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ABSTRACT

Kernel principal component analysis (KPCA) is
a kernelized version of principal component analysis
(PCA). A kernel principal component is a superposi-
tion of kernel functions. Since the number of kernel
functions equals the number of samples, each compo-
nent is not a sparse representation. Qur purpose is
to sparsify coefficients expressing in linear combina-
tion of kernel functions. T'wo types of sparse kernel
principal component are proposed in this paper. The
method for solving the sparse problem is comprised
of two steps: (a) we start with the Pythagorean the-
orem and derive an explicit regression expression of
KPCA, and (b) two types of regularization, {1-norm
or lyi-norm, are added into the regression expres-
sion in order to obtain two different sparsity forms,
respectively. As the proposed objective function is
different from elastic net-based sparse PCA (SPCA),
the SPCA method cannot be directly applied to the
proposed cost function. We show that the sparse
representations are obtained using iterative optimiza-
tion by conducting an alternating direction method
of multipliers. Experiments on toy examples and real
data confirm the performance and effectiveness of the
proposed method.

Keywords: Principal Component Analysis, Sparse
Principal Component Analysis, Kernel Principal
Component Analysis, Alternating Direction Method
of Multipliers

1 INTRODUCTION

Principal component analysis (PCA) [1] is a
widely-used linear method for dimensionality reduc-
tion. It has been used in many engineering fields,
including signal processing, image processing, statis-
tical analysis, data compression, and pattern recog-
nition.

Two main perspectives are usually used to charac-
terize PCA [2]. The first viewpoint is the maximum
variance derivation. The idea here is to determine a
lower-dimensional linear subspace that captures the
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largest variance of the data under the orthonormal
constraint. Another explanation is the mean squared
error (MSE) derivation that minimizes the average
distance between the data samples and their pro-
jection under the low rank matrix with orthonormal
columns. These two different derivations result in the
eigendecomposition of the covariance matrix of the
data. This yields the subspace spanned by the eigen-
vectors of the covariance matrix corresponding to the
largest eigenvalues. However, PCA cannot discover
nonlinear data structures because of its linear limita-
tion. For such a nonlinear structure, the kernelized
version of principal component analysis (KPCA) [3]
successfully copes with this difficulty. In KPCA, all
data is embedded into a reproducing kernel Hilbert
space (RKHS) [4] by means of a nonlinear map. To
get rid of the nonlinear map, the kernel trick is ap-
plied to execute PCA in RKHS.

KPCA, however, encounters a problem that the
principal components (PCs) involve all of the data
samples, which may lead to overfitting and memory
overflow. It is thus necessary to reduce the number
of samples used for PCs while keeping the original
quality of the standard KPCA.

The sparsification of KPCA proposed so far can be
categorized into two types [5-13]. The first type fol-
lows the idea of a reduced subset of the dataset. For
example, Tipping [8] solved this problem by approx-
imating the covariance matrix in feature space. This
idea comes from probabilistic PCA [14] by means
of a maximum-likelihood estimation to obtain the
sparse form of the covariance matrix. This kind of
method is not aimed to generate sparse representa-
tion for PCs, however. “Sparse greedy matrix ap-
proximation” (SGMA) [6] has been proposed to con-
struct a compressed matrix approximation of the ker-
nel matrix in order to minimize the Frobenius norm
of the residual between these two matrices. The re-
constructed matrix is achieved by seeking a subset of
the dataset and the projection matrix. SGMA can
be thought of as a form of sparse training algorithm
[15]. Further, Hussain and Shawe-Taylor [13] stated
that SGMA aims to yield a sparse KPCA, and proved
its equivalence from a matching pursuit perspective.
They followed two steps—quotient maximization and
deflation—to achieve compression set indices from the
data set and without the need of a projection ma-
trix. The compressed kernel matrix can be computed
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by the compression set [16]. Note that feature ex-
tractors as expansions in terms of mapped samples,
Scholkopf et al. [7] considered reduced-set methods to
drop unimportant mapped data. One selection is to
eliminate unimportant mapped data from the expan-
sion while allowing for an error caused by this elim-
ination. Another selection is to enforce an [;-norm
on an approximated expansion coefficient. Neverthe-
less, both selections have high computational costs.
Following a similar idea, Xu et al. [12] proposed a
method that selects the dissimilarity among all of the
mapped data under the squared distance measure-
ment criterion, and then used identified subset data
and training data to perform KPCA. This type of
sparsification mainly focuses on evaluating dissimi-
larities of samples while ignoring the MSE.

