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Abstract

2 rétional analysis of ribbed slabs is carried out by a variational
principle. Starting from strain~displacement relations, being derived from
certain basic assumptions, and the virtual work principle, the equilibrium
equations and a set of natural boundary conditions are obtained. Finally,
substituting the stress resultant-displacement relations into the equilibrium

eguations leads to the governing differential eguations.

1. wnuh

Ribbed slabs Lﬂuuduﬁuﬁuﬂﬁzﬂapﬁau top slab uaz ribs luflsmvifiua finle
U Tasvasefnoenisligsy imwisgasauasunany  nsatuneeansuufiudss untinlam el
wauaIugiaf dv ribs vz fusutunt fuunuitonun lufievav 1fen Governing eguations
way ribbed slabs Alaarnunaanil tlusasinnslanh fesuius snaay top slab uaz ribs
%qqgéqﬂiﬁnﬁsﬂﬁuamaaﬂuuuﬁuﬂiz1nwﬁﬁﬂ11MQﬂﬁéw wazUszndniviiu

variational principle ﬂﬁuﬂsﬂiﬁuﬁﬁmﬂﬂwﬁv mechanics Ay §q lAuINANUERY
129 mirgdayay WASHIZU 1, uay IANCZOS 2 Iufu HOVICHITR et al '3 *eAsia-

- ) ] “ s . 3
A5z waffle slabs n1slY variational principle ‘lunisna governing eguation

* - P " -,
213150, AMadmianssulest AuESAINISUAIERS URISNe1TuauLnY



38,

4" o 5 - pr, @ £
wavtinany mechanics lnraruinifaveaiamalnla stress resultants Hunuaf ifea

» & r o= & &y
FaN U boundary conditions ¥NWBURNIE

2, auqﬁﬁﬁutﬁawgu‘

gﬂﬁ 1 usnd typlcal element «ay ribbed slab wazuwany displacements
e suanam Fumiewss T fuydneauas ta¥ewnuiun 1 TIMOSHENKO and GOODIER [ 4 ]

auyf gufllofa

[ ] 4
n) Asedaiavesuinife Ruufusuiagesiiu
)
7) top slab uaz ribs H&¥nuaz L Tuusuun
AT .
a) 1ﬂﬁwaquuLau avanfiu middle surface
‘ o g &
Fefvavaguu Laudvanie wiaan L fia

deformation.

ﬁﬂﬁ 1 Typical element 28y ribbed slab

o . L.
v). wadavay ribs lufn10ean
%) shear strain vy middle plane
1 &
URZANULUI AIUHUI2EY ribs fause

Quitaile

& * B A3
3. aauduiussynaay Strains ffu Displacements

] I o Q i § .
nFuyfiguivnann arlaniudufiussewiny strains fiv displacements grutl

T¥Su top slab @ =1n wix,vy,2) = wix,y) . ; {(la)
u(x,y,z! - uo(x,y)—zw‘ (x,v) {1b)
vi(®,v,2) = _vo(x,y)—zﬁ(x,y) 3 (1le)

L % 7 oL L 4 o = e £ 0 . ;
1a €, = u_-zv, Ey =M=zl nyf YYX‘_ Ggtv ~22W o) : (2a~-c)
TR RGN s e s e 1 r (2d~£)

zy ZX XZ

T o v . ‘ -
TrufirSauruie. WAy Wau 3 uez 8 AnuRTdu



o) g I
W5y rib My = v, ¢ 70

1
w(x,yi+t§z) = w(xgyi)+ t (&; =y,
vi(x,y,+t,2) = Vo(xfyi) - Z(W)y =y,
f ya ]
1 = ; ) ' + g = 3
u(x,y, +t,2) uo(x,yl) z(w gl Z(W)y= . (Va)y=y.
VL;}J 1 1 1
; ' 1 : it 7
Srer B ceragElla g ok, 2(Wly o ve)oas
¥ Yl Y Yi Y Yi oY Yl
= = 26(W) £ s 18 E =
sz =Y, T y__i ii g Qr = Or ¥t O
Yig “Y¥ze ©°

>~
a

Taod ¢ 1fuunida q #fvanfiy middle plane wav rib Fuusavlugud 2

4, Equilibrium Equations Uag Boundary Conditions

91n Virtual work principle

W, = W
i e '
(X %,0)
}/ e e = . R — e A S TC'
= _F o .
\ 1
. =
{ /
A il =
R
LW et e
e e Sogdd \\
ik
LM y[ ‘ E)
H et "W"
A A’- 1
!

