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Abstract 

This paper discusses about the technique to determine the 

surface deflection of a cantilever beam subjected to a point load by 

using a double-exposure holographic interferometry. The computer 

generated holographic fringe pattern compares very well with the 

experimental result. The obtained fringe pattern represents both 

deflection and anticlastic behavior of the surface of the beam due to 

the three dimensional effect. Combining the anticlastic behavior with 

the beam theory we could get poisson's ratio of the material. 

Experimental result using aluminium alloy 6061-T6 as a cantilever beam 

indicates that its poisson's ratio is equal to 0.355 which agrees 

with the value in the published data to within 2.3% 
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1. Introduction 

The wavefront reconstruction technique or holography i8 ,an 

optical method which allows one to record and reproduce a three 
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dimensional image of an object " In 1948, D. Gabor [11 discovered that 

if a coherent wave is made to interfere with the diffracted wave from 

an object, then the whole information, i.e., both amplitude and phase 

of the object wave can be recorded. From such a recorded interference 

pattern called hologram, an image of the original object can be seen 

during the reconstruction process even though the object has been 

removed. 

In holographic interferometry (HI) two states of the object 

from the recorded hologram are compared interferometrically during the 

reconstruction process. An interference fringe pattern, due to the 

differential change of the purface displacement fields between the two 

states, will form and superimpose on the virtual or real image of the 

specimen. The fringe pattern acts as a gaging element for measuring 

changes in the surface displacements of the specimen. , Applications of 

HI for measuring displacement components were made by 

investigators [2 - 71. 

several 

In this paper, HI technique was used to measure the 

deflection of a cantilever beam subjected to a point load. The fringe 

pattern gives the surface deflection contour of the beam and also the 

anticlastic behavior of the beam. Combining the later with the beam 

theory, poisson's ratio of the beam material was found. 

2. Holographic Interferometry 

In HI, the three-dimensional image of an objcet from the two 

different states, which have been recorded in the hologram are 

compared interferometrically during the reconstruction process. With 

this technique, deformation, displacement or rotation of the object 
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can be recorded holographically in terms of the interference fringe 

patterns . They are basically three types of HI, i.e, 

a) Double-exposure HI, 

b) Real-time HI, and 

c) Time-average HI. 

2 . 1 Double-exposure HI In this method the first exposure 

is made when the object is in an undeformed or reference state and the 

second exposure is made on the same photographic plate when the object 

is in a deformed stat e . When the hologram is illuminated by the 

original reference beam one will see through it a three-dimensional 

virtual image of the object overlaid with an interference fringe 

pattern 'due t o displaceme nts between the two expo sures. These fringes 

are called froze n f ringes. 

2.2 Real-Time HI The film plate is exposed onl y once in 

real-time HI , when the object is in the initial state. After 

developing, the hologram is then repositioned exactly in the same 

place so that the virtual image superimposes e xactly on the object. 

When the object is deformed, live fringes will form in the virtual 

image. Thus, deformation of the object can be investigated in 

real-time through interference fringes. 

2.3 Time-average HI In time-average HI, a vibrating object 

is holograrnrned for analysis. Only a single exposure is required, but 

an exposure time has to be longer than the period of vibration. A 

series of images will be recorded since the object is vibrating during 

the exposure. For sinusoidal motion, the object will spend most of 

its time at the maximum vibrating excursions resulting in two primary 

images. During the reconstruction of the hologram, it will show 



inte rference fringes due to these two images. 

In double-exposure HI, the intensity distribution for both 

the virtual and real images through the hologram is given by 

I = C ( 1 + cos Acp) · •••• 1) 

where C constant due to amplitude of light intensity 

change in optical phase due to deformation of the object 

(1 + cos Acp) interference fringe pattern 

3. Deflection of a Cantilever Beam 

In terms of fringe order and optical path different,Acp can be 

written as 

Acp 2 lIN 

-(2U/A) (k 
o · •••• 2 ) 

For measuring deflection of the cantilever beam, optical 

.arrangement as shown in Fig. 1 was used. From Fig.1 the displacement 

Vector d and the propagation vectors k1 and ko are given by: 

a - ... 
wi< = Ul + vJ + 

- .,. - k k . _S1n 8ii - cos 8 i 1 - - k k = -sin 8 . + cos 8
0 

· •.•• 3 ) 
0 0 ' 

Substituting equation 3) into equation 2) and rearranging yields 

(sin 8. - sin 8 )u + (cos8 . + cos 8 )w = NA 
1 0 1 0 

and for 8
i 

= 8
0

, one gets 

w N AI (2 cos 8 . ) 
1 

where N = 0,1 ,2, .. .... for bright fringes 
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Equation 4) gives the deflection w of the beam in terms of 

fringe order N, wavelength o f laser light 

M 

and the incident angle 8. 
1 

M(Mirror) ~~----~R~B~ __ -E 
' M 

HP 

SP (Specimen) 

La s c r 

BS Seam Spli tor 

a) HI optical path .arrangement 

RB (Re fe renceBeom) SP 

H P 

( Hologrorhic 
Pia te ) 

IBIlliumioting Beam 

b) Geometry of the optical path for HI arrangement 

Fig. 1 HI arrangement for deflection measurement 

4. Poisson's Ratio Determination 

Fig. 2 shows holographic fringe pattern due to deflection 

w = 25. 4 ~ m at a distance L = 63.5 mm from fixed end of the cantilever 

beam. Near fixed end fringes bend upward. Equation 4) tells us that 

the surface deflection across the width of the beam at any section y 

varies symmetrically about the center of the width, This is the 

wellknown anticlastic behavior of the beam which is controlled by 

poisson's ratio of the material. 
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Fig.2 HI fringe pattern due to deflection 

w ~ 25.4 Ilm . at L ~ 63.5 mm 

A 

o.r--~R 

b 

S ectian A-A 

Fig.3 Pure bending of beam. 

