI + ρK−1)−1[Kpk + ρK− 1
2 (ajk −

tjk
ρ
)],

aj+1
k = argmin

ak

Lρ(q
j+1
k ,ak, t

j
k)

= Sλ1,k
ρ

(K− 1
2qj+1

k +
tjk
ρ
),

tj+1
k = Lρ(q

j+1
k ,aj+1

k , tk)

= tjk + ρ(K− 1
2qj+1

k − aj+1
k )

where Sτ (α) =
max{|α| − τ, 0}

max{|α| − τ, 0}+ τ
α [30] is the

element-wise soft thresholding function, and qj+1
k

means the (j + 1)th iteration of qk. We consider
stopping criteria [27] when

∥ej+1
p ∥ ≤

√
Nϵabs + ϵrel max{∥K− 1

2qj+1
k ∥, ∥aj+1

k ∥}

∥ej+1
d ∥ ≤

√
Nϵabs + ϵrel∥K− 1

2 tj+1
k ∥

where ϵabs > 0, ϵrel > 0, and ej+1
p = K− 1

2qj+1
k −aj+1

k ,

ej+1
d = −ρK− 1

2 (aj+1
k − ajk). The sparse coefficients

ak can be obtained by applying the soft thresholding
function. Then we compute pk by the same scheme
uk as mentioned in Section 2.3. The algorithm of
sparse KPCA via l1-norm is summarized in Algo-
rithm 1. In Step 11 of the Algorithm 1, P(k−1) is
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Algorithm 1 Sparse KPCA via l1-norm

1: Input: matrices K and P , the number of PCs M
2: for k = 1 to M do
3: while not convergent or within the preset it-

eration do
4: Initialize qk,ak, tk
5: while stopping criteria is not satisfied and

within the preset iteration do
6: qk ← (K + λI + ρK−1)−1[Kpk +

ρK− 1
2 (ak −

tk
ρ
)]

7: ak ← Sλ1,k
ρ

(K− 1
2qk +

tk
ρ
)

8: tk ← tk + ρ(K− 1
2qk − ak)

9: end while
10: qk ←

qk√
qT
k qk

11: pk = (I − P(k−1)P
T
(k−1))Kqk

12: pk ←
pk√
pT
k pk

13: end while
14: end for
15: Output the coefficient A = [a1, . . . ,aM ]

defined as the submatrix that consists of the previ-
ous (k − 1) solutions pk.

Remark 2: We calculate the eigendecomposition of
K and sort the eigenvalues in descending order. The
first M corresponding eigenvectors are set to P =
[p1, . . . ,pM ].

3.2 Sparse KPCA via l2,1-norm

The l1-norm regularization leads to element-wise
sparsity via a soft-threshold operator, so matrix A is
not sparse in rows. Namely, each PC includes differ-
ent samples to represent a sparse solution. We aim to
encourage the sparsity of matrix A at the row level,
so we adopt l2,1-norm regularization. The l2,1-norm
regularization penalizes all the coefficients for a given
set of training data to become zero simultaneously. In
this way, we can greatly reduce the number of samples
to represent all PCs.

First, we express (14) in matrix form:

1

2
∥K 1

2P −K
1
2Q∥2F +

λ

2
∥Q∥2F (16)

The l2,1-norm of A (a.k.a. group l1-norm) is defined

as ∥A∥2,1 =
N∑
i=1

∥ai∥, where ai denotes the ith row of

A. We add the l2,1-norm of A to (16):

Jl2,1 [P,Q] =
1

2
∥K 1

2P −K
1
2Q∥2F +

λ

2
∥Q∥2F

+ µ21∥A∥2,1
s.t. PTP = IM×M

(17)

where µ21 is a constant that determines the trade-off
between MSE and sparsity. Combining (12) and (17),
we form the augmented Lagrangian:

Lρ21
(Q,A, T ) =

1

2
∥K 1

2P −K
1
2Q∥2F +

λ

2
∥Q∥2F

+ µ21∥A∥2,1 − tr(TT (K− 1
2Q−A))

+
ρ21
2
∥K− 1

2Q−A∥2F

where T is the Lagrange multiplier, tr(·) stands for
the trace of the matrix, and ρ21 > 0. By using the

scaled dual variable W =
T

ρ21
, Lρ21

(Q,A, T ) can be

reformed as:

Lρ21
(Q,A,W ) =

1

2
∥K 1

2P −K
1
2Q∥2F +

λ

2
∥Q∥2F

+ µ21∥A∥2,1 +
ρ21
2
∥K− 1

2Q−A−W∥2F

− ρ21
2
∥W∥2F .