The second type aims to find a sparse approxi-
mation to eigenvectors in feature space. Smola et
al. [5] applied an l-constraint on coefficients to sparse
components, named sparse kernel feature analysis
(SKFA). Based on SKFA, Jiang et al. [9] proposed
accelerated kernel feature analysis (AKFA) to ex-
tract features, which is superior to the time complex-
ity of SKFA. However, both method has the prob-
lem that the first component only using one train-
ing sample, leading to bad interpretation of the PC.
Vollgraf et al. [10] introduced the regularization term
consisting of the square of the ratio of the /3- and
the ls-norm of the coefficient vector. The cost func-
tion was minimized by the so-called hyper-ellipsoidal
conjugate gradient descent method (HECGD). This
algorithm includes heuristics, however, and the solu-
tion depends on a small positive value to shrink it
toward zero. Suykens et al. [17] formulated KPCA
for use with least squares support vector machines
(LS-SVM). The links between KPCA and LS-SVM
are established through the primal and dual prob-
lem. Alzate et al. [18] extended KPCA to a general-
ized form of kernel component analysis (KCA) with
a general underlying loss function and proposed two
algorithms to sparsify KPCA. The first algorithm in-
troduces an epsilon-insensitive zone [19] into the loss
function and the sparseness can be obtained by ep-
silon value. The second one considers a loss function
of the weighted form [20]. Sparseness is obtained by
computing the weight when the value is equal to zero.
However, these two algorithms need to observe the
distribution of the score values to decide the epsilon
value, which uses a heuristic. The preliminary work
of this paper falls in this category [21]. Recently, a
new sparse KPCA via sequential method (SSKPCA)
has been proposed [22].

Several online adaptive extensions have been in-
troduced to KPCA [23,24]. The main concept is to
consider whether the incoming data sample should
be added into a dictionary or not, thus leading to a
sparse representation. However, so far little atten-
tion has been paid to simultaneously establishing a

connection between the approximation property and
the sparsity of coefficients that can cope with the
drawbacks of the two types of sparsification previ-
ously mentioned. In this paper, we propose a novel
sparsification of KPCA that evaluates the MSE cri-
terion while promoting sparsity in the representation
of PCs. We show that in the case of KPCA, MSE
criterion can be turned into a regression model. The
sparse coeflicients can be obtained by imposing either
l-norm or I3 1-norm onto the regression model. This
can be regarded as an extension of the elastic net [25]
regularization of the sparse linear PCA was proposed
by Zou et al. [26]. Since the proposed cost function is
different from sparse linear PCA, the SPCA method
cannot be directly applied to the proposed cost func-
tion. To this end, we use an alternating direction
method of multipliers (ADMM) [27] method in its
iterative optimization to yield sparse solutions.

In the following sections, we summarize PCA,
KPCA, and elastic net-based sparse PCA in Section
2. The main focus of the paper, two types of spar-
sity algorithms of KPCA, are described in Section 3.
Experiments are provided in Section 4, and the con-
clusion of the paper is given in Section 5.

2 PRINCIPAL COMPONENT ANALYSIS,
ITS KERNELIZATION, AND SPARSIFI-
CATION: REVIEW

2.1 Principal Component Analysis

Denote a dataset {x;}X, belong to R? with zero
mean. Suppose the set of vectors {u;}}, is a ba-
sis for space U, where U is a subspace of R?, that
is M < d. We project x; onto subspace U to ob-
tain UTx;, where U = [uy,...,up]|. The maxi-
mum variance derivation is to capture maximum vari-
ance of the projected data. To this end, we define:

1 X 1
S = NZ;X,LXZ—' = NXTX and X = [X17"'?XN}T'

M
We maximize the projected variance > u’Su; un-
i=1
der the constraint that UTU = Insar, where Ingxar
is the identity matrix. The constrained maximiza-
tion of the variance can be performed by solving the
eigenvalue problem for S:

Sui = )\iui

where )\; is an eigenvalue of S indexed such that A\; >
... > Ay > 0, and u; is an eigenvector corresponding
to A;. For any sample x, the kth principal component
(PC) is u} x.

2.2 Kernel Principal Component Analysis

For nonlinear data, we employ a map ¢ to embed
the data into an RKHS, that is x; — ¢(x;), which is
considered to be an element of an RKHS. For the sake
of simplicity, the dataset {¢(x;)}¥; is assumed to be
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centered. The covariance matrix C in the feature
space can be expressed as:

1 N
= & ool (1)

The eigenvalue A\, and eigenvector v of C' satisfy:

Cvi = AV,

quxz

serve that eigenvector v belongs to the set of mapped
data {#(x;)},. In other words, eigenvector vy is the
linear combinations of {¢(x;)}Y ;:

k=1,...,M. 2)

From Cvy, = YI'vi) = A\xVg, we ob-

N
Vi = Z aird(X;) (3)

where a;;, are the linear combinaton coefficients. By
substituting v in (2), we obtain:

N
% Z Xz Z a]k‘¢ X] = A Z azk¢ Xz
) (4)

Since the inner product in an RKHS is given by kernel
function ¢(x;)” ¢(x;) = k(x;,%;), by left-multiplying
#(x;)T on both sides of (4), we obtain:

N N N

1

N E k‘(Xl,Xi> E ajkk:(xi,xj) = )\k E aikk)(Xl,Xi)
1=1 j=1 =1

foralll =1,..., N. In matrix form, we have K?a; =
N),Kay, where K is a “Gram matrix” whose ele-
ment is K;; = k(x;,%;), and a; = (ags,- - an) T,
which satisfies the following eigenvalue problem [3]:

Kak = N/\kak.

If v, has the unit norm, say, V{V;€ = 1, then aj
satisfies:

/\kNafak =1.

