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Abstract 

 

In this paper, the reduction of RSSI (received signal strength indicator) variation for indoor position estimation in wireless 

sensor networks (WSNs) is studied through simulation. We demonstrate that using raw RSSI data (with high variation) to 

estimate a sensor position (i.e., an unknown position) is not appropriate due to a large estimation error. To cope with this 

problem, we propose a RSSI improvement method for reducing RSSI variation. The sum of the average RSSI value used at 

the previous step and the RSSI value measured at the current step are employed to determine the appropriate RSSI value (i.e., 

the smoothed RSSI value). The priority technique is also applied to such a function by assigning different weighted values. 

Simulation results show that using our proposed method with an optimal weighted value gives better estimation results than 

using raw RSSI data and a moving average method. With the proposed method, the position estimation by an original 

trilateration approach is more accurate. 
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1. Introduction 

 

During the last few years, WSNs have attracted a great 

deal of research interest. WSNs can be utilized for many 

applications including monitoring and control, building 

automation, health surveillance, military, industry, and target 

tracking, among others. [1-2]. Target localization is one of the 

essential subjects in WSNs because position information is 

useful for coverage, deployment, coordination, and routing. 

[3]. One of the fundamental challenges in WSNs is the node 

localization problem. Localization techniques introduced in 

the research literature are often performed using the time of 

arrival (TOA), time of difference of arrival (TDOA), RSSI, or 

a combination of these [3-7]. Here, the TOA and TDOA 

techniques including the global position system (GPS) need 

complicated timing and synchronization, which makes 

localization complex and expensive. Also, the GPS is not 

appropriate for indoor environments [8]. Thus, localization 

using the RSSI information is more widely used among these 

techniques. The main reason for its appeal is that most wireless 

devices have RSSI circuits built into them, so additional 

hardware is not required. This advantage can help to reduce 

the cost and complexity of the system. 

In the RSSI-based position estimation technique, the 

distance between a transmitter and a receiver can be calculated 

from the RSSI information observed at the receiver. However, 

measured RSSI data is highly uncertain, and it fluctuates over 

time due to multipath and fading effects, especially in indoor 

environments. As a result, the accuracy of the position 

estimation certainly depends on variation in the levels of the 

RSSI data. According to this research problem, reducing the 

variation of the RSSI data should be considered.  

In the research literature, [9] and [10] presented RSSI-

based localization methods that used a neural network to 

reduce RSSI variation. Also, measured RSSI data as the inputs 

for the neural network were collected from various 

transmission powers. Consequently, the works in [9] and [10] 

require high processing and computation power. In [11], the 

fingerprinting algorithm was presented to estimate the position 

of mobile devices in an indoor environment. The position of 

an unknown target was estimated by comparing the measured 

RSSI values and the RSSI values stored in a radio map 

database. However, the method in [11] requires more time and 

RSSI samples to create an accurate radio map, as the author 

stated. In [12], the authors applied a moving average method 

to the measured RSSI data. Errors in RSSI-to-distance 

conversion were significantly reduced. In [13], an averaging 

method was applied to the RSSI data. The authors claimed 

that, by experiments conducted in indoor environments, the 

RSSI variation was reduced. In [14], the RSSI variation was 

reduced using a least mean square (LMS) algorithm. Both the 

simulation and experimental results demonstrated that the 

LMS can smoothen RSSI data. However, for the works in 

[12-14], how the moving average method, the average 

method, and the LMS method affected the accuracy of the 

position estimation w a s  not included in the scope of the 
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studies. The research gaps presented in the literature include 

how to reduce the RSSI variation for an RSSI-based position 

estimation and this needs further investigation.  

In this paper, a reduction of RSSI variation is investigated 

by a simulation study. The well-known trilateration approach 

[15-16] is selected and used for determining an unknown target 

position. The sum of the average RSSI value used at the 

previous step and the RSSI value measured at the current step 

is used to determine the smoothed RSSI value, which is the 

input for the trilateration approach. A weighted value is also 

applied to the summation function. The performance of the 

proposed method is explored by varying the weighted value. 