ADMM optimizes Lρ21
(Q,A,W ) with respect to

Q, A, and updates the dual variable W sequentially.
First, optimizing Qj+1 for fixed Aj and W j :

Qj+1 = argmin
Q

Lρ21
(Q,Aj ,W j)

= (K + λI + ρ21K
−1)−1[KP + ρ21K

− 1
2 (A+W )].

Then, with fixed Qj+1 and W j , Aj+1 is computed by:

Aj+1 = argmin
A

Lρ21
(Qj+1, A,W j)

= argmin
A

µ21∥A∥2,1 +
ρ21
2
∥A− (K− 1

2Q−W )∥2F
(18)

= argmin
ai

N∑
i=1

(µ21∥ai∥+
ρ21
2
∥ai − ri∥2)

where ri is the ith row vector of R = K− 1
2Q −W .

Note that different row vectors ai of A can be solved
for by an independent sub-problem, i.e.:

ai = argmin
ai

(µ21∥ai∥+
ρ21
2
∥ai− ri∥2) i = 1, . . . , N.

The solution of ai is the vectorial soft-threshold op-
erator [30] given by:

ai = ri
max{∥ri∥ − β, 0}

max{∥ri∥ − β, 0}+ β
(19)

where β =
µ21

ρ21
. So Aj+1 can be written as Aj+1 =

[a1;a2; · · · ;aN ]. Using the vectorial soft-threshold
operator, many rows of the optimal A correspond-
ing to (18) shrink to zero, which makes A suitable for
sample data selection. Finally, we update the dual
variable.

W j+1 = Lρ21
(Qj+1, Aj+1,W ) = W −K− 1

2Q+A.
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Based on the above derivation, the details of sparse
KPCA via l2,1-norm are summarized in Algorithm 2.
Again, the initial matrix P is set as shown in Algo-
rithm 1. After computing Q, we calculate the SVD of
KQ = E1D1F

T
1 , and set P = E1F

T
1 in the loop. Pri-

mal residual norms ∥Ej+1
p ∥F = ∥K− 1

2Qj+1−Aj+1∥F
and dual residual norms ∥Ej+1

d ∥F = ∥ρ1K− 1
2 (Aj+1−

Aj)∥F are used in Algorithm 2. With the goal of
enhancing the convergence speed in the algorithm in
mind, we consider the self-adaptive rule for penalty
parameter ρ1 [27]:

Algorithm 2 Sparse KPCA via l2,1-norm

1: Input: matrices K and P , the number of PCs M
2: while not convergent or within the preset itera-

tion do
3: Initialize Q,A,W
4: while within the preset iteration and stop-

ping criteria is not satisfied do
5: Q ← (K + λI + ρ21K

−1)−1[KP +

ρ21K
− 1

2 (A+W )]
6: A ← [a1;a2; · · · ;aN ] where each ai is

given by (19)

7: W ←W −K− 1
2Q+A

8: end while
9: KQ = E1D1F

T
1

10: P = E1F
T
1

11: end while
12: Output the coefficient A = [a1; · · · ;aN ]

ρk+1
1 =


τ incrρk21, if ∥Ej+1

p ∥F > η∥Ej+1
d ∥F

ρk21/τ
decr, if ∥Ej+1

d ∥F > η∥Ej+1
p ∥F

ρk21, otherwise

where η > 1, τ incr > 1, and τdecr > 1 are param-
eters. In the ADMM scheme, we set η = 10, and
τ incr = τdecr = 2. Meanwhile, in addition to up-
dating the parameter ρ21, we also need to rescale W .
When ρ21 is halved, W should be doubled before pro-
ceeding. Conversely, if ρ21 is doubled, then W should
be halved before proceeding. The convergence crite-
rion in ADMM is ∥Ej

p∥F < δl2,1 or ∥Ej
d∥F < δl2,1 with

a declared maximal number of iterations.

4 EXPERIMENTS

We present the sparsity results of the proposed ap-
proach through several experiments. Gaussian ker-
nels of the form k(x,y) = exp(−γ∥x−y∥2) will be ap-
plied to implement the dataset. In Section 4.1, we use
two unsupervised toy examples—Gaussian mixture
data and nonlinear data—to illustrate the effective-
ness of the sparsity. In Section 4.2, three real datasets
from the UCI Machine Learning Repository [32] are
processed to corroborate performance of the proposed
approach. Herein, we refer to sparse KPCA via l1-
norm and sparse KPCA via l2,1-norm as SKPCA-l1
and SKPCA-l2,1, respectively.