Finally, the nonlinear PCs can be calculated by:

N
d(x)Tvy = Z agk(x;,x). (5)
i=1

Remark 1: As mentioned earlier, the data is as-
sumed to be centered. If that condition is not true,

_ 1
then we replace matrix K by K = K — NKlNlﬂ —
1 1
N1N1%K+N21N1TK1N1 I
N-dimensional column vector of all ones. K is called
a conditionally positive definite matrix [15].

where 15 denotes an

2.3 Elastic Net-based Sparse PCA

Zou, Hastie, and Tibshirani [26] proposed sparsi-
fication for PCA via elastic net regularization. They
point out that the PCA may be turned into a re-
gression problem where the sparse coefficients may be
obtained by imposing [1-norm regularization. Specif-
ically, PCA minimizes the criterion of MSE:

N
mUinZ;Hxi—UUTXin st. UTU = Iyxr - (6)

where U and Iy;xps as previously mentioned. The
cost function (6) may be changed into the following
form:

mlnz x; — UBTx;||? + )\Z b

k=1
s.t. UTU:IMXM (7)

where B = [by,...,b,,] is a matrix of rank M, and
A > 0 is a parameter. The relation between (6) and
(7) has been proved in Theorem 3 in [26]. The role
played by the ridge penalty is to ensure the recon-
struction of PCs rather than to penalize the regres-
sion coefficients. Note that:

N
>l =UB™x|* = | X = XBUT||%,

i=1

where || - || denotes the Frobenius norm. Since U is
orthonormal, let U, be an orthonormal matrix such
that [U; U] is d x d orthonormal. Then, we obtain:

IX — XBUT|% = (X — XBUD)[U;UL]|1%
= | XU~ XB|% + [ XUL[3

M
= D IIXup — Xbylf* + | XUL 3
k=1

Given U, then the optimal solution B of (7) is mini-
mized by

M M
. _ 2 2
ménkE_l:HXuk Xby| +)\k§_1||blc|| (8)

which is equivalent to the M independent sub-
optimal problems. According to Theorem 1 in [26],
after normalization such that each column of B has
unit length, the optimal solution by is proportional
to ug. Therefore, we can weaken criterion (6) into (7)
in order to cope with PCA. Furthermore, through the
above explanation, the first M sparse PCs can be ob-
tained by adding l3-norm of by, into (8):

min Z Xy, — Xby || + AZ b + ZM kw2
Ug,Dk

s.t. U U:IMXM
9)
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where Ay ; > 0 are parameters, thus tuning the com-
promise between variance and sparseness.

The optimization problem (9) can be solved
through an alternating algorithm as follows [26]:

o Given U: Each by, in (9) is obtained as
min [ Xy — Xby|[* + Albg||* + Av k[ byl
k

and define matrix B = [by,...,bas].
e Given B: Compute the singular value decomposi-
tion (SVD) of (XTX)B as

(XTX)B = EDF"

and set U = EFT.
These two steps are repeated alternately until con-
vergence is achieved.

On the other hand, according to (9), an alternat-
ing algorithm for optimizing u; and by is introduced
sequentially in [28]. First, for fixed ug, which is as-
sumed to be orthonormal, say, ufuk = 1, then by
can be calculated by:

Héiﬂ [ Xu, — Xbg|l* + Al|bgl|> + A |[bxll1.  (10)
k

For fixed by, the solution of uy is given by:

min || Xuy, — Xbi|® st ufuy =1, u/Uy_1) =0
Uk

where Ug,_1) is a d x (k — 1) matrix corresponding

to the previously found (k — 1) solutions uyg, such

that U(Tk_l)U(k—n = I. The optimal uj is given by
S

—== where s = (I — U(k71)U(€,1))XTka-

sTs
Compared to the method introduced by Zou et al.

[26], Sjostrand et al. [28] deem this method a se-
quential method. Consider estimating k components
and (k + 1) components, respectively, the simulta-
neous algorithm provides different PCs results from
k to k + 1. The sequential method, however, keeps
the first & PCs unchanged when the (k + 1)th PC is
computed.

So far we have introduced the PCA, KPCA and
elastic net-based sparse PCA (SPCA). PCA is ex-
plained via an eigendecomposition of the covariance
matrix S. For KPCA, the data is mapped into RKHS
and we perform PCA in terms of a kernel trick. On
the other hand, because of elastic net regularization,
SPCA is more convenient than PCA for interpreting
PCs. In the following section we will explain how
KPCA can be rewritten as a regression problem with
explicit expression, and then we wil employ the ;-
norm and Ilo1-norm of coefficients to achieve a sparse
representation.

U, —

3 TWO NOVEL SPARSENESS ALGO-
RITHMS FOR KPCA

Denote ® = [¢(x1),...,0(xN)], V = [v1,..., VM),
and A = [ay,...,ay] for notational simplicity. Then

we have matrix notation V' = ®A according to (3)
and the Gram matrix K = ®7®. Our intent is to
sparsify the coefficient matrix A and unveil PCs with
matrix A. In other words, each v; can be represented
by a smaller number of observed samples than is the
case with standard KPCA.