From beam theory, curvature of the beam in the x-and 

y-direction due to pure bending are given by (see Fig 3) 

l/R x 
~ -viR and llR 

y Y 
M I(El ) x x ..... .. .... 5) 

Assuming for the first approximation that Equation 5) is also 

valid for the case of a cantilever beam under load F as shown in Fig 4. 
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Fig. 4 Deformed shape of a cantilever beam 

sc,bjected to a point load F. 

De formed Shape 

R 
Y 

Consider at any section y from F, the radius of curvature in 

the x-direction is related to the geometry of the beam as follows 

(see Fig. 3) : 

(R +2-h)2 
x 2 

Rearranging Equation 6) and 

R 
x 

assliming that 2- b » 
2 

= (b
2
/86) 

Substituting Equation 7) into Eqation 5) yields 

" = 

where M = FY', and 6 x 
6( y) 

• •••• 6) 

6 andR »1/2h, then 
x 

• •• •• 7) 

• •••• 8) 

6(y) may be obtained from the fringe pattern. Consider at any 

section y' from load F (see Fig. 5), we get 

w _ w 
cy ey 

6 (y) = 

Substituting Equation 4) into Equation a) ,yields 

. 6 (y) = 0./2 COB e, )(N -N ) 
1 cy ey • •••• 9) 
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y 

, I 

I-... I" 

or" 
Fig. 5 

N 
~y 

substituting Equation 9) into Equation 8), one ' gets poisson's ratio as 

follows: 

\) = 4(EI /F) ()./b2 cose.) (N 
x 1 cy ••••• 1 0 ) 

From simple beam theory, deflection w at any section y 

from the fixed end of a cantilever beam due to load F is : 

(for 0 < y < L) w 

(at Y = L) = 

(FL 3 /6EI )(3(Y/L)2 _ (Y/L)3) 
x 

FL 3/ (3EI ) 
x 

substituting Equation (c) into Equation 10 ) yields 

N )/y') ey 

••••• b) 

••••• c) 

••••• 11) 

Equation 11) gives the relationship between poisson ',S ratio 

and the known parameters from the geometry, loading and fringe . pat,tern 

of the cantilever beam. 

5. Computer Generated Holographic Fringe Pattern (CGHFP) 

The three-dimensional finite element elastic code called 

SHAPES (8) was used to calculate the deflection of the cantilever beam 

subjected to a point load. The finite element model shown in Fig. 6 
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Fig . 6 Finite element model of a cantilever beam 

used only the linear strain isoparametric elements. It has 150 

elements, 364 nodes and 1092 degree of freedoms. A deflection 

w = 25.4 p m was applied at a distance 63.5 mm from the fixed end. 

The beam is mad e of aluminium alloy 6061-T6. By using Equations 1), 

2) and 4) and the surface deflection data from the finite element 

analysis, the computer generated holographic fringe pattern was 

generated as shown in Fig. 7. It agrees very well with the 

experimentally obtained fringe pattern as shown in Fig. 2 Details of 

the CGHFP technique can be found elsewhere [7J. 

6. Experimental Results 

The cantilever beam used in this work is made of aluminium 

alloy 6061-T6. Fig. 2 shows the fringe pattern due to deflection 

w = 25.4 p m at a distance L 

gas laser with a wavele ngth A 

e. = 34 degrees. 
~ 

63 . 5 mm from the fixed end. A He-Ne 

6328 A was used. The incident angle 
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Fig.7 Computer generated holographic fringe pattern 

due to deflection of the cantilever beam. 

sub j ected to a point load. 
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Fig. 8 Def lection of the beam 
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From Fig. 2 and Equation 4) graph of the . beam d eflect ion is 

shown in Fig. 8 together with the result from beam theory and the 

three-dimensional finite element analysis. The experimental result 

compared q~ite well with the results from beam theory and computer 

simulation. 

For poisson's ratio, Equation 14) gives the prediction for 

left and right edge at any section y'from F. For example, considering 

at section y' = 38.1 mm, the fringe order at the center line and both 

edges are given as follows 

N 
cy 

17.5, N 
eyL 

= 16.7, and N = 16.6 eyR 

substituting the re l evant parameters into Equation 14) , we get 

v = 15.9029(N -N )/y.] 
cy ey 

f or left edge, v
L = 0. 334 

for right edge, v
R 0.376 

and v average 
1 (v 
2 R 

+ V
L

) = 0.355 

From the published data (9J, v = 0.347 for aluminium alloy 

6061-T6 which agrees quite well