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ABSTRACT

In this research, the analysis of the active frac-
tional circuits has been performed by using the frac-
tional differential equation approach. Both voltage
and current mode circuits have been taken into ac-
count. The fractional time component parameters
have been included in the derivative terms within the
fractional differential equations. This is because the
consistency in time dimension between the fractional
derivative and the conventional one, which is also
related to the physical measurability, is concerned.
The fractional derivatives have been interpreted in
the Caputo sense. The resulting analytical solutions
of the time dimensional consistency aware fractional
differential equations have been determined. We have
found that the dimensional consistency between both
sides of the equations of the solutions, which cannot
be achieved in the previous works, can be obtained.
By applying different source terms to the obtained
analytical solutions, the response of both voltage and
current mode circuits have been determined and the
behaviours of the circuits have been analysed. The
fractional time constant and pole locations in the F-
plane of these circuits have been determined. Their
dynamic behaviours and stabilities have been anal-
ysed. Moreover, the discussion on circuit realizations
with a fractional capacitor has also been made.

Keywords: Active Fractional Circuit, Current
Mode, Fractional Time Component Parameter, Time
Dimensional Consistency, Voltage Mode

1. INTRODUCTION

The fractional calculus, which is an extension of
the conventional integer calculus, has been exten-
sively utilized in various engineering fields such as
robotics [1]-[3], bioengineering [4], [5], electronics [6],
[7], signal processing [8], [9] and control theory [10],
[11] etc. Its related differential equation, namely
fractional differential equation (FDE), has also been
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widely used in these areas and plays a fundamental
role in the fractional order circuit and system [12]-
[18] which is a generalization of the classical integer
order counterpart. It has been used in the analysis
of both active and passive fractional circuits [19]-[23].
However, the time dimension of the fractional deriva-
tive terms of these works are not consistent with that
of the conventional derivative and also are not phys-
ically measurable as they are generically given by
sec−γ where γ can be non-integer. On the other hand,
that of the conventional derivative is given by sec-1,
which in turn is physically measurable. Fortunately,
the fractional time component parameter has been in-
troduced in the previous work on fractional mechan-
ical systems [24]. By including such a parameter in
the fractional derivative term, the time dimension of
the fractional derivative term with this new param-
eter becomes sec−1. This motivates electrical engi-
neers to apply the fractional time component param-
eter included fractional derivative in the analyses of
passive fractional circuits [25][26] which are electrical
systems, for obtaining the time dimensional consis-
tency to the conventional derivative. However, simi-
lar analysis of active fractional circuits has never been
performed, despite the previous attempts to analyse
the active fractional circuits with FDE [22], [23].

Hence, the analysis of the active fractional circuits
with the awareness of such time dimensional consis-
tency has been performed in this work by using the
FDE based approach. The fractional time component
has been incorporated into the fractional derivative
terms for obtaining the time dimensional consistency
for the conventional derivative. Since any active cir-
cuit can be classified as either a voltage mode circuit
or a current mode circuit by using its transfer func-
tion [27] [28], both voltage and current mode circuits
have been analysed in this work. This is unlike [22],
which considered only the voltage mode circuit. Here,
the OPAMP and CC based fractional order filters
has been respectively adopted for the candidate volt-
age and current mode active fractional circuit. Both
OPAMP and CC have been often cited for decades,
and these circuits purely operate in the voltage and
current mode. This is in contrast to the OTA-C frac-
tional order filter adopted in [23], which takes the
voltage as the input and produces the output cur-
rent. Moreover, more complicated voltage and cur-
rent mode active fractional circuits can be designed
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by using our candidate circuits as the basic build-
ing blocks. The fractional time component parame-
ter included fractional derivative terms of the FDEs
have been defined in the Caputo sense [29] due to its
simplicity in determining its Laplace transform and
its real world modelling advantages [30]. The ana-
lytical solutions of the formulated FDEs, which have
been determined by using the Laplace-inverse Laplace
transformation [31] based methodology, employ the
dimensional consistency between both sides of their
equations. This consistecy does not exist in the solu-
tions proposed in those previous works which ignored
time dimensional consistency [19]-[23]. By applying
different source terms, including the AC sources, to
the obtained solutions, the response of both voltage
and current mode circuits have been determined and
the behaviours of the circuits have been analysed.
Moreover, we determine the fractional time constants
[25] and the pole locations in the F-plane of these
circuits. We also analyse their dynamic behaviours
and stabilities. Therefore more detailed analysis of
the active fractional circuit compared to those of [22]
and [23] is presented. It should be mentioned here
that the proposed analysis results can serve as a basis
for understanding, analysis, and design of those more
complicated fractional voltage and current mode ac-
tive circuits. They can be realized by using our can-
didate circuits as the basic building blocks as stated
above. Any system can be well understood by under-
standing as of its fundamental building blocks. For
example, it is obvious that any system with order 3
or higher can be well understood by using the un-
derstanding on the 1st and 2nd order systems as the
basis. Apart from those aforementioned studies, the
realizations of both voltage and current mode active
fractional circuits by using the state of the art frac-
tional capacitor will be discussed.