To this end, first we rewrite the cost function using
the Pythagorean theorem. In detail, we reformulate
KPCA according to reference [29]. In the same way
as PCA, KPCA minimizes the MSE:

N
TV = llé(xi) = VVT(x,)|?
i=1
st. VIV = ATKA = Iy

Suppose that & is fixed, such that optimizing V is
equivalent to optimizing A. Let R(:) be the span of
an operator, and Pr(g) be the orthogonal projector
onto R(®). From the Pythagorean theorem, we have:

N
J[V] :E{HPR@)w(xi) —VVTe(x))|?
£ Prgays (6(x0) — VVTo(x0)) ),
since Ppg) = ®(®7®)'®T. The first term in the
brackets may be written as [29]:
1Prea) (¢(x:)—VVT6(x:))|* = K2 (hy— K AATh) |2,

where h; = ®T¢(x;). If K is rank-deficient, then we
employ the pseudoinverse of K 2 [7]. The second term
in the brackets may be written as:

1Preys (6(xi) = VVTo(x)))II* = || Prea): o(xi)lI*.
Therefore, J[V] can be rewritten as J[V] = J1[A]+J2,
where:

N
J[A] =K~ 2h; — K> AATh|?

i=1
and:

N
Jo = Z |‘PR(¢)L¢(X1')||2'
i=1

Again, J5 is a constant, which can be ignored, so we
focus on the Jy[A]. If we set y; = K*%hi, then we
have ATh; = ATK%yi. J1[A] can be rewritten as:

N
Ji1[A] = Z lyi—QQyill> s.t. QT Q = Inswar (11)
i=1
where Q = [q1,...,qum] = K2 A or:

q. = K*ay. (12)
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Note that:

Yi,¥2,--,¥YN] = [K_%hl,K—%h27 .. -’K_%hzv]
= K 207[p(x1), p(x2). .. ., (xn)]
=K iK=K:3.

Obviously, matrix K 3 is composed of N column vec-
tors y1,y2,...,yn. Based on the above analysis, we
see that from the Pythagorean theorem, optimizing
J[V] is equivalent to optimizing J; [A]. It should also
be noted that the condition links between A and @
via (12). We propose two types of sparsifications for
A. One is based on the l;-norm, while the other is
based on the Iy ;-norm. We have shown a prelimi-
nary result based on the /1-norm in [21]. In the fol-
lowing, we describe a more detailed derivation for the
l1-norm regularization and a newly proposed sparsi-
fication based on the /5 ;-norm.

3.1 Sparse KPCA via [;-norm

As was done in the derivation of sparse PCA, to ob-
tain a sparse solution, we weaken (11) as a regression-
type optimization problem as follows:

mmZHyz PQTY1||2+>‘Z”qk”2

k=1

st. PTP = Tyreu (13)

where P = [p1,...,pm], and A > 0 is a parameter.
In fact in (11), it is just another form of (6) except
for the different denotation, so in (13) we first fol-
low the procedure of sparse PCA to make sure P has
orthonormal columns, then relax P = @ and add a

ridge penalty term A Z llax||>. Suppose P is given,

the optimal solution Q of (1
minimizing:

3) can be obtained by

M
1 1 1
5 2 K Pk — KZai]® + (14)

A M

9 Z lak ||2~
k=1 k=1
The factor of 1/2 is included for convenience. As
shown in Section 2.3, after normalization the qj is
proportional to pg. Our next step is to obtain sparse
solutions for the coefficient matrix A. Note that ay, is
a coefficient vector in terms of (3) and satisfies (12).
We enforce l;-norm of a;, onto (14) and minimize the
cost function:

M
1 1 A
I[P, Q] = ||K2pk_K2(lk||2+§ E lak
k=1

1
2

+ ) Avkllakl

M= IM)=

Eol
[
fa

subject to PTP = Ip;x s or we can consider optimiz-
ing them sequentially:

1 1 1 A
Ji, [Pr>Qk] =§||K2Pk — K2qi|* + §H(lk||2

+ A ellal (15)

s.t. PTPZI]V[XM

where Ay, > 0 is the trade-off parameter of MSE and
sparseness. Cost function (15) is quadratic with re-
spect to either py or qg, both of which are minimized
by alternating minimization. For py, only the first
term is considered: pj can be solved using the same
technique as uy for SPCA, as shown in Section 2.3.
For qi, we cannot apply the same scenario as SPCA
described in Section 2.3, since the [;-norm includes
a matrix K _%, which is generally not diagonal. For
this case, the ADMM [27] can be applied to (12) and
(15) using an augmented Lagrangian method. We
form the augmented Lagrangian by combining (12)
and (15):

1, 1 10
=5 1K pe — K= a|

A
L,(qx,ar, tr) + §||<11c||2

1
+ Akllally + 65 (K~ 2aq, — ag)

_1
+ IK Eq - a?

where t; is the Lagrange multiplier and p > 0 is a
penalty parameter. ADMM consists of the iterations:

. 1 . j 1
q?: = arg mlan(Qk, aiati)

qk
—1\—1 —1 .0 ti
= (K + M + pK ™) [Kpy, + pK Z(ak—;)],
affl = arg min Lp(qffl, ak,ti)
ai
Lt
:SAIJ( qj+ +7k)a
tI =1 (qgjl I £)
=t + p(K~ 201’+1 a ™)
— 7,0 _
where S-(a) = max{ja] - 7,0} a [30] is the

max{|a| — 7,0} + 7
element-wise soft thresholding function, and qjJrl
means the (j + 1)th iteration of qix. We consider
stopping criteria [27] when

||ej+1|| < VNe®s 4+ e max{|| K~
||eJ+1 | < /Neabs _|_€rel||K7

1 i+1
Tal a1}

1 441
2t

; _1 g1 1
where €% > 0, €' > 0, and e/ ! = K qJ+ fj ,

e/ = —pK~3(alt! —al). The sparse coefficients
ay can be obtamed by applying the soft thresholding
function. Then we compute pi by the same scheme
u;, as mentioned in Section 2.3. The algorithm of
sparse KPCA via [j-norm is summarized in Algo-
rithm 1. In Step 11 of the Algorithm 1, Py_qy is
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Algorithm 1 Sparse KPCA via [;-norm

1: Input: matrices K and P, the number of PCs M
2: for k=1to M do

3: while not convergent or within the preset it-
eration do
4: Initialize qi, ag, tg
5: while stopping criteria is not satisfied and
within the preset iteration do
6: ar + (K + M + pK~ ") [Kpy, +
P~ H(ay — )
p
7 ak<—le’,€ (K_%qk—i—%)
P
8: tk%tk+p(K7%qk7ak)
9: end while
10: qr <
\/ qqu
11: Pk = (I — P(k—l)P(jl;,l))KQk
12: Pk < _Pr_
pgpk
13: end while
14: end for

15: Output the coefficient A = [a;,...,a]

defined as the submatrix that consists of the previ-
ous (k — 1) solutions pg.

Remark 2: We calculate the eigendecomposition of
K and sort the eigenvalues in descending order. The
first M corresponding eigenvectors are set to P =

[pla"'va]~

3.2 Sparse KPCA via I3 ;-norm

The l3-norm regularization leads to element-wise
sparsity via a soft-threshold operator, so matrix A is
not sparse in rows. Namely, each PC includes differ-
ent samples to represent a sparse solution. We aim to
encourage the sparsity of matrix A at the row level,
so we adopt /s 1-norm regularization. The l3 ;-norm
regularization penalizes all the coefficients for a given
set of training data to become zero simultaneously. In
this way, we can greatly reduce the number of samples
to represent all PCs.

First, we express (14) in matrix form:

1 1 1 A
§HK2P—K2Q||%+§||Q||% (16)

The Iz 1-norm of A (a.k.a. group l;-norm) is defined
N

as || All21 = Z |a’||, where a’ denotes the ith row of

=1
A. We add the I3 ;-norm of A to (16):

1 1 1 A
FualP.Ql =5 |IK P — K1QI% + S|QI3

+ po1 || All2,1
st. PTP=Tywum

(17)

where 21 is a constant that determines the trade-off
between MSE and sparsity. Combining (12) and (17),
we form the augmented Lagrangian:

Ly (QAT) =1 | KEP ~ KEQI + 2 QU
+ i [[Allz1 = tr(TT(K2Q — 4))
+ SHIETEQ — Al
where T is the Lagrange multiplier, ¢r(-) stands for
the trace of the matrix, and ps; > 0. By using the

T
scaled dual variable W = —, L,, (Q,A,T) can be
21

reformed as:
1, 1 19 A 9
Ly (@A W) =5 |[KEP — KEQIE + SQI
+ patl|Allza + ZHIETQ - AW}
P21
- 2w

ADMM optimizes L,,, (Q, A, W) with respect to
@, A, and updates the dual variable W sequentially.
First, optimizing @7+! for fixed A7 and W7:

Q= argénin L, (Q, AT, Wj)

= (K + M+ pn K V) UKP + ps1 K72 (A + W)].
Then, with fixed Q7+ and W7, A7+! is computed by:

AT = argmin L,, (Qjﬂ, A, Wj)
A

. _1
= axg min izt ]|z, + PRLIA— (K~2Q - W)||%

2
(18)
N

— argmin y_ (uau | + 2 |’ 7|2
at =1

where r’ is the ith row vector of R = K_%Q - W.
Note that different row vectors a* of A can be solved
for by an independent sub-problem, i.e.:

a’ = arg min(ua:[|a’]| + %nai —ri?) i=1,...,N.
i
The solution of a’ is the vectorial soft-threshold op-

erator [30] given by:

max{|[r']| — 3,0}
max{[|r’|| — 5,0} +

where 8 = B21 g5 471 can be written as AIt! =

P21
[al;a2%;--- ;a]. Using the vectorial soft-threshold
operator, many rows of the optimal A correspond-
ing to (18) shrink to zero, which makes A suitable for
sample data selection. Finally, we update the dual

variable.