Additionally, fading effects at various levels are included in 

simulated environments, where different fading levels indicate 

the various characteristics of indoor environments. The 

simulation results demonstrate that the proposed method can 

reduce the RSSI variation, and the estimated position by the 

trilateration method is close to the actual position.  

 The remainder of this paper is organized as follows. The 

RSSI-based position estimation method is introduced in 

Section 2. The proposed methodology (reduction of RSSI 

variations) is described in Section 3. Section 4 defines the 

simulation scenario and the performance metrics. Section 5 

provides simulation results and discussion. Finally, Section 6 

concludes the paper. 

 

2. RSSI-based position estimation method 

 

The methodology to derive raw RSSI data from a sensor 

node and to estimate the position of an unknown target are 

described as follows. 

 

2.1 Radio propagation model 

 

The distance between a transmitter and a receiver can be 

estimated based on the RSSI value obtained by a receiver. The 

RSSI value at a distance 𝑑 can be calculated according to the 

log-normal shadowing model. In this model, the RSSI value at 

a certain distance is a random variable due to multipath 

propagation effects (fading effects). It includes a probabilistic 

term in the calculation of the received signal power. This 

model is widely used in RSSI-based localization techniques 

because of its linearity and simplicity [17-18]. It can be 

represented by (1). 

 

𝑅𝑆𝑆𝐼(𝑑)

𝑅𝑆𝑆𝐼(𝑑0)
= −10𝜂𝑙𝑜𝑔10 (

𝑑

𝑑0
) + 𝑋𝑑𝐵                                    (1) 

 

𝑅𝑆𝑆𝐼(𝑑0) =
𝑃𝑡𝐺𝑡𝐺𝑟𝜆2

(4𝜋)2𝑑0
2𝐿

                                                                                       (2) 

 

where 𝑅𝑆𝑆𝐼(𝑑)  is the RSSI value at a distance, 𝑑 . 

𝑅𝑆𝑆𝐼(𝑑0) is the reference RSSI value at a distance, 𝑑0. 𝜂 is 

the path loss exponent. It is set to a value between 2 and 6 [17, 

19] and is determined by field measurements. 𝑋𝑑𝐵  is a 

Gaussian random variable with a zero mean and a standard 

deviation of 𝜎𝑑𝐵. 𝜎𝑑𝐵 is also called the shadowing deviation. 

It depends on the characteristics of the test environment. 

𝑅𝑆𝑆𝐼(𝑑0) can be computed from (2). It is calculated using the 

free space propagation model, where
 
𝑃𝑡  is the transmission 

power corresponding to the function of the RF transceiver.
 
𝐺𝑡 

and 𝐺𝑟  are the antenna gains of the transmitter and the receiver, 

respectively. 𝐿 is the system loss, and 𝜆 is the wavelength. It is 

common to select 𝐺𝑡 = 𝐺𝑟 = 𝐿 = 1 in a simulation [20-21].  

 

2.2 Position estimation method 

 

 The trilateration method is employed for position 

estimation of an unknown target. The basis of the 

trilateration is the calculation of the intersection point of 

three circles with radii, 𝑟1, 𝑟2 and 𝑟3, as shown in Figure 1. 

The intersection point can be determined using the simple 

circle equations as expressed in (3) to (7).  

 

𝑟1
2 = 𝑥2 + 𝑦2                                                                     (3) 

 

𝑟2
2 = (𝑥 − 𝑎)2 + 𝑦2                                                           (4) 

 

𝑟3
2 = 𝑥2 + (𝑦 − 𝑏)2                                                           (5) 

 

𝑥 =
𝑟1

2 − 𝑟2
2 + 𝑎2

2𝑎
                                                                      (6) 

 

𝑦 =
𝑟1

2 − 𝑟3
2 + 𝑏2

2𝑏
                                                                      (7) 

 

   where 𝑟1 , 𝑟2 , and 𝑟3  are the radii of the reference 

node IDs 1 (R1), 2 (R2), and 3 (R3), respectively. The 

target node (T) is located at an unknown position (𝑥, 𝑦). 