4.1 Toy Examples

4.1.1 Gaussian Mixture Data

In the first toy example, we conduct the experi-
ment on the 90 data samples. The data values are
generated from three Gaussian sources centered at
(−0.5,−0.2), (0, 0.6), and (0.5, 0) (30 samples each),
with standard deviation 0.1. The parameter of the
kernel function is set to γ = 10 [3].

In the case of SKPCA-l1, we set λ = 0.1,
ρ = 0.01, ϵabs = 10−4, ϵrel = 10−4, and λ1 =
(0.02, 0.02, 0.009, 0.008, 0.006, 0.007, 0.01, 0.01). The
sparse solutions can be achieved when the conver-
gence criterion ∥qnew

k −qold
k ∥2 < ϵl1 is satisfied or the

preset maximum number of loop iterations have oc-
curred, where qnew

k and qold
k can be thought of as the

qk during the update procedure in Steps 4 and 13 in
Algorithm 1. We set ϵl1 = 10−2, and the inner and
outer loop counters are 300. In the case of SKPCA-
l2,1, we set λ = 0.01, µ21 = 0.01, and the initial
ρ21 = 10−2, δl2,1 = 90 × 10−4. Also, the sparse solu-

tions can be achieved when ∥Qold−Qnew∥2F < ϵl2,1 or
the preset maximum number of loop iterations have
occurred, where ϵl2,1 = 10−2. Qold and Qnew can be
regarded as the Q during the loop in Steps 3 and 8 in
Algorithm 2. The inner iteration limit is set to 300,
and the outer iteration limit is 10. In the proposed
methods, all the parameters are set manually.

Fig. 1(a) shows the result when KPCA is per-
formed on this data. The dots denote data, while
the contour lines shown in each part of the figure
represent constant value, calculated by (5). SKPCA-
l1 and SKPCA-l2,1 are shown in Fig. 1(b) and 1(c),
respectively. The dots are data samples selected by
the proposed method, in which the corresponding co-
efficients are nonzero. Fig. 1 shows that SKPCA-l1
captures a similar structure with different data sam-
ples, whereas SKPCA-l2,1 extracts a similar structure
with same data samples. Compared to KPCA, both
types of sparsity algorithms yield desirable results us-
ing less data.

4.1.2 Non-linear Data

We generate N = 500 training data from a two-
dimensional parabola in the second instance, where
x is generated from [−1, 1] with uniform distribu-
tion. The y-values are generated from yi = x2

i + ξ,
where ξ is normal noise with standard deviation 0.2
[31]. Fig. 2(a) shows the first four PCs obtained by
KPCA with γ = 2; the dots represent data sam-
ples. In the case of SKPCA-l1, we set λ = 0.05,
λ1,4 = 0.05, ρ = 0.09, ϵrel = 10−4, ϵabs = 10−4, and
ϵl1 = 10−2 to extract the first four PCs. The inner
loop counter is 300, and the outer loop counter is
60. The result is shown in Fig. 2(b), where the dots
represent samples that have nonzero coefficients. It
is obvious that the SKPCA-l1 method only uses a
few data samples to capture the same performance
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(a) KPCA

(b) SKPCA-l1

(c) SKPCA-l2,1

Fig.1: Visualization of the first eight PCs captured
by KPCA, SKPCA-l1, and SKPCA-l2,1.

as the KPCA. To investigate how the parameter λ1,k

affects the sparsity and variance, we again fixed ρ and
set λ1,4 = (0.05, 0.07, 0.08, 0.09) for the original data.
Fig. 2(c) shows this influence. The first PC is the
same as the first figure of Fig. 2(b) because λ1,1 is un-
changed. By increasing the parameter value λ1,k from
second to fourth, the different λ1,k leads to different
numbers of data points, as well as decreasing the vari-
ance, which confirmed the connection between the ap-
proximation property and the sparsity of coefficients.
Through use of the element-wise soft thresholding

function Sτ (α) =
max{|α| − τ, 0}

max{|α| − τ, 0}+ τ
α, below some

threshold τ =
λ1,k

ρ
, the data will be eliminated in

feature extraction, thus leading to sparser results. In
the case of SKPCA-l2,1, we set λ = 0.05, µ21 = 0.05,
the initial value ρ21 = 0.09, and δl2,1 = 500 × 10−4.
The iteration numbers are the same as SKPCA-l1.
Fig. 2(d) illustrates the result. The first four PCs ex-
tracted by the same data and the structure captured
by SKPCA-l2,1 is essentially the same as with KPCA.
As shown in Fig. 2, sample selection and sparse rep-
resentation can be achieved by using a small number
of samples, which supports the effectiveness of the
sparseness approach.