[’

(19)

Wit = L, (QT1, AT W) =W — K 3Q + A.
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Based on the above derivation, the details of sparse
KPCA via Iy ;-norm are summarized in Algorithm 2.
Again, the initial matrix P is set as shown in Algo-
rithm 1. After computing @), we calculate the SVD of
KQ = E\DF', and set P = E,F{' in the loop. Pri-
mal residual norms || B! || p = [|[K~2Q7+! — A7+ ||
and dual residual norms ||Ef;r1 |p = ||pr K2 (ATH! —
AJ)||F are used in Algorithm 2. With the goal of
enhancing the convergence speed in the algorithm in
mind, we consider the self-adaptive rule for penalty
parameter p; [27]:

Algorithm 2 Sparse KPCA via ls ;-norm

1: Input: matrices K and P, the number of PCs M

2:  while not convergent or within the preset itera-
tion do

3: Initialize @, A, W

4: while within the preset iteration and stop-
ping criteria is not satisfied do

5: Q <« (K + A + pglK_l)_l[KP +
pn K2 (A+W)]

6: A <+ [al;a%;---;aN] where each a’ is
given by (19)

7: WeW-K3:Q+A

8: end while

9: KQ = ElDlFiT

10: P=FEFF
11: end while
12: Output the coefficient A = [al;--- ;al]

riner if IIE{;*iHF >l By
it |27 e > nll B

otherwise

k
P215

k decr
P1/T

k
P21,

K+l _
P =

where > 1, 7" > 1, and 7% > 1 are param-
eters. In the ADMM scheme, we set n = 10, and
riner — gdeer — 9 Meanwhile, in addition to up-
dating the parameter pa;, we also need to rescale W.
When po; is halved, W should be doubled before pro-
ceeding. Conversely, if po; is doubled, then W should
be halved before proceeding. The convergence crite-
rion in ADMM is HE;])HF < b1, or |[ES||p < 0y, , with
a declared maximal number of iterations.

4 EXPERIMENTS

We present the sparsity results of the proposed ap-
proach through several experiments. Gaussian ker-
nels of the form k(x,y) = exp(—~|x—y||?) will be ap-
plied to implement the dataset. In Section 4.1, we use
two unsupervised toy examples—Gaussian mixture
data and nonlinear data—to illustrate the effective-
ness of the sparsity. In Section 4.2, three real datasets
from the UCI Machine Learning Repository [32] are
processed to corroborate performance of the proposed
approach. Herein, we refer to sparse KPCA via [;-
norm and sparse KPCA via [ ;-norm as SKPCA-[;
and SKPCA-I, 1, respectively.

4.1 Toy Examples
4.1.1 Gaussian Mixture Data

In the first toy example, we conduct the experi-
ment on the 90 data samples. The data values are
generated from three Gaussian sources centered at
(—0.5,-0.2), (0,0.6), and (0.5,0) (30 samples each),
with standard deviation 0.1. The parameter of the
kernel function is set to v = 10 [3].

In the case of SKPCA-l;, we set A = 0.1,
p = 0.01, e = 1074, ¢ = 107%, and A\ =
(0.02,0.02,0.009, 0.008,0.006, 0.007,0.01,0.01). The
sparse solutions can be achieved when the conver-
gence criterion ||qpe? —q'?||? < ¢, is satisfied or the
preset maximum number of loop iterations have oc-
curred, where q;*“ and qgld can be thought of as the
qy during the update procedure in Steps 4 and 13 in
Algorithm 1. We set ¢, = 1072, and the inner and
outer loop counters are 300. In the case of SKPCA-
lo1, we set A = 0.01, po; = 0.01, and the initial
pa1 = 1072, 015, = 90 x 10~%. Also, the sparse solu-
tions can be achieved when ||Q°'Y —Q"*V[|2. < ¢, , or
the preset maximum number of loop iterations have
occurred, where €, , = 1072, Q°" and Q™" can be
regarded as the ) during the loop in Steps 3 and 8 in
Algorithm 2. The inner iteration limit is set to 300,
and the outer iteration limit is 10. In the proposed
methods, all the parameters are set manually.

Fig. 1(a) shows the result when KPCA is per-
formed on this data. The dots denote data, while
the contour lines shown in each part of the figure
represent constant value, calculated by (5). SKPCA-
1 and SKPCA-ly; are shown in Fig. 1(b) and 1(c),
respectively. The dots are data samples selected by
the proposed method, in which the corresponding co-
efficients are nonzero. Fig. 1 shows that SKPCA-l;
captures a similar structure with different data sam-
ples, whereas SKPCA-I5 ; extracts a similar structure
with same data samples. Compared to KPCA, both
types of sparsity algorithms yield desirable results us-
ing less data.