2. AN OVERVIEW OF FRACTIONAL DERIVA-
TIVE

Before proceeding further, an overview of frac-
tional derivative, which is the main component of the
FDE, will be briefly given. Unlike the conventional
derivative, the order of the fractional derivative can
be fractional. There exist various mathematical defi-
nitions of the fractional derivative, e.g. the Riemann-
Liouvielle definition and the Caputo definition, etc.
Let x(t) be an arbitrary time domain function. Its
fractional derivative of arbitrary order is denoted by

α and is
dα

dtα
x(t), where 0 < α ≤ 1 can be given in

terms of the conventional derivative and an integral
using the Riemann-Liouvielle definition as shown in
equation 1.

dα

dtα
x(t) =

d

dt
[X(t, α)] (1)

X(t, α) denotes the fractional integral of x(t) of

order α which can be given by equation 2.

X(t, α) =
1

Γ(1− α)

t∫
0

(t− τ)−αx(τ)dτ (2)

Noted that Γ() stands for the gamma function [32]
which can be recursively defined in term of arbitrary
value, x, as given by equation 3.

Γ(x+ 1) = xΓ(x) (3)

On the other hand,
dα

dtα
x(t) can be given using the

Caputo definition as follows:

dα

dtα
x(t) =

1

Γ(1− α)

t∫
0

x′(τ)

(t− τ)α
dτ (4)

where

x′(t) =
d

dt
x(t) (5)

If the Riemann-Liouvielle definition has been as-

sumed, the Laplace transform of
dα

dtα
x(t) can be given

by

L[
dα

dtα
x(t)] = sαX(s)−X(0, 1− α) (6)

where

X(0, 1−α) =
1

Γ(−α)

t∫
0+

(t− τ)−(1−α)x(τ)dτ
∣∣
t=0

(7)

Alternatively, if we defined
dα

dtα
x(t) in the Caputo

sense, we have

L[
dα

dtα
x(t)] = sαX(s)− sα−1x(0) (8)

which is much simpler than that obtained by using
the Riemann-Liouvielle definition. This is because
x(0), which stands for the initial value of x(t), can be
immediately applied similarly to the Laplace trans-
formation of the conventional derivative without any
necessity to perform the fractional integral as given
by (7) if the Riemann-Liouvielle definition has been
adopted. Moreover, unlike the Caputo definition, the
Riemann-Liouvielle definition also has certain math-
ematical flaws. These include nonzero derivative of a
constant, derivative with one or more singular points
of an analytic function, and complex valued deriva-
tive of a real valued function [30]. It can be stated
that the Caputo definition has real world modelling
advantages over that of Riemann-Liouvielle. Because
of this advantage and the simplicity in finding the
Laplace transform as mentioned above, we adopt the
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Caputo definition for our work.

3. ANALYSIS OF THE VOLTAGE MODE
ACTIVE FRACTIONAL CIRCUIT

In this section, the analysis of the voltage mode
active fractional circuit will be performed by using
the OPAMP based fractional filter as our candidate
circuit as aforementioned. Such a candidate circuit
can be constructed by using the OPAMP based con-
ventional filter [22] [33] which is depicted in Fig.1 as
the basis.

To begin, the FDE of our candidate voltage mode
circuit must be formulated. In order to do so, the
voltage transfer function, Hv(s), of its basis, the
OPAMP based conventional filter, must be deter-
mined first. This is because it is convenient to per-
form the analysis of any fractional circuit by starting
from its conventional prototype and then extend the
obtained results toward the fractional circuit of in-
terest. Such an approach has been widely adopted
in the aforesaid previous works on analyses of frac-
tional circuits [19]-[23] [26]. By using conventional
circuit analysis, we obtain the following voltage trans-
fer function

Hv(s) =
(1 + (R2/R1))/RC

s+ (1/RC)
(9)

Fig.1: The OPAMP based conventional filter [22],
[33].

By using (9) and the definition of Hv(s), the rela-
tionship between vi(t) and vo(t) , which respectively
denote the source and output voltage, can be ob-
tained in terms of an ordinary differential equation
(ODE) as follows [22]:

d

dt
vo(t) +

1

RC
vo(t) =

1 + (R2/R1)

RC
vi(t) (10)

For obtaining the desired FDE, the conventional

time derivative, i.e.
d

dt
, in (10) must be replaced by

the fractional one. Unlike [22], the fractional time
component parameter has been taken into account
for obtaining the time dimensional consistency. As a
result, the time dimensional consistency aware FDE
of the OPAMP based fractional filter can be formu-
lated as follows:

σα−1
v

dα

dtα
vo(t) +

1

RC
vo(t) =

1 + (R2/R1)

RC
vi(t) (11)

where σv represents the fractional time component
parameter of this voltage mode circuit and can range
from 0 to RC. Moreover, (11) will be reduced to (10)
if we let α = 1. Since σv has the dimension of sec [24]

[25] and the time dimension of
dα

dtα
is given regardless

of the definition of the fractional derivative by sec−α,

the dimension of the term σα−1
v

dα

dtα
, has been found

to be sec−1. That is both consistent with that of
d

dt
and physically measurable as aforesaid.