Ryl Ed
-8 et} <
Ul 2 Anwas Suusnuezmasdvgrsmitnnseny

=
Taufl W, waz W
1 =]

W@oula gy

]

W, = ‘o 8c +0 8e 40 Se 4T §Y. 4T 8y 41 &y | av
i X X ¥V Yy Zz =2 Xy Xy yz vz ZX ZX_ .
r b2 _ _ _ R x=a2
= - 7 i ‘ [ :
Wa J{ q(x,Y)GwQA +1—J J (0X6u+Txy6v+szﬁw) dzdyl

A bl—z

39.

{3a)
(3b)

{3c)

(4a)

(4b~£)

(5)

#9 internal ua¥ external virtual work PAWARFUTNE WD



40,

2 - _ a y = b,
+ | (g 8v+T  Sutt bw) dzdx {7
Y YX yz =
: y=b
a, z b
1.
gx,vy) Batmiininssnhuuiy x = ajra, uar y = bl,b2 ) mﬁuﬂﬁvmauﬁvﬁwawﬁu

a = 1 o A
d71L AS aav e LEINEIHUNBWLS Y AP Uan NS s e ayfiu

q L r
unuanaun1s (6) wax (7) avluaunis (5) Tase e ufuiuss 2raay

strains #fu displacements lusunis (2) uaz (4) wasle Green's formula

JJ(viﬁ)dxdy = % {(udx+vdy)

, R c
azln equilibrium eguations R M3U ribbed slabs #if ribs A onfoufilufimv 1fios

e [ 1 . i . ] a g
(feme x) UazgnINwevuAar ribs wnafiu dall

] & ] &

+ =0 N +N = 0 8a,b
Nx Nyx L Xy v (8a,b)
g' ﬁw ‘D o o
M 4+ M + M + : = 0 8c
X xyt Yyx MY + q(x,y) (8c)
war boundary conditions #a
i x = a; uar a, )
N = N ’ wia U = aafl (9a)
% X o .
N = N ED) v = aiaw (9b)
xy xy o
v = Q +M_-M Wia w o= fAvi (ac)
x %V BZ,T
* % = - : ’ =
M = M +M wia w = aiagd (ed)
X X wW,r
o= i ¥
M = M visa v = aiaef {(9¢)
Z,r Er )
= b, Uaz b
f 4 g’ 2,
N = N “wia u = AAgi {10a)
yX vX o
N = N : nin v o= atned {10b}
Yy y . o
gt E-/ L] J
v = Q +M nia w = AlAvn (10c)
Y Y ¥YX
M = M wia w = a1 (10d)



41,

uazﬁuuﬁwﬁ
- - - - : o
= ~M "I " W = AAIN 1l1la
R Mxy+Myx XZ,T ( )
Y ¥ ]
M = I Wi 0w = anaan {11b)
v W,r
Toaf '
= N = + (12a,b)
Nx Nx,p X,r ! Xy XY,p 2Z,r f
1
= M = M -2M +M 12c,d)
Mx Mx,p+Mx,r ) Xy XY, P XZ,r W,r ( ’
L] -
— ¥ = + = - -M Ze=
Q. = MMy v Yy Oty ® Xy v¥X (126-9)
* . ~
= = 12h.,i
M_ = MX+MWF P M Mw’r ( 1)
Uwas h ' h
2 2
N = 20 dz, N -1 {[c da , N = |1t d=z (1l3a=c)
X,p ’ b JJ X XY,p Xy
- h ' A ~h/2
> ‘ x
h/2
h/2 1 (f
= = = o zdd, M = T 2zdz (13d-f)
Mx,p = [ szdz, Mx,r o [J 2 M [ xy {
J
—h/2 A, ~h/2
S T tdA , M -1 rc tda, M -1 o ztda (13g-i)
sz,r " b Xz f 7z,r b J x ' Tw, b x
Al A A
r ¥ r

TuNUﬂﬁs (12) uaz (13) 1Ju stress resultants Tufsnm v x & mdulufeny v dzadﬂu
JuiRonfiulaelndadafil subscript r  eenitwnus 1fevannlull ribs ufimay v
foai 1ne LApIL stress resultants 7LnA® bimoment stress resultant
M . éqw%iﬁaﬁﬂ supplemented moment stress resultant M; Uas corner
' A

9, - = o g .
moment M azthuiisyludnunz foafu A Mxy Rz M valn LAn supplemented
X

shear stress resultants Wiy corner forces.