4.2 UCI Dataset

To validate the usefulness of the proposed algo-
rithm, we processed three real datasets which are
available from the UCI Machine Learning Repository
[32]. Those datasets are used for classification. The
details of the datasets are shown in Table 1.

Table 1: Dataset used in classification experiments
Dataset N(#num) m(feature)

Australian 690 14

breast-cancer 699 10

climate 540 20

First we used a support vector machine (SVM)
to classify the dataset. The second classification
method is to employ KPCA as preprocessing step
to reduce dimensionality and then to implement
SVM (KPCA+SVM). The proposed methods are im-
plemented for comparision, referred to as SKPCA-
l1+SVM and SKCPA-l21+SVM, respectively. Each
dataset is divided into two parts: the training and
test data. The training data comes from half of
the entire data which is used for training and for
optimizing the parameters, and the rest for the fi-
nal evaluation. The training data is used nor-
malized to the range [0,1]. The SVM parame-
ters Csvm as well as γsvm are selected from the
candidate set {10−3, 10−2, 10−1, 0.5, 1, 5, 10, 102} and
{10−4, 10−3, 10−2, 10−1, 1, 10, 102, 103}. In KPCA,
the Gaussian kernel function parameter γ is cho-
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(a) KPCA

(b) SKPCA-l1 with λ1,4 = 0.05, ρ = 0.09

(c) SKPCA-l1 with λ1,4 = (0.05, 0.07, 0.08, 0.09), ρ = 0.09

(d) SKPCA-l2,1

Fig.2: The first four PCs contrast results among KPCA, SKPCA-l1, and SKPCA-l2,1.
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Table 2: Some hyperparameters in the proposed method
SKPCA-l1 SKPCA-l2,1

Australian λ1 = 10−3, ρ = 10−2 µ21 = 10−2, ρ21 = 10−2

breast-cancer λ1 = 10−3, ρ = 10−2 µ21 = 10−2, ρ21 = 10−2

climate λ1 = 10−2, ρ = 10−1 µ21 = 10−1, ρ21 = 10−2

Table 3: Average result of accuracy, precision, recall, and F1 score in Australian dataset
Australian accuracy precision recall F1 score sparsity

SVM 0.8461± 0.0177 0.9118± 0.0308 0.8011± 0.0378 0.8519± 0.0213 0.5183± 0.2119

KPCA+SVM 0.8452± 0.0233 0.8892± 0.0371 0.8252± 0.0351 0.8552± 0.0235 0

SKPCA-l1+SVM 0.8394± 0.0178 0.8950± 0.0427 0.8071± 0.0200 0.8480± 0.0175 0.0006± 0.0017

SKPCA-l2,1+SVM 0.8455± 0.0190 0.8967± 0.0357 0.8169± 0.0312 0.8541± 0.0205 0.5954± 0.1980

Table 4: Average result of accuracy, precision, recall, and F1 score in breast-cancer dataset
breast-cancer accuracy precision recall F1 score sparsity

SVM 0.9611± 0.0068 0.9730± 0.0093 0.9668± 0.0053 0.9699± 0.0050 0.8516± 0.0542

KPCA+SVM 0.9620± 0.0084 0.9734± 0.0074 0.9678± 0.0078 0.9706± 0.0063 0

SKPCA-l1+SVM 0.9614± 0.0112 0.9700± 0.0104 0.9704± 0.0075 0.9702± 0.0085 0.3630± 0.1865

SKPCA-l2,1+SVM 0.9626± 0.0080 0.9750± 0.0119 0.9672± 0.0089 0.9710± 0.0058 0.8937± 0.0443

Table 5: Average result of accuracy, precision, recall, and F1 score in climate dataset
climate accuracy precision recall F1 score sparsity

SVM 0.9470± 0.0170 0.7911± 0.0899 0.5469± 0.1121 0.6364± 0.0992 0.8074± 0.0323

KPCA+SVM 0.9456± 0.0142 0.7343± 0.0732 0.5701± 0.1319 0.6325± 0.1036 0

SKPCA-l1+SVM 0.9411± 0.0234 0.6758± 0.2419 0.5111± 0.2053 0.5732± 0.2165 0.0037± 0.0033

SKPCA-l2,1+SVM 0.9493± 0.0155 07859± 0.0959 0.5846± 0.1154 0.6618± 0.0889 0.5541± 0.0649

sen from the set {10−4, 2 × 10−4, 3 × 10−4, 5 ×
10−4, 10−3, 5 × 10−3, 6 × 10−3, 10−2, 5 × 10−2, 10−1}
and the number of PCs are selected from 1 to 30. In
each method, we use the combination of each param-
eter set and obtain the accuracy with 5 fold cross
validation on the training data. The optimal pa-
rameters are choosed by the largest average accu-
racy. Some hyperparameters in the proposed method
are set as follows: λ = 0.001, ϵl1 = ϵl2,1 = 0.01,