 
 

Figure 1 The position estimation of a target node by the trilateration method 
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Figure 2 Position estimation processes: 𝑅𝑆𝑆𝐼𝑖𝑛(𝑟𝑒𝑓1), 𝑅𝑆𝑆𝐼𝑖𝑛(𝑟𝑒𝑓2), and 𝑅𝑆𝑆𝐼𝑖𝑛(𝑟𝑒𝑓3) are the raw RSSI values, 𝑅𝑆𝑆𝐼𝑜𝑢𝑡(𝑟𝑒𝑓1), 

𝑅𝑆𝑆𝐼𝑜𝑢𝑡(𝑟𝑒𝑓2), and 𝑅𝑆𝑆𝐼𝑜𝑢𝑡(𝑟𝑒𝑓3) are the smoothed RSSI values, and 𝑑1, 𝑑2, and 𝑑3 are the distances or the radii 

 

𝑟1, 𝑟2, and 𝑟3 can be determined by solving (3) to (5). The radii 

of the reference nodes are used for calculating the coordinate 

(𝑥 , 𝑦) using (6) and (7). In our simulation, there are three 

stationary reference nodes at the center of three circles. The 

target node is at an unknown position that is also located at the 

position (𝑥, 𝑦). 

 Each reference node broadcasts a beacon packet to the 

target node. Upon receiving the beacon packet, the target node 

reads the RSSI values using (1) and (2). Finally, the RSSI 

values are input into the trilateration method for determining 

the target position. 

 

3. Reduction of RSSI variation 

 

There are four steps to estimate the position of an unknown 

target as summarized in Figure 2. Step (a) is the RSSI 

measurement. The reference nodes broadcast beacon packets 

to the target node. Then, the raw RSSI values 

(i.e., 𝑅𝑆𝑆𝐼𝑖𝑛(𝑟𝑒𝑓1) , 𝑅𝑆𝑆𝐼𝑖𝑛(𝑟𝑒𝑓2) , and 𝑅𝑆𝑆𝐼𝑖𝑛(𝑟𝑒𝑓3) ) are 

gathered by the target node. Step (b) is the RSSI improvement 

method. The variation of the raw RSSI value is reduced. Step 

(c) is the RSSI to distance conversion. The smoothed RSSI 

values (i.e.,𝑅𝑆𝑆𝐼𝑜𝑢𝑡(𝑟𝑒𝑓1), 𝑅𝑆𝑆𝐼𝑜𝑢𝑡(𝑟𝑒𝑓2), and 𝑅𝑆𝑆𝐼𝑜𝑢𝑡(𝑟𝑒𝑓3)) 

are converted to distances using a log-normal shadowing 

model. Finally, step d) is the position estimation of an 

unknown target using the original trilateration method. Step b) 

is described here. 

The design concept of the RSSI improvement method is 

that the sum of the average RSSI value used at the previous 

step and the RSSI value measured at the current step is 

employed to determine the smoothed RSSI value for position 

estimation. We also assign higher priority to the first function 

(the average RSSI value) than the second (the current 

measured RSSI value). This is done by setting various 

weighted values of those functions. We note that the optimal 

weight is also determined during the simulation. The average 

RSSI value with the smallest variation will be considered 

with high priority. The proposed method is shown in (8) to 

(10). 

 

(I) For the RSSI sample number 1: 𝑘 = 1, 

 

𝑅𝑆𝑆𝐼𝑢𝑠𝑒(𝑘) = 𝑅𝑆𝑆𝐼𝑠𝑎𝑚𝑝𝑙𝑒(𝑘)                                                    (8) 

 

(II) For the RSSI sample number 2: 𝑘 = 2, 

 

𝑅𝑆𝑆𝐼𝑢𝑠𝑒(𝑘) = 𝛼 × (
𝑅𝑆𝑆𝐼𝑠𝑎𝑚𝑝𝑙𝑒(𝑘) + 𝑅𝑆𝑆𝐼𝑢𝑠𝑒(𝑘−1)