In order to solve (11), the Laplace transformation
must be applied to both sides of the equation. Such
Laplace transformation based methodology is appli-

cable as (11) is linear. Since
d

dt
has been defined in

the Caputo sense, the Laplace transform of
dα

dtα
vo(t)

can be given by [29]

L[
dα

dtα
vo(t)] = sαVo(s)− sα−1vo(0) (12)

where vo(0) and Vo(s) denote the initial value of out-
put voltage and such voltage in the s-domain respec-
tively. After taking the Laplace transformation, (11)
becomes

σα−1
v sαVo(s)− vo(0)σ

α−1
v sα−1 +

1

RC
Vo(s) =

1 + (R2/R1)

RC
Vi(s)

(13)
As a result, Vo(s) can be given in terms of a func-

tion of the s-domain source voltage, Vi(s) as

Vo(s) = vo(0)

 sα−1

sα +
1

σα−1RC

+
(1 + (R2/R1))

σα−1RC

 Vi(s)

sα +
1

σα−1RC


(14)

By using the inverse Laplace transformation and
the convolution theorem [31], vo(t) of the candidate
voltage mode active circuit can be analytically deter-
mined as follows:

vo(t) = vo(0)Eα(− tα

σα−1
v RC

) + (1+(R2/R1))
σα−1RC [vi(t) ∗ tα−1Eα,α(− tα

σα−1
v RC

)

(15)
where ∗ denotes the convolution operator. It should
be mentioned here that Eα() stands for the Mittag-
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Leffler function [32], which can be defined in terms of
an arbitrary variable x as

Eα(x) =
∞∑
k=0

[
xk

Γ(αk + 1)

]
(16)

Moreover, Eα,α() = Eα,β()
∣∣
β=α

where Eα,β() de-

notes the generalized Mittag-Leffler function [32],
which can be defined for any x as

Eα,β(x) =
∞∑
k=0

[
xk

Γ(αk + β)

]
(17)

It can be seen from (16) and (17) that Eα( ) =
Eα−1( ). Finally, the convolution operation can be
defined for arbitrary functions f(t) and g(t) as follows
[31]:

f(t) ∗ g(t) =
t∫

0

f(τ)g(t− τ)dτ (18)

With this definition, (15) becomes

vo(t) =vo(0)Eα(−
tα

σα−1
v RC

)

+
(1 + (R2/R1))

σα−1
v RC

t∫
0

vi(τ)(t− τ)α−1Eα,α[−
(t− τ)α

σα−1
v RC

]dτ

(19)

At this point, the analytical solution of the time
dimensional consistency aware FDE of the candidate
voltage mode active fractional circuit which is the
circuit response to arbitrary source term, has been
already determined. We have found that the dimen-
sional consistency between both sides of (19) can be
obtained since the dimensions of both RHS and LHS
are V, due to the effect of σv. This is because both

tα

σα−1
v RC

and
(t− τ)α

σα−1
v RC

are dimensionless. There-

fore Eα(−
tα

σα−1
v RC

) and Eα,α(−
(t− τ)α

σα−1
v RC

) are di-

mensionless as well since they are respectively the

power series of
tα

σα−1
v RC

and
(t− τ)α

σα−1
v RC

as can be

seen from (16) and (17). As a result, both terms
on the RHS of (19) have the dimension of V which
are consistent to that of the LHS, as the dimen-

sion of v(0) is V and those of
(1 + (R2/R1))

σα−1
v RC

and

t∫
0

vi(τ)(t − τ)α−1Eα,α[−
(t− τ)α

σα−1
v RC

]dτ are sec−α and

Vsec−α respectively. It should be mentioned here
that the dimensional consistency similar to that of
(19) which also achieved by a solution of the time
dimensional consistency aware FDE of the candidate
current mode active fractional circuit to be presented
later, cannot be obtained by those solutions proposed

in [19]-[23] because they lack the corresponding frac-
tional time component parameters.

In the following subsections, the circuit responses
due to different sources, i.e. zero source, DC source
and AC source, will be respectively formulated and
the time dimensional consistency aware behavioural
analysis of the voltage mode circuit in fractional do-
main will be presented. Moreover, the pole location
on the F-plane and a stability analysis of the circuit
will also be shown.

3.1 The response to zero source

The response to zero source voltage i.e. vi(t) = 0,
which occurs under the source free condition, will be
considered first. By using (19), vo(t) is simply given
by

vo(t) = voEα(−
tα

σα−1
v RC

) (20)

By assuming that σv = RC, C = 1 µF, R = 1
MΩ and vo(0) = 1 V, vo(t) can be simulated against
t under for different values of α as depicted in Fig.
2. It can be seen that the behavior vo(t) of when α
approaches 1 becomes closer to that of the OPAMP
based conventional filter which acts as a decreasing
exponential function. This is because E1(x) = ex

[32].

Fig.2: vo(t) due to zero source term v.s. t ( α =
0.1 (red), α = 0.2 (green), α = 0.3 (blue), α = 0.4
(yellow), α = 0.5 (pink), α = 0.6 (magenta), α =
0.7 (black), α = 0.8 (brown), α = 0.9 (gray)).