ϵabs = ϵrel = 10−4, δl21 = N × 10−4, where N is the
number of training data. The loop numbers of inner
and outer loops for SKPCA-l1 are set to 10 and 5,
respectively. In the SKPCA-l2,1 case, 30 and 10 are
used for breast and climate, 10 and 10 are used for
Australian. The other parameters are displayed in
Table 2. Those parameters are set manually. We re-
peated each dataset 10 times and reported the final
average metrics on the test data. Tables 3, 4, and 5
shown the accuracy, precision, recall, F1 score, and
sparsity with standard deviation of each dataset. The
best estimate is marked in bold.

We first compare the accuracy of SVM, KPCA,
and the proposed method. In Australian dataset,
SVM gives the best accuracy. SKPCA-l1 decreases
by 0.0067 and SKPCA-l2,1 decreases by 0.0006. The
KPCA is slightly higher than SKPCA-l1, while rel-
atively lower than SKPCA-l2,1. In breast-cancer
dataset, SKPCA-l2,1 shows the best result. SKPCA-

l1 decreases by 0.0012 and KPCA decreases by
0.0006. SVM gives realtively low accuracy. In climate
dataset, SKPCA-l2,1 expresses the best result. SVM
decreases by 0.0023, SKPCA-l1 decreases by 0.0082,
and KPCA decreases by 0.0037. It can be seen that
the accuracy of KPCA lies between SKPCA-l1 and
SKPCA-l2,1. These results suggest that the accuracy
obtained by the proposed method is close to KPCA.

Secondly, from the sparsity results, the SKPCA-
l1 gives the very low sparsity, while the SKPCA-l2,1
gives relatively higher sparsity. This is because that
each PC is expressed by different samples in the l1-
norm case, resulting to the low average sparsity. How-
ever, in the l2,1 case, each PC is explained by the
same samples, leading to the high average sparsity.
KPCA uses all the samples to express the PC, so the
sparsity is zero. Compared with SVM, SKPCA-l2,1
gives relatively higher sparsity results on Australian
and breast-cancer, while the results have lower spar-
sity than climate. It can be seen that the proposed
method enhances the interpretation of PC and ob-
tains similar accuracy as KPCA.

Finally, precision, recall, and F1 score are calcu-
lated to compare the performance. The F1 score is a
harmonic mean of the precision and recall. We check
the performance based on F1 score. As shown in Ta-
ble 3, KPCA gives the best score in australian classifi-
cation, while in Tables 4 and 5, SKPCA-l2,1 achieves
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the best score. It can be seen that the KPCA is
higher than SKPCA-l1 and lower than SKPCA-l2,1 in
the breast-cancer and climate datasets. This further
confirms the effectiveness of the proposed method.
Though the F1 score is lower than KPCA in aus-
tralian dataset, the F1 score decreases by less than
0.01, indicating that there exists a need to improve
the classification by adjusting the hyperparameters.

5 CONCLUSION

In this paper, we proposed two types of sparsity
approaches to KPCA, i.e. SKPCA-l1 and SKPCA-
l21. First, we reformulate the MSE function into a
regression-framework optimization problem and then
incorporate the l1-norm and l2,1-norm into the re-
gression criterion, respectively. With the introduc-
tion of the SKPCA-l1 and SKPCA-l2,1, we developed
an algorithm for the proposed method that includes
ADMM, to obtain a sparse coefficient matrix using a
thresholding function. The training data which con-
tributes little to the representation of kernel function
can be reduced via zero elements in the coefficient ma-
trix. The performance is demonstrated by compari-
son with standard KPCA. In toy examples, the pro-
posed approach makes PC interpretation easier with
less training data. For the real datasets, in combina-
tion with SVM, the classification accuracy is similar
to standard KPCA. The SKPCA-l2,1 method yields
much more sparsity than SVM on Australian and
breast-cancer datasets in the UCI repository thanks
to l2,1-norm. Although the proposed method ob-
tained the sparsification results, one needs to choose
the tuning parameters such as λ1, ρ, µ21, and ρ21
appropriately. The threshold values are determined

by
λ1

ρ
in SKPCA-l1 and

µ21

ρ21
in SKPCA-l2,1. These

parameters affect the sparsity and the classification
task. In future work, we will investigate how to set
them appropriately and reduce the cost of computa-
tion.
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