2
) 

+(1 − 𝛼) × (𝑅𝑆𝑆𝐼𝑠𝑎𝑚𝑝𝑙𝑒(𝑘)) 

                                                                                           (9) 

(III) For RSSI sample number 𝑘: 𝑘 ≥ 3, 

 

𝑅𝑆𝑆𝐼𝑢𝑠𝑒(𝑘) = 𝛼 × (
𝑅𝑆𝑆𝐼𝑠𝑎𝑚𝑝𝑙𝑒(𝑘) + 𝑅𝑆𝑆𝐼𝑢𝑠𝑒(𝑘−1) + 𝑅𝑆𝑆𝐼𝑢𝑠𝑒(𝑘−2)

3
) 

+(1 − 𝛼) × (𝑅𝑆𝑆𝐼𝑠𝑎𝑚𝑝𝑙𝑒(𝑘)) 

                                                                                         (10) 

 

 where 𝑅𝑆𝑆𝐼𝑢𝑠𝑒(𝑘) is the smoothed RSSI value at sample 

number 𝑘  which is used as the input for the position 

estimation. 𝑅𝑆𝑆𝐼𝑢𝑠𝑒(𝑘)  is equal to 𝑅𝑆𝑆𝐼𝑜𝑢𝑡  as shown in 

Figure 2. 𝑅𝑆𝑆𝐼𝑠𝑎𝑚𝑝𝑙𝑒(𝑘) is the current measured RSSI value at 

sample number 𝑘, and 𝛼 is a weighted value ranging between 

0 and 1. 

 

4. Simulation scenario and performance metrics 
 

4.1 Simulation scenario 

 
 To evaluate the performance of the proposed method, we 

conducted a set of experiments using NS2 [22] version 2.34 

under a Linux operating systems. The simulation scenario is 

the same as presented in Figure 1. Node ID 0 is the target node 

(T). It is located at a known position (𝑥 = 16 m, 𝑦 = 16 m) in 

the sensor field. The target node receives beacon packets from 

three reference nodes in every time interval. The reference 

nodes are the node IDs 1 (R1), 2 (R2), and 3 (R3), respectively. 

They are fixed at positions (𝑥1 = 1 m, 𝑦1 = 1 m), (𝑥2 = 31 m, 

𝑦2 = 1 m), and (𝑥3 = 1 m, 𝑦3 = 31 m), respectively. All nodes 

are located in a 31 m × 31 m sensor field. Each node has the 

same radio range, and the transmission range and is not farther 

than one communication hop. All radio parameters assigned 

for the sensor nodes are configured according to the CC2500 

RF transceiver [23-25], which is designed for low-cost, low-

power wireless applications. To set the parameters for the log-

normal shadowing model as presented in (1), we use 𝜂 = 2.9 

[26-27] and
 
𝜎𝑑𝐵 = 2.0, 3.0, and 4.0 [28], which correspond to 

the characteristics of indoor environments. A larger the 

shadowing deviation represents a higher RSSI fluctuation. 

Additionally, we also vary  𝛼  as presented in the proposed 

method to find its optimal value. All simulation parameters are 

listed in Table 1.  

 

4.2 Performance metrics 

 

 The performance measures are listed as follows.   

 The estimated position (𝑥, 𝑦) can be calculated from (6) 

and (7). We also measure an average estimated position 

(𝐴𝐸𝑃) as expressed in (11), where N is the total number of 

RSSI samples.  
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𝐴𝐸𝑃 = (
1

𝑁
∑ 𝑥𝑖 ,

1

𝑁
∑ 𝑦𝑖 ,

𝑁

𝑖=1

𝑁

𝑖=1

)                                                 (11) 

 

 The distance error (𝐸𝐷) indicates the error between the 

estimated position and the actual position of a target node. 

𝐸𝐷 and an average distance error (𝐴𝐸𝐷) are defined in (12) 

and (13). 