3.2 The response to DC source

Now vo(t), due to the DC source voltage applied at
t = 0 which can be mathematically modeled by using
the step function as vi(t) = V u , will be formulated.
By using (19), vo(t) due to such input can be found
as
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vo(t) =vo(0)Eα(−
tα

σα−1
v RC

)

+
(1 + (R2/R1))

σα−1
v RC

t∫
0

(t− τ)α−1Eα,α[−
(t− τ)α

σα−1
v RC

]dτ

(21)

This is because u(t) = 1 for t ≥ 1. By using (17)
with β = α and the basic properties of the generalized
Mittag-Leffler function [32], it has been found that
[22]

t∫
0

(t− τ)α−1Eα,α[−
(t− τ)α

σα−1
v RC

]dτ = −σα−1
v RC[Eα(−

(t− τ)α

σα−1
v RC

)− 1]

(22)

As a result, vo(t) can be given by

vo(t)=[vo(0)−V (1+
R2

R1
)]Eα(−

tα

σα−1
v RC

)+V (1+
R2

R1
)

(23)

By assuming extremely small R2, R1 = 1 MΩ with
other conditions but vo(0) defined similarly to those
assumed in the previous subsection, can be simulated
against t for different values of α when V = 1.5 V and
vo(0) = 2.5 V, i.e. V < vo(0)/(1 + (R2/R1)) as de-
picted in Fig. 3. On the other hand, vo(t)’s with V =
2.5 V and vo(0) = 1.5 V, i.e. V > vo(0)/(1+(R2/R1))
can be simulated as shown in Fig. 4. It can be
seen from Fig. 3 that vo(t) due to the DC input
with V > vo(0)/(1 + (R2/R1)) behaves very similar
to vo(t) due to zero input. Fig. 4 shows that with
V > vo(0)/(1+(R2/R1)) becomes an increasing func-
tion instead. Moreover, both figures show that vo(t)
with larger α become closer to that of the OPAMP
based conventional filter which acts as a decreasing
exponential function and an increasing one if we let
V > vo(0)/(1 + (R2/R1)) and vice versa. If we let
V > vo(0)/(1 + (R2/R1)), (23) becomes

vo(t) = V (1 +
R2

R1
) (24)

which means that the DC output voltage with the
magnitude of V/(1 + (R2/R1)) is obtained for any
value of α.

3.3 The response to AC source

By applying the AC source voltage given by vi(t) =
V sin(ωt+ ϕ) to (19), vo(t) can be found as

vo(t) =vo(0)Eα(−
tα

σα−1
v RC

)

+
(1 + (R2/R1))

σα−1
v RC

t∫
0

sin(ωτ + ϕ)(t− τ)α−1Eα,α[−
(t− τ)α

σα−1
v RC

]dτ

(25)

By using (17) with β = α, (25) becomes

vo(t) =vo(0)Eα(−
tα

σα−1
v RC

)

+
(1 + (R2/R1))

σα−1
v RC

t∫
0

sin(ωτ + ϕ)(t− τ)α−1
∞∑
k=0

 [− (t−τ)α

σα−1
v RC

]k

Γ(αk + α)

 dτ

(26)
After interchanging the summation and integral

and performing the integration, vo(t) due to the AC
source term can be finally given as follows:

Fig.3: vo(t) due to DC source term v.s. t when
V < vo(0)/(1 + (R2/R1))t (α = 0.1 (red), α = 0.2
(green), α = 0.3 (blue), α = 0.4 (yellow), α = 0.5
(pink), α = 0.6 (magenta), α = 0.7 (black), α = 0.8
(brown), α = 0.9 (gray)) .

Fig.4: vo(t) due to DC source term v.s. t when
V < vo(0)/(1 + (R2/R1))t (α = 0.1 (red), α = 0.2
(green), α = 0.3 (blue), α = 0.4 (yellow), α = 0.5
(pink), α = 0.6 (magenta), α = 0.7 (black), α = 0.8
(brown), α = 0.9 (gray)) .

vo(t) =vo(0)Eα(−
tα

σα−1
v RC

)

− {
√
πV (1 +

R2

R1
)[ωt cos(ϕ) + 2 sin(ϕ)]

×
∞∑
k=0

[(− 1

σα−1
v RC

)k+12−α(k+1)tα(k+1)

×1 F̃2(1;
1

2
(α(k + 1) + 1),

1

2
(α(k + 1) + 2);

1

4
(ωt)2)]}

(27)
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where

×1 F̃2(1;
1

2
(α(k + 1) + 1),

1

2
(α(k + 1) + 2);

1

4
(ωt)2)]}

=1 F̃2(a1; b1, b2; z)|a1=1,b1=
1
2 (α(k+1)+1),b2=

1
2 (α(k+1)+2);z=− 1

4 (ωt)2

(28)

It should be mentioned here that 1F̃2( ; , ; ) is the
regularized hypergeometric function with p = 1 and
q = 2 [34]. In the general case in which p and q can
be positive integers, the regularized hypergeometric
function can be defined as [34]

pF̃q(a1, a2, . . . , ap; b1, b2, . . . , bq; z) =
pFq(a1, a2, . . . , ap; b1, b2, . . . , bq; z)