5. a2uiufudsonaay Stress resultants fy Displacements

) > 1 .
UAAIUAURUS 291N stresses U strains wev top slab

g =B (e_+ve ), o = £ (e _+ve ), T =B
X2 o oy Ty 12 Ty xS xy — 2{1+V)

ny , “(1da-c)

‘ua:ﬂau_rib

‘cx = Erex ¢ T, = Grsz (15a,b)
wiuanlusunts (12) Teganfaaunas (13)masnaurudUmISIEnaIY strains ffu displacements
iuﬂuﬂ{ﬁ (2) usz (4) asiﬁﬂﬁﬂuﬁuwu§5:w5ﬁn Stress resultants fU displacements

TufiFmay x feil



42,

Ef
N = (B4B } uf + vBY = C w (lea)
X r o] o r i
- Fi PR & At
i, = g (s +v ) - B v G A 3y
&y s (1 v)B(uO vo) Ve r (16b}
M DD ) & - VD W { 6
= = Y LY + O 1
X ( gl X o L.I JO (l C)
- I N
M = =f{1-vp | w ~Cc ¥ + D  w (164d)
Ry ~ i r o )
374 Fag 27
() = ={(D+D )} w =D w4+ C_ U (16e)
bq i ¥ 0
* /ﬁfe I L) e
= C W o B S T =D w=C w (16f ,q9)
24, I o = ¥ r o
‘ Z 3 . 5
ﬁq B =&8h/{(1l-y"), D =Eh™ /12 (1=n"}, Br = ﬁr B (1l7a=c)
2
§ =E-8 , D = U TEYER e {17d=£)
T @ i T - r rrr r
3 % 2 - B
B = 7 s weE i ! 7g-i
1 r z/ " Nim 'rcr/l v Yy rDr/12 §=ronll
f | I
1 i 1 2 .
ax = == da T = 1l z%aa =
ba Arx B JJ da %5 5 z = i b ] (lda=c}
A A. A
i kg r
E E a2 Gr D) voung's modulus way top slab usswdyw  ribs waz modulus

of rlgldAty waa ribs swahdu v fa Poisson's ratio wevw top slab.

s o - 4
s vieube ludnwns LFoa Lﬂmlﬂﬁhwngm 7

6.

Governing Eguat

) B | ] 0 ]
Fmdulufisnie y sufufusssuniy stress resultants fiu displacements

e

il displacements

subscript r wan

WAL Equilibrium sguations (8) danArnufuRusIEnanY stress resultants

Tudisnng x

Tugd
4 oo u a7
(B+B ) u_ + B.u + B, v_ ~ C_ W = W0
r o) s 2 o T
2& 7 o S * i
Bv -+ B v + B d‘ - B vf o w = 0
1 20 T r
A ) A
(D+D ) %'+ (2D+H ) W+ DTN~ c u
r 2 o
" L7 D*ym ( )
, - W = gx
- VO 7 IvE Y

Uaxr v azln governing differential equations

{15a)

{15b)

(15¢)



43,

Tﬂuﬁ'Blr(l-y) B/2 uag B2 = (1+V) B/2 ﬂﬂﬂﬂﬂuauﬂﬂﬁﬁLﬁﬂﬂﬁuﬂﬁﬂwﬁﬂﬁaﬂiugﬂ
YaNEUANS LBEAT independent variable #ifiuafle n nia o i w la  dvaz
yvUu partial differential equation #if 10th uaz 8th partial derivatives 1u
X WAE ¥y RIuandiu Auasvoaiiena @ inalaainatiuau boundary conditions Tufifinay