 

Table 1 Simulation parameters 

 

Parameters and notation Values and units 

Dimension of the topology 31 m × 31 m 

Number of nodes 4 

Buffer size 64 

Beacon packet size 20 Bytes 

Radio propagation model Shadowing  

(Indoor 

environments) 

Path loss exponent (𝜼) 2.9 [26-27] 

Shadowing deviation (𝝈𝒅𝑩) 2.0, 3.0, 4.0 [28] 

Transmitter gain (𝑮𝒕) 1 

Receiver gain (𝑮𝒓) 1 

System loss (𝑳) 1 

Reference distance (𝒅𝟎) 1 m 

Frequency (𝒇) 2.4 GHz  [23] 

Data rate 250 Kbps [23] 

Receiver sensitivity -89 dBm [23] 

RXThreshold (received threshold) 1.25892e-12 Watt 

CSThreshold (carrier-sense 

threshold) 

1.68660e-13 Watt 

Transmission range without SD 48.7606 m 

Transmission power at 0 dBm (𝑷𝒕) 0.001 Watt [23] 

Weight value (𝜶) 0.1, 0.2, 0.3, 0.4, 

0.5, 0.6, 0.7, 0.8, 

0.9, 0.99 

Actual position of the target node 

(𝒙𝒂𝒑,  𝒚𝒂𝒑) 

(16 m, 16 m) 

Note: In NS2, if the received signal strength of the packet is not 

below the received threshold (RXThreshold), the packet is correctly 

received. If the received signal strength is between the RXThreshold 
and the carrier-sense threshold (CSThreshold), the packet is received 

with an error. Finally, if the received signal strength is lower than 

the CSThreshold, the packet is not heard by the receiver [21-22, 29]. 

 

𝐸𝐷𝑖 = √(𝑥𝑎𝑝 − 𝑥𝑒𝑝(𝑖))
2

+ (𝑦𝑎𝑝 − 𝑦𝑒𝑝(𝑖))
2
                    (12) 

𝐴𝐸𝐷 =
1

𝑁
∑ 𝐸𝐷𝑖

𝑁

𝑖=1

                                                                    (13) 

 

In the simulation results using the proposed method, the 

raw RSSI value (without applying any RSSI improvement 

methods), and the moving average method [12] with the 

window sizes of 3, 5, and 10 are compared. We note that the 

moving average method is also used for RSSI improvement as 

presented in Step b, in Figure 2. In the moving average 

method, the RSSI value used at each step is calculated by 

averaging previous RSSI values (i.e., raw RSSI values). 

Moving average methods with window sizes of 3, 5, and 10 

(where 𝑘 ≥ 3, 𝑘 ≥ 5, and 𝑘 ≥ 10) are illustrated in (14) to 

(16), respectively. In Section 5, the simulation results by the 

raw RSSI value, the proposed method with weighted setting, 

and the moving average method with window size setting are 

denoted by RSSI_W(weight value), raw RSSI data, and 

RSSI_MV(window size), respectively.  

 

𝑅𝑆𝑆𝐼𝑢𝑠𝑒(𝑘) =
𝑅𝑆𝑆𝐼𝑠𝑎𝑚𝑝𝑙𝑒(𝑘) + 𝑅𝑆𝑆𝐼𝑠𝑎𝑚𝑝𝑙𝑒(𝑘−1) + 𝑅𝑆𝑆𝐼𝑠𝑎𝑚𝑝𝑙𝑒(𝑘−2)

3
 

                                                                 (14) 

 

𝑅𝑆𝑆𝐼𝑢𝑠𝑒(𝑘) = (𝑅𝑆𝑆𝐼𝑠𝑎𝑚𝑝𝑙𝑒(𝑘) + 𝑅𝑆𝑆𝐼𝑠𝑎𝑚𝑝𝑙𝑒(𝑘−1) + 𝑅𝑆𝑆𝐼𝑠𝑎𝑚𝑝𝑙𝑒(𝑘−2)

+ 𝑅𝑆𝑆𝐼𝑠𝑎𝑚𝑝𝑙𝑒(𝑘−3) + 𝑅𝑆𝑆𝐼𝑠𝑎𝑚𝑝𝑙𝑒(𝑘−4))/5 

                                                                 (15) 