Γ(b1),Γ(b2, . . . ,Γ(bq)

(29)

where pFq( ; , ; ) denotes the generalized hyper-
geometric function with arbitrary p and q, which in
turn can be defined as a series which converges if and
only if p ≤ q as [35]

pFq(a1, a2, . . . , ap; b1, b2, . . . , bq; z) =
∞∑

n=0

[

p∏
i=1

(ai)n

q∏
j=1

(bjn)

zn

n!
]

(30)

where (ai)n and (bj)n are Pochhammer symbols
which can be respectively defined as

(ai)n = (ai)(ai + 1)(ai + n− 1) =
Γ(ai + n)

Γ(ai)
(31)

(bj)n = (bi)(bj + 1)(bj + n− 1) =
Γ(bj + n)

Γ(bj)
(32)

By assuming that vo(0) = 0 and vi(t) employs ω
= 106π rad/s, which is obviously high, ϕ = 0 rad and
V = 1 V, vo(t) can be simulated against t and α un-
der the other conditions similar to those adopted in
the previous subsections as depicted in Fig.5, which
shows that the magnitude of vo(t) is inversely pro-
portional to α.

3.4 The fractional time constant and the dy-
namic analysis

By carefully considering (23), vo(t) due to DC
source voltage can be given in an alternative man-
ner as follows

vo(t)=[vo(0)−V (1+
R2

R1
)]Eα(−

tα

Tvα
)+V (1+

R2

R1
)

(33)

where

Tvα = σα−1
v RC (34)

Fig.5: vo(t) due to AC source term v.s. t and α.

According to [25], Tαv stands for the fractional
time constant of the candidate voltage mode active
fractional circuit. It determines the dynamic of such
a circuit as it is defined as the time instant where vo(t)
due to DC source with V > vo(0)/(1+(R2/R1)) rises
to approximately 63.2% of its final value.

Since the time constant of the OPAMP based con-
ventional filter can be given by Tv = RC, we have

Tvα = σα−1
v Tv (35)

From Fig. 4, it can be clearly seen that such vo(t)
with lower α rises to approximately 63.2% of its final
value with a faster rate. Therefore we can imply here
that Tαv is inversely proportional to α which means
that the voltage mode circuit with lower α is more
responsive to the stimulus. Since 0 < α ≤ 1, it can
be seen from (35) that Tαv is inversely proportional
to α, thus a similar implication can be made.

3.5 The pole location on the F-plane and the
stability analysis

For studying the stability of any linear fractional
system, its pole location on either the F-plane or W-
plane must be determined as the applicability of s-
plane ceases to be valid [13], [36]. These planes can
be respectively depicted in Fig. 6 and 7 where m can
be arbitrary positive integer. From these figures, it
can be seen that the unstable areas of both the F-
plane and the W-plane are smaller than that of the
s-plane, which implies that the fractional system has
a better chance of stability than the conventional in-
teger system. In order to find such pole locations, the
characteristic equation of the system obtained from
its transfer function must be formulated first.

By using (14), which can be obtained by taking
the Laplace transformation to both sides of the time
dimensional measurability aware FDE of the candi-
date voltage mode active fractional circuit (11), as
aforesaid, the transfer function given by (36) can be
obtained
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Hv(s
α) =

(1 + (R2/R1))/σ
α−1
v RC

sα +
1

σα−1
v RC

(36)

Fig.6: The F-plane [36].

Fig.7: The W-plane [30].

sα +
1

σα−1
v RC

= 0 (37)

Since the left hand side of (30) can be written in

the form
m∑

k=0

aks
kα where k is a positive integer, the

F-plane based stability analysis has been found to
be suitable [13]. Noted that k can be 0 and 1 and
a0 = 1/σα−1

v RC and a1 = 1 in this scenario. By
simply replacing s? by the fractional power complex
variable F , (37) becomes

F +
1

σα−1
v RC

= 0 (38)

and thus we have

F = − 1

σα−1
v RC

(39)

Since R, C and σv are positive real quantities, it

can seen from (39) that F is a negative real. Thus,
the circuit pole is located on the negative real axis
of the F-plane. From Fig. 6, it can be seen that the
area of the unstable region which is α dependent can
range from merely the positive real axis to the entire
right hand side of the F-plane in this scenario as we
assumed that α can range from 0 to 1. Therefore our
voltage mode circuit is always stable as its pole will
always be in the stable region of the F-plane.

Alternatively, F can be given in the polar form as
follows

F =
1

σα−1
v RC

exp[jπ] (40)

This means that the phase angle of the circuit pole
is π rad. As a result, our candidate voltage mode
circuit is always stable under the assumed range of α
according to the F-plane stability criterion mentioned
in [36].

4. ANALYSIS OF THE CURRENT MODE
ACTIVE FRACTIONAL CIRCUIT

As stated above, the CC-based fractional filter has
been adopted as the candidate current mode active
fractional circuit. This circuit can be constructed
by generalizing the CC-based conventional filter de-
picted in Fig. 8, where both CC with single output
and dual output have been used.