4.1.2 Non-linear Data

We generate N = 500 training data from a two-
dimensional parabola in the second instance, where
x is generated from [—1,1] with uniform distribu-
tion. The y-values are generated from y; = z7 + &,
where ¢ is normal noise with standard deviation 0.2
[31]. Fig. 2(a) shows the first four PCs obtained by
KPCA with v = 2; the dots represent data sam-
ples. In the case of SKPCA-l;, we set A = 0.05,
g = 0.05, p=0.09, € = 1074, €% = 107*, and
€1, = 1072 to extract the first four PCs. The inner
loop counter is 300, and the outer loop counter is
60. The result is shown in Fig. 2(b), where the dots
represent samples that have nonzero coefficients. It
is obvious that the SKPCA-l; method only uses a
few data samples to capture the same performance
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Fig.1: Visualization of the first eight PCs captured
by KPCA, SKPCA-ly, and SKPCA-ly ;.

as the KPCA. To investigate how the parameter \; j
affects the sparsity and variance, we again fixed p and
set A1.4 = (0.05,0.07,0.08,0.09) for the original data.
Fig. 2(c) shows this influence. The first PC is the
same as the first figure of Fig. 2(b) because Aq 1 is un-
changed. By increasing the parameter value A j from
second to fourth, the different A; ; leads to different
numbers of data points, as well as decreasing the vari-
ance, which confirmed the connection between the ap-
proximation property and the sparsity of coefficients.
Through use of the element-wise soft thresholding
max{|a| — 7,0}

function S;(a) = max{|a| — 7,0} + 7

«, below some

threshold 7 = i, the data will be eliminated in

feature extraction, thus leading to sparser results. In
the case of SKPCA-l3 1, we set A = 0.05, ua; = 0.05,
the initial value p2; = 0.09, and 6;, , = 500 X 104,
The iteration numbers are the same as SKPCA-l;.
Fig. 2(d) illustrates the result. The first four PCs ex-
tracted by the same data and the structure captured
by SKPCA-I3 ; is essentially the same as with KPCA.
As shown in Fig. 2, sample selection and sparse rep-
resentation can be achieved by using a small number
of samples, which supports the effectiveness of the
sparseness approach.

4.2 TUCI Dataset

To validate the usefulness of the proposed algo-
rithm, we processed three real datasets which are
available from the UCI Machine Learning Repository
[32]. Those datasets are used for classification. The
details of the datasets are shown in Table 1.

Table 1: Dataset used in classification experiments

Dataset N(#num) m(feature)
Australian 690 14
breast-cancer 699 10
climate 540 20

First we used a support vector machine (SVM)
to classify the dataset. The second classification
method is to employ KPCA as preprocessing step
to reduce dimensionality and then to implement
SVM (KPCA+SVM). The proposed methods are im-
plemented for comparision, referred to as SKPCA-
[1+SVM and SKCPA-l5;+SVM, respectively. Each
dataset is divided into two parts: the training and
test data. The training data comes from half of
the entire data which is used for training and for
optimizing the parameters, and the rest for the fi-
nal evaluation. The training data is used nor-
malized to the range [0,1]. The SVM parame-
ters Cgym as well as 7gym are selected from the
candidate set {1073,1072,1071,0.5,1,5,10,10?} and
{107%,1073,1072,107%,1,10,10%,10%}. In KPCA,
the Gaussian kernel function parameter ~ is cho-
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Table 2: Some hyperparameters in the proposed method

SKPCA-l;

SKPCA-l;

Australian

AL = 10_3, p = 1072

po1 = 1072, poy = 1072

breast-cancer

M =103 p=10"72

pi21 = 1072, ppy =107

climate

M=10"72 p=10"1

p2r = 1071, ppy =107

Table 3: Awverage result of accuracy, precision, recall, and F1 score in Australian dataset

Australian accuracy precision recall F1 score sparsity
SVM 0.8461 £0.0177 0.9118 £0.0308 0.8011 £ 0.0378 0.8519 £+ 0.0213 0.5183 +0.2119
KPCA+SVM 0.8452 £+ 0.0233 0.8892 £+ 0.0371 0.8252 +£0.0351 0.8552+0.0235 0

SKPCA-1;+SVM 0.8394 £+ 0.0178 0.8950 £ 0.0427

0.8071 £ 0.0200 0.8480 £+ 0.0175 0.0006 £ 0.0017

SKPCA-l; 1+SVM  0.8455 £ 0.0190 0.8967 £ 0.0357

0.8169 £ 0.0312 0.8541 £ 0.0205 0.5954 £+ 0.1980

Table 4: Average result of accuracy, precision, recall, and F1 score in breast-cancer dataset

breast-cancer accuracy precision

recall F1 score sparsity

SVM 0.9611 £ 0.0068 0.9730 £ 0.0093

0.9668 £ 0.0053 0.9699 £ 0.0050 0.8516 £ 0.0542

KPCA+SVM 0.9620 £ 0.0084 0.9734 £ 0.0074

0.9678 £ 0.0078 0.9706 £ 0.0063 0

SKPCA-l;+SVM 0.9614 £+ 0.0112 0.9700 £ 0.0104

0.9704 £0.0075 0.9702 £ 0.0085 0.3630 £ 0.1865

SKPCA-l; 1+SVM  0.9626 + 0.0080

0.9750 £0.0119 0.9672 £ 0.0089

0.9710 £ 0.0058 0.8937 £+ 0.0443

Table 5: Average result of accuracy, precision, recall, and F1 score in climate dataset
climate accuracy precision recall F1 score sparsity
SVM 0.9470 £+ 0.0170 0.7911 £ 0.0899 0.5469 £+ 0.1121 0.6364 + 0.0992 0.8074 + 0.0323
KPCA+SVM 0.9456 + 0.0142 0.7343 £ 0.0732 0.5701 £ 0.1319 0.6325 + 0.1036 0