 

𝑅𝑆𝑆𝐼𝑢𝑠𝑒(𝑘) = (𝑅𝑆𝑆𝐼𝑠𝑎𝑚𝑝𝑙𝑒(𝑘) + 𝑅𝑆𝑆𝐼𝑠𝑎𝑚𝑝𝑙𝑒(𝑘−1) + 𝑅𝑆𝑆𝐼𝑠𝑎𝑚𝑝𝑙𝑒(𝑘−2)

+ 𝑅𝑆𝑆𝐼𝑠𝑎𝑚𝑝𝑙𝑒(𝑘−3) + 𝑅𝑆𝑆𝐼𝑠𝑎𝑚𝑝𝑙𝑒(𝑘−4)

+ 𝑅𝑆𝑆𝐼𝑠𝑎𝑚𝑝𝑙𝑒(𝑘−5) + 𝑅𝑆𝑆𝐼𝑠𝑎𝑚𝑝𝑙𝑒(𝑘−6)

+ 𝑅𝑆𝑆𝐼𝑠𝑎𝑚𝑝𝑙𝑒(𝑘−7) + 𝑅𝑆𝑆𝐼𝑠𝑎𝑚𝑝𝑙𝑒(𝑘−8)

+ 𝑅𝑆𝑆𝐼𝑠𝑎𝑚𝑝𝑙𝑒(𝑘−9))/10 

                                                                      (16) 

 

5. Simulation results and discussion 

 

For the average estimated position and the average 

distance error by using the proposed method, the raw RSSI 

value and the moving average method at the shadowing 

deviations of 2, 3, and 4 are shown in Tables 2, 3, and 4, 

respectively. The results are the average of 200 samples. A 

95% confidence interval (CI) is also provided to indicate the 

range of the values. The simulation results show that using the 

raw RSSI data to estimate the target position gives the worst 

performance in all cases of the shadowing deviation settings. 

The proposed method (RSSI_W(weight value)) shows good 

estimation accuracy. The weight value of 0.99 gives the best 

results. 

 

Table 2 𝐴𝐸𝑃 and 𝐴𝐸𝐷; at the shadowing deviation of 2.0 

 

Methods AEP (x, y) (m) AED (m) 95% CI 

Raw RSSI data (14.6246, 13.7324) 9.4994 0.9313 

RSSI_W(0.1) (14.6365, 13.7996) 8.7203 0.8227 

RSSI_W(0.2) (14.6255, 13.8266) 8.0292 0.7316 

RSSI_W(0.3) (14.6132, 13.8422) 7.4322 0.6555 

RSSI_W(0.4) (14.5983, 13.8470) 6.9001 0.5914 

RSSI_W(0.5) (14.5794, 13.8411) 6.4190 0.5368 

RSSI_W(0.6) (14.6034, 13.8724) 6.0639 0.5024 

RSSI_W(0.7) (14.5225, 13.7943) 5.5904 0.4504 

RSSI_W(0.8) (14.4796, 13.7497) 5.2576 0.4152 

RSSI_W(0.9) (14.4121, 13.6714) 5.0085 0.3876 

RSSI_W(0.99) (14.2692, 13.4978) 4.9867 0.3838 

RSSI_MV(3) (14.6134, 13.8886) 6.6738 0.5686 

RSSI_MV(5) (14.5323, 13.7949) 5.8782 0.4688 

RSSI_MV(10) (14.4802, 13.7359) 5.2807 0.4232 

Actual position (16.0000, 16.0000) - - 
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Table 3 𝐴𝐸𝑃 and 𝐴𝐸𝐷; at the shadowing deviation of 3.0 

 
Methods AEP (x, y) (m) AED (m)  95% CI 

Raw RSSI data (12.1557, 14.9501) 17.1659 2.3758 

RSSI_W(0.1) (12.1712, 14.7237) 15.0232 1.9457 

RSSI_W(0.2) (12.3301, 14.7314) 13.4168 1.6282 

RSSI_W(0.3) (12.4647, 14.7503) 12.0762 1.3826 

RSSI_W(0.4) (12.5892, 14.7817) 10.9388 1.1881 

RSSI_W(0.5) (12.7123, 14.8262) 9.9628 1.0307 

RSSI_W(0.6) (12.8404, 14.8846) 9.1166 0.9013 

RSSI_W(0.7) (12.9777, 14.9607) 8.3766 0.7946 

RSSI_W(0.8) (13.1293, 15.0697) 7.7407 0.7069 

RSSI_W(0.9) (13.3328, 15.2921) 7.2581 0.6395 

RSSI_W(0.99) (13.8645, 16.1122) 7.1024 0.6341 

RSSI_MV(3) (12.5620, 14.7308) 10.4405 1.1091 

RSSI_MV(5) (12.8577, 14.9158) 8.8762 0.8722 

RSSI_MV(10) (13.0856, 15.0003) 7.7955 0.7376 

Actual position (16.0000, 16.0000) - - 

 

Table 4 𝐴𝐸𝑃 and 𝐴𝐸𝐷; at the shadowing deviation of 4.0   

 
Methods AEP (x, y) (m) AED (m) 95% CI 

Raw RSSI data (11.8475, 15.1370) 25.5427 4.0491 

RSSI_W(0.1) (11.6102, 14.7546) 21.5784 3.1091 

RSSI_W(0.2) (11.7962, 14.8173) 18.7969 2.4640 

RSSI_W(0.3) (11.9494, 14.8858) 16.5799 1.9884 

RSSI_W(0.4) (12.0885, 14.9614) 14.7742 1.6367 

RSSI_W(0.5) (12.2269, 15.0450) 13.2793 1.3737 

RSSI_W(0.6) (12.3755, 15.1379) 12.0226 1.1730 

RSSI_W(0.7) (12.5455, 15.2467) 10.9505 1.0168 

RSSI_W(0.8) (12.7650, 15.4001) 10.0502 0.8971 

RSSI_W(0.9) (13.1800, 15.7384) 9.4101 0.8353 

RSSI_W(0.99) (15.6480, 17.7939) 9.2777 0.8023 

RSSI_MV(3) (12.0683, 14.9218) 14.0071 1.4942 

RSSI_MV(5) (12.3314, 15.1528) 11.6190 1.0913 

RSSI_MV(10) (12.5020, 15.2762) 10.0932 0.9712 

Actual position (16.0000, 16.0000) - - 

 

 
 

Figure 3 The average distance error by the proposed method during varying the weight values from 0.1 to 0.99; at the different 

shadowing deviation settings 

 

 The simulation results in Table 4 are selected for 

discussion. The average estimated position using the raw RSSI 

data is (𝑥 = 11.8475 m and 𝑦 = 15.1370 m), and the average 

distance error is 25.5427 m. In the proposed method with   a 
weight of 0.99,   the average estimated   position   is     (𝑥 = 

15.6480 m and 𝑦 = 17.7939 m), and the average distance error 

is 9.2777 m. Finally, for the moving average method with 

window sizes of 3, 5, and 10, the results are worse than the 

cases of the proposed method with weights of 0.8, 0.9, and 

0.99. These simulation results demonstrate that the proposed 

method with an optimal weighted value can help to reduce 

RSSI variation and improve estimation accuracy. The average 

distance error by the proposed method while varying the 

weighted values is shown in Figure 3. 

 In Figure 4, the average distance error versus the number 

of  samples  in the case of RSSI_W(0.99) is presented. For the 
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Figure 4 The average distance error versus the number of samples in the case of the proposed method with a weighted value 

of 0.99 at the different shadowing deviation settings 

 

 
 

Figure 5 The estimated (x, y) positions; at a shadowing deviation of 4.0 

 

 
 

Figure 6 The estimated (x, y) positions using the RSSI_W(0.99) at the shadowing deviations of 2.0, 3.0, and 4.0 

 

shadowing deviations of 2.0 and 3.0, the average distance 

error while varying the number of RSSI samples is not 

significantly different. For a shadowing deviation of 4.0, the 

trend of the average distance error is stable when the number 

of RSSI samples is above about 80 samples. These simulation 

results indicate that the proposed method requires only small 

numbers of RSSI samples to achieve its estimation 

accuracy.The number of computational steps, the processing 

time, and the power consumption of the system can be reduced 
also. 