Fig.8: The CC-based conventional filter.

Similarly to the voltage mode circuit, we will per-
form the analysis of the fractional current mode cir-
cuit by starting from its conventional prototype and
then extending the results toward the fractional cir-
cuit. From Fig. 8, it can be seen that the current
transfer function, Hi(s) of the CC-based conventional
filter can be given by

Hi(s) = − 1/R1C

s+ (1/R2C)
(41)
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By using (41) and the definition of Hi(s), we have

d

dt
io(t) +

1

R2C
io(t) = − 1

R1C
ii(t) (42)

where ii(t) and io(t) stand for source and output cur-
rent.

Therefore the time dimensional consistency aware
FDE of our candidate current mode active fractional
circuit can be given as follows

σα−1
i

dα

dtα
io(t) +

1

R2C
io(t) = − 1

R1C
ii(t) (43)

where σi denotes the fractional time component pa-
rameter in this scenario and can range from 0 to R2C.

Since the time dimension of σi is also given by
sec [24], [25] as well as that of σv, the time dimen-

sion σα−1
i

dα

dtα
is given by sec-1. By using the Laplace

transformation based methodology and the convolu-
tion theorem, io(t) of the candidate current mode ac-
tive circuit can be analytically determined as follows

io(t) = io(0)Eα(−
tα

σα−1
i R2C

)− σ1−α
i

R1C

t∫
0

ii(τ)(t− τ)α−1Eα,α[−
(t− τ)α

σα−1
i R2C

]dτ

(44)

where io(0) stand for the initial value of io(t).

At this point, the time dimensional consistent an-
alytical solution of the FDE of the candidate current
mode active fractional circuit, which is the circuit re-
sponse due to arbitrary source current term, has been
already determined. Similarly to the voltage mode
circuit, the responses of this current mode circuit due
to different source terms, i.e. zero source, DC source
and AC source, can be formulated by using the de-
rived solution as will be shown in the subsequent sub-
sections where the F-plane based stability analysis of
the circuit will be performed as well.

Before proceeding further, it can be stated that
both sides of (44) have dimensional consistency. That
is their dimensions are both A due to the effect of σi.
This is not surprising as both tα

σα−1
i R2C

and (t−τ)α

σα−1
i R2C

are dimensionless. Therefore Eα(− tα

σα−1
i R2C

) and

Eα,α[− (t−τ)α

σα−1
i R2C

]are dimensionless as well. As a re-

sult, both terms on the RHS of (44) have the dimen-
sions of A which are consistent to that of the LHS,

as the dimension of i(0) is A and those of
σi−α
i

R1C
and

t∫
0

ii(τ)(t− τ)α−1Eα,α[− (t−τ)α

σα−1
i R2C

]dτ are sec−α and A

secα respectively.

4.1 The response to zero source

By letting ii(t) = 0 in (40), io(t) can be simply
given by

io(t) = io(0)Eα(−
tα

σα−1
i R2C

) (45)

and can be simulated against t under the assump-
tion that σi = R2C,C = 1 µF, R2 = 1 MΩ and
io(0) = 1 A for different values of α as depicted in
Fig. 9. Similarly to vo(t) of the voltage mode cir-
cuit, io(t) also become closer to that of the CC-based
conventional filter, which also acts as a decreasing ex-
ponential function, when α approaches 1 for similar
mathematical reasons.

4.2 The response to DC source

Now io(t) due to the DC source current applied
at t = 0 will be formulated. By substituting ii(t) =
Iu(t) in (44), io(t) due to the DC source current can
be found as

io(t) = io(0)Eα(−
tα

σα−1
i R2C

)− σ1−α
i I

R1C

t∫
0

(t− τ)α−1Eα,α[−
(t− τ)α

σα−1
i R2C

]dτ

(46)
After performing the integration with the aid

of (10) and the basic properties of the generalized
Mittag-Leffler function, (46) becomes

io(t) = [io(0) +
R2I

R1
]Eα(−

tα

αα−1
i R2C

)− R2I

R1
(47)

By using a similar assumption to those of the pre-
vious subsection but with R1 = 1 MΩ, io(0) = 1.5
A and I = 0.5 A, this io(t) can be simulated against
t for different values of α as depicted in Fig. 10.
Noted that I > R1io(0)/R2 is satisfied in this scenario
and io(t) with opposite dynamic can be expected if
I < R1io(0)/R2. It can be seen that due to DC source
also becomes closer to that of the CC-based conven-
tional filter which behaves like a decreasing exponen-
tial function, when α approaches 1.