SKPCA-l1+SVM 0.9411 £ 0.0234 0.6758 £ 0.2419

0.5111 £ 0.2053 0.5732 £0.2165 0.0037 £ 0.0033

SKPCA-l; 1 +SVM  0.9493 £0.0155 07859 £ 0.0959

0.5846 +0.1154 0.6618 =0.0889 0.5541 + 0.0649

sen from the set {107%,2 x 10743 x 107%,5 x
1074,1073,5 x 1073,6 x 1073,1072,5 x 1072,107'}
and the number of PCs are selected from 1 to 30. In
each method, we use the combination of each param-
eter set and obtain the accuracy with 5 fold cross
validation on the training data. The optimal pa-
rameters are choosed by the largest average accu-
racy. Some hyperparameters in the proposed method
are set as follows: A = 0.001, ¢, = ¢,, = 0.01,
€ = el = 1074, §;,, = N x 1074, where N is the
number of training data. The loop numbers of inner
and outer loops for SKPCA-l; are set to 10 and 5,
respectively. In the SKPCA-Iy ; case, 30 and 10 are
used for breast and climate, 10 and 10 are used for
Australian. The other parameters are displayed in
Table 2. Those parameters are set manually. We re-
peated each dataset 10 times and reported the final
average metrics on the test data. Tables 3, 4, and 5
shown the accuracy, precision, recall, F1 score, and
sparsity with standard deviation of each dataset. The
best estimate is marked in bold.

We first compare the accuracy of SVM, KPCA,
and the proposed method. In Australian dataset,
SVM gives the best accuracy. SKPCA-l; decreases
by 0.0067 and SKPCA-I5 ; decreases by 0.0006. The
KPCA is slightly higher than SKPCA-/;, while rel-
atively lower than SKPCA-l;;. In breast-cancer
dataset, SKPCA-I5 ; shows the best result. SKPCA-

l; decreases by 0.0012 and KPCA decreases by
0.0006. SVM gives realtively low accuracy. In climate
dataset, SKPCA-l5 1 expresses the best result. SVM
decreases by 0.0023, SKPCA-I; decreases by 0.0082,
and KPCA decreases by 0.0037. It can be seen that
the accuracy of KPCA lies between SKPCA-l; and
SKPCA-l5 ;. These results suggest that the accuracy
obtained by the proposed method is close to KPCA.

Secondly, from the sparsity results, the SKPCA-
I gives the very low sparsity, while the SKPCA-I5 ;
gives relatively higher sparsity. This is because that
each PC is expressed by different samples in the [;-
norm case, resulting to the low average sparsity. How-
ever, in the ly; case, each PC is explained by the
same samples, leading to the high average sparsity.
KPCA uses all the samples to express the PC, so the
sparsity is zero. Compared with SVM, SKPCA-I5 ;
gives relatively higher sparsity results on Australian
and breast-cancer, while the results have lower spar-
sity than climate. It can be seen that the proposed
method enhances the interpretation of PC and ob-
tains similar accuracy as KPCA.

Finally, precision, recall, and F1 score are calcu-
lated to compare the performance. The F1 score is a
harmonic mean of the precision and recall. We check
the performance based on F1 score. As shown in Ta-
ble 3, KPCA gives the best score in australian classifi-
cation, while in Tables 4 and 5, SKPCA-[5 ; achieves
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the best score. It can be seen that the KPCA is
higher than SKPCA-l; and lower than SKPCA-[5 ; in
the breast-cancer and climate datasets. This further
confirms the effectiveness of the proposed method.
Though the F1 score is lower than KPCA in aus-
tralian dataset, the F1 score decreases by less than
0.01, indicating that there exists a need to improve
the classification by adjusting the hyperparameters.

5 CONCLUSION

In this paper, we proposed two types of sparsity
approaches to KPCA, i.e. SKPCA-I; and SKPCA-
lo1. First, we reformulate the MSE function into a
regression-framework optimization problem and then
incorporate the /;-norm and I3 ;-norm into the re-
gression criterion, respectively. With the introduc-
tion of the SKPCA-I; and SKPCA-l; 1, we developed
an algorithm for the proposed method that includes
ADMM, to obtain a sparse coefficient matrix using a
thresholding function. The training data which con-
tributes little to the representation of kernel function
can be reduced via zero elements in the coefficient ma-
trix. The performance is demonstrated by compari-
son with standard KPCA. In toy examples, the pro-
posed approach makes PC interpretation easier with
less training data. For the real datasets, in combina-
tion with SVM, the classification accuracy is similar
to standard KPCA. The SKPCA-l3 ; method yields
much more sparsity than SVM on Australian and
breast-cancer datasets in the UCI repository thanks
to lp1-norm. Although the proposed method ob-
tained the sparsification results, one needs to choose
the tuning parameters such as A1, p, p21, and pag
appropriately. The threshold values are determined

by 2L in SKPCA-l; and P2 in SKPCA-lp,,. These
P

P21
parameters affect the sparsity and the classification
task. In future work, we will investigate how to set
them appropriately and reduce the cost of computa-
tion.
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