 In Figure 5, the estimated ( 𝑥 , 𝑦 ) positions using the 

proposed method with a weighted value of 0.99, the raw RSSI 

value, and the moving average method with window sizes        

of 3, 5, and 10, at a shadowing deviation of 4.0 (as an 

example), are illustrated. The simulation results demonstrate 

that   the   variation   of   the   estimated  (𝑥, 𝑦)  position  by   the 
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Figure 7 The distance error versus the sample number; at the shadowing deviation of 4.0 

 

 
 

Figure 8 The distance error versus the sample number using the RSSI_W(0.99); at the shadowing deviations of 2.0, 3.0 and 4.0 

 

Table 5 The computational cost 

 

Methods + – × / 

The proposed method 3 1 2 1 

RSSI_MV(10) 9 - - 1 

 

RSSI_W(0.99) is smaller than the cases of the RSSI_MV(10), 

the RSSI_MV(5), the RSSI_MV(3), and the raw RSSI data. In 

Figure 6, the variation of the estimated (𝑥, 𝑦) positions by the 

case of the RSSI_W(0.99) is higher when the shadowing 

deviation is bigger. 

 Figure 7 shows the distance error versus the sample 

number (at a shadowing deviation of 4.0) using the proposed 

method with a weighted value of 0.99, the raw RSSIvalue, and 

the moving average method with window sizes of 3, 5, and 10. 

Here, the proposed method shows a smaller variation of the 

distance error. The distance error by the proposed method with 

a weight of 0.99 at the various shadowing deviations is 

illustrated in Figure 8.   

 As introduced in Section 3, the proposed method uses (8) 

to (10) to determine the a p p r o p r i a t e  RSSI value for the 

position estimation. In the calculation, it assigns a higher 

priority to the average RSSI value used in the previous step 

than the raw RSSI value measured at the current step by 

adjusting the weighted values. Although the raw RSSI data or 

the current measured data have high variation, they influence 

the calculation with a small effect. This directly helps to reduce 

the RSSI variation effect and increase the estimation accuracy. 

 A comparison of the computational cost of the proposed 

and the moving average methods was done with a window size 

of 10. This shows better performance than window sizes of 3 

and 5. The number of mathematical operations, summations 

(+), subtractions (–), multiplications (×), and divisions (/) 

required by each method are listed in Table 5. We note that for 

the proposed method, (10) are considered, while (16) are for 

the moving average method with the window size of 10. 

Table 5 shows that the proposed method uses fewer + 

operations than the case of the RSSI_MA(10), but it requires 

more –  and ×  operations. However, the proposed method 

gives higher estimation  accuracy. 

 

6. Conclusions 

 

 In this study, a reduction of RSSI variation in position 

estimation in wireless sensor networks is presented. The sum 

of the average RSSI value used in the previous step and the 

measured RSSI value collected at the current step are 

employed for determining a suitable RSSI value for position 

estimation. The simulation results demonstrate that our 

proposed method can reduce the variation of RSSI data, and 

the position estimation is closer to the actual position. 

However, this method still has imitations. In the mobile 

target scenario, the RSSI value used in the previous step may 

not be appropriately used for determining the smoothed RSSI 

value, which is used as an input for position estimation, and 

the static weighted value may not be the optimal value. 

Therefore, our proposed method should be redesigned and 
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further developed to support such a scenario. 

 In the future work, performance evaluation of the 

proposed method in the case of a mobile target and 

comparison with other methods will be considered. 

Additionally, the proposed method will be implemented on 

embedded hardware and tested in real experiments under 

various scenarios. 
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