4.3 The response to the AC source

By applying the AC source current given by ii(t) =
I sin(ωt+ ϕ) to (44), io(t) can be found as

io(t) = io(0)Eα(−
tα

σα−1
i R2C

)− σ1−α
i I

R1C

t∫
0

sin(ωτ + ϕ)(t− τ)α−1Eα,α[−
(t− τ)α

σα−1
i R2C

]dτ

(48)
By using (17) for defining the Mittag-Leffler func-

tion and performing the integration, io(t) due to the
AC source term can be finally given in (49). More-
over, if we adopt similar assumptions to those of the
previous subsection but with io(0) = 0 A, and we also
assume that ii(t) employs ω = 106π rad/s, ϕ = 0 rad
and I = 1 A has a very high frequency with unity
magnitude and zero phase shift, io(t) can be simu-
lated against t and α as depicted in Fig. 11, which
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shows that the magnitude of io(t) are also inversely
proportional to α. This behavior of is similar to that
of io(t) due to AC source depicted in Fig. 5. How-
ever, it can be seen that the phase shift of io(t) is
180◦, which means that io(t) is 180

◦ out of phase to
ii(t). This is unlike vo(t) due to AC source being in
phase with vi(t).

io(t) =io(0)Eα(−
tα

σα−1
v RC

)

− {
√
π(

R2I

R1
)[ωt cos(ϕ) + 2 sin(ϕ)]

×
∞∑
k=0

[(− 1

σα−1
v RC

)k+12−α(k+1)tα(k+1)

×1 F̃2(1;
1

2
(α(k + 1) + 1),

1

2
(α(k + 1) + 2);

1

4
(ωt)2)]}

(49)

Fig.9: io(t) due to zero source term v.s. t t (α =
0.1 (red), α = 0.2 (green), α = 0.3 (blue), α = 0.4
(yellow), α = 0.5 (pink), α = 0.6 (magenta), α =
0.7 (black), α = 0.8 (brown), α = 0.9 (gray)).

4.4 The fractional time constant and the dy-
namic analysis

By considering (47), io(t) due to DC source current
can be alternatively given as follows:

io(t) = [io(0) +
R2I

R1
]Eα(−

tα

Tiα
)− R2I

R1
(50)

where

Tiα = σα−1
i R2C (51)

Also according to [25], Tiα stands for the fractional
time constant of the candidate current mode active
fractional circuit.

Since the time constant of the CC-based conven-
tional filter can be given by Ti = R2C, Tiα can be
alternatively given by

Tiα = σα−1
i Ti (52)

and 0 < α ≤ 1. It can be seen from (52) that Tiα

is inversely proportional to α. Therefore it can be

Fig.10: io(t) due to DC source term v.s. t t (α =
0.1 (red), α = 0.2 (green), α = 0.3 (blue), α = 0.4
(yellow), α = 0.5 (pink), α = 0.6 (magenta), α =
0.7 (black), α = 0.8 (brown), α = 0.9 (gray)).

Fig.11: io(t) due to AC source term v.s. t and α.

implied that the current mode circuit with lower α is
more responsive to the input.

4.5 The pole location on the F-plane and the
stability analysis

For this current mode active fractional circuit, its
time dimensional measurability aware transfer func-
tion can be obtained by using (39) as

Hi(s
α) =

−1/σα−1
i R1C

sα +
1

σα−1
i R2C

(53)

Thus the characteristic equation can be given by

sα +
1

σα−1
v RC

(54)

which is also in terms of
m∑

k=0

aks
kα. Therefore the

F-plane based stability analysis has also been found
to be suitable in this scenario where k can also be 0
and 1 and a1 is also 1. Unlike the active mode frac-
tional circuit, we have found that a0 = 1/σα−1

i R2C.
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By also simply replacing sα in (54) by F , we have

F = − 1

σα−1
i R2C

(55)

As R2, C, and σi are positive real quantities, F is
a negative real, thus the pole of the candidate current
mode circuit is also located on the negative real axis
of the F -plane. Therefore this circuit is also always
stable under our assumed range of α for a similar
reason to that of the voltage mode active fractional
circuit. Moreover, (51) can be rewritten in the polar
form as

F = − 1

σα−1
i R2C

exp[jπ] (56)

which means that the phase angle of the pole of the
current mode circuit is also π rad. Therefore it is also
stable, according to the similar stability criterion, to
that of the voltage mode circuit.

5. THE FRACTIONAL CAPACITOR BASED
REALIZATION

Both voltage mode and current mode fractional
circuits can be realized by simply replacing the con-
ventional capacitor in their corresponding conven-
tional circuit prototypes by a fractional capacitor
[37][38]. The fractional capacitor, which is a state
of the art electronic device, can be constructed by
many means, e.g. ferroelectric material [37], multi-
wall carbon nanotube (MWCNT)-epoxy nano com-
posite material [38], RC circuit based emulation in
the integer domain [39][40] and active device based
emulation [7]. According to [41] but in the context of
this work, we can define

Cα = σα−1C (57)

where Cα stands for the pseudo capacitance of the
fractional capacitor and employs the dimension of
F·sec−1 [42]. Note also that σ can be either σv or
σi depending on mode of the circuit under consider-
ation.

By using the definition of Cα and (11), the FDE of
our voltage mode fractional circuit realized by using
a fractional capacitor is calculated as follows:

dα

dtα
vo(t) +

1

RCα
vo(t) =

1 + (R2/R1)

RCα
vi(t) (58)

Therefore we have

vo(t) =vo(0)Eα(−
tα

RCα
)

+
(1 + (R2/R1))

RCα

t∫
0

vi(τ)(t− τ)α−1Eα,α[−
(t− τ)α

RCα
]dτ

(59)

If we let the circuit be supplied by the DC source,
the following vo(t) can be obtained

vo(t) = [vo(0)− V (1 +
R2

R1
)]Eα(−

tα

RCα
) + V (1 +

R2

R1
)

(60)
By assuming extremely small R2, R = R1 = 1

MΩ, V = 1 V and vo(0) = 0 V, vo(t)’s can be sim-
ulated as depicted in Fig. 12. Fractional capacitors
with 3 different thickness of coating of PMMA (poly-
methyl methaacrylate) film on the electrode, tPMMA

i.e. tPMMA = 3 µm, tPMMA = 4 µm and tPMMA =
6 µm, [43] have been assumed. As a result, ’s with
different characteristics can be observed where it has
been found that the magnitude of is inversely pro-
portional to tPMMA. Noted that Cα of these prac-
tical fractional capacitors are 419.6 F?sec?-1, 468.9
F·sec−1 and 616.7 F·sec−1. On the other hand, α are
respectively 0.09, 0.11 and 0.12 [43].

For the current mode fractional circuit on the other
hand, the FDE of its realization by the using frac-
tional capacitor can be obtained by using (43) and
(57) as follows

dα

dtα
io(t) +

1

R2Cα
io(t) = − 1

R1Cα
ii(t) (61)

Therefore we have

io(t) = io(0)Eα(−
tα

R2Cα
)− 1

R1Cα

t∫
0

ii(τ)(t− τ)α−1Eα,α[−
(t− τ)α

R2Cα
]dτ

(62)
If we let the circuit be supplied by the DC source,

the following io(t) can be obtained

io(t) = [io(0) +
R2I

R1
]Eα(−

tα

R2Cα
)− R2I

R1
(63)

By assuming R1 = R2 = 1 MΩ, I = 1 A and io(0)
= 1 A, io(t)’s can be simulated as depicted in Fig. 13
where the fractional capacitors with tPMMA = 3 µm,
tPMMA = 4 µm and tPMMA = 6 µm have been as-
sumed. The io(t)’s with different characteristics can
be observed. It has been found that the magnitude
of io(t) is directly proportional to tPMMA.

6. CONCLUSION

The analysis of both voltage and current mode ac-
tive fractional circuits has been performed in this re-
search by formulating and analytically solving their
FDEs. The OPAMP and CC-based fractional filters
have been respectively adopted as the candidate volt-
age and current mode active fractional circuits. The
time dimensional consistency of the fractional deriva-
tive terms to the conventional derivative has also been
confirmed. These fractional derivative terms have



Time Dimensional Consistency Aware Analysis of Voltage Mode and Current Mode Active Fractional Circuits 91

Fig.12: vo(t) of the voltage mode circuit with frac-
tional capacitor with tPMMA = 3 µm (red), tPMMA

= 4 µm (green) and tPMMA = 6 µm (blue) .

Fig.13: io(t) of the current mode circuit with frac-
tional capacitor with tPMMA = 3 µm (red), tPMMA

= 4 µm (green) and tPMMA = 6 µm (blue) .

been defined in Caputo sense due to its convenience.
The resulting time dimensional consistency aware an-
alytical solutions have been determined by using the
Laplace transformation based methodology. We have
found that there exists dimensional consistency be-
tween both sides of the equations of our solutions
which cannot be achieved by the solutions proposed
in previous work.

By applying different source terms to the obtained
solutions, the circuit responses to these source terms
have been obtained and the behaviors of both voltage
and current mode active fractional circuits have been
analyzed. It was found that the behaviors of these
fractional circuits become closer to those of their con-
ventional counterparts when α approaches 1. More-
over, the fractional time constants and the pole loca-
tions in the F-plane of these circuits have also been
determined. For both circuits, we have found that
those with lower α are more responsive to the stim-
ulus and their stabilities under the assumed range
of α can be guaranteed. Beside these studies, the
realizations of these circuits by using the fractional
capacitor have also been discussed. This research has
been found to be beneficial to the analysis and design

of fractional circuits and systems.
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APPENDIX

Since many crucial specific functions and variables
have been introduced in this work, a table of their
notations will be shown here for the convenience of
readers who may not be familiar with them.
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Table 1: Notations of crucial specific functions and
variables.

Cα Pseudo capacitance

dα

dtα
αth order Fractional c

F Fractional power
complex variable

Eα( ) Mittag-Leffler
function

Eα,β( ) Generalized Mittag-
Leffler function

pF̃q( ; , ; ) Regularized
hypergeometric

function

pFq( ; , ; ) Generalized
hypergeometric

function
tPMMA Thickness of

polymethyl
methacrylate coating
film on the electrode

Tαi Fractional time
constant of the

current mode active
fractional circuit

Tαv Fractional time
constant of the

voltage mode active
fractional circuit

α Order of fractional
derivative

Γ( ) Gamma function
σ Fractional time

component
σi Fractional time

component of the
current mode circuit

σv Fractional time
component of the

voltage mode circuit