o ¥ . > a
X WAL %wuaq 10 uazr 8 conditions wwaTHu

7. unaguuaziaiGu

3 o '] o L]
270 governing equations ﬁiﬂﬂ:Lﬁﬂ?ﬂﬂﬂuqﬁﬂuuﬂqﬂﬁhLﬁuﬁﬂtwauiﬂLﬁuNﬂuﬂ
o ¥ 5 ] a 3
277 top slab w3a ribs ua:Lﬁuwaﬂauwuﬁuwwﬁzuuauﬂﬁiﬁ ﬂﬁﬁﬁLwauﬁLﬁuwaaﬁﬂ ribs
e o 5 _J =) & o o L . A
(78 subscript r ) sunishinfeszity governing equation 98y isotropic thin
F i e P |
rlate i) middle plane »#gwn plane z = o
=] =l L] . = ® i |
lunsifuuiounadveevy ribbed slab fluanuguiai atanilavia q Tag@aun
3 = : ; e
lunsfl cylindrical bending 28w ribbed slab #ifl supports WU x = a way a,
Tunsfitfarurso@oulann v Wat partial derivatives wew u_ uaz w inufiu y
0 - - 0, srAs ) 1 2
Uﬂﬁﬁﬂuﬂuﬂ sun1s (15¢) azasavuazidowlalugy 'w = g/D Tewfi D= D + D_-e’ (B+B_)
XX XX e r
war e =c /(B+B ) drsunugiiiaflasll governing equation luguifiuniiu

§ 1]
up D azfenuth BT waz T 1Ou

moment of inertia <®u nuetral axis

2 < —¥
povntdaay  fufle T =1 ~e“a T A e —
N.A. Ty 3 i

=I +I =e“(B +A ), A Fawun
. YD YT P T
HUNRYBNATU subscripts p UWET r WEAY

Iz

fuaiuaavatudvianylugud 3 LﬁaLU%muLﬁmu
an D« Fyifu flexural rigidity wswivany | ;Eﬁ_i waAMLIR BN AU AT
nsfl a2 ifiua1eey ribbed slabs Hatuannandfuna ey
31N Poisson's ratio v  wevTap ludiuwew top slab "1n ribbed slabs wivusy
wazSuaninlavannaauguing  defiulunisauanesniuy ribbed slabs fifouinuazszus
Aveew ribs it Tasluwivmuwanin e (fioufuguiaeey rib ateuszuialalae’ly
flexural rigidity D__ %oV ribbed slab Fanana

aslaaunis (15) Taoaselunis3iAs ew ribbed slabs i boundary conditions
#1 q flu aﬁawﬁlgaﬂnLﬁauaﬂﬂLﬁu partial differential equations fifi order gy
18R order vavaun1senloruyRisui inurrsy W indeRuvauns fourth order wev w
pugtavaunsuuy Huber [ 5] Taolawalng fuetuaunis o (fhdven tuazirnue

Halvlaaunisfawrsernlulalanaivaate it



44,

8. ﬁmmﬁqgi

[S 2= S o B

=

1,

Fulmunfipuey rib Mw,r bimement way rib naniy
STUIMINEDY Tibs . MUY AR ALY vy
AdNuruIYay top slab Mx corner moment

ANAgevay rib p,r subscripts unu top slab

: wax rib %
supplemented bending Bets S e

. L e AN i
moment Tufirvay x wownily r Ununway rib

u_, v displacements 28y middle

B
HUAHAINUSIIIEILLIU Y o o

: lane 28v to 1
bending moment SauUlLny z P p slab Tlu
- PANIN x UAT vy AUR"
Yay rib AaWiaMuIgAITUe y fuafu
W deflection 9oy plate
ANULAY ¥ b e

F
LRNHENTD1EN

WASEIZU,K.: Variational Methods in Elasticity and Plasticity .
Pergamorn Press, London, 1968,

LANCZOS,C.: The Variational Principles of Mechanics. Univ.of
Toronto Press, Toronteo, 1970.

HOVICHITR,I., KARASUDHI,P,, NISHINO.F., and LEE,S.L.: A Rational
AZnalysis of Plates with Eccentric stiffeners. Procesdings, IABSE,
P=9/77,1977.

TIMOSHENKO,S., and GOODIER,J.N.: Theory of Elasticity. McGraw
Hill Book Co., Inc., New York, 1951,

HUBER, M.T.: Die Theorie der Kreuzweise bewehrten Eisenbeton-platten
nebst Anwendungen auf mehrere bautechnisch wichtige Aufgaken uber

Rechteckige Platten. Bauingenieur, Veol.4, 1923,p.354-360,392-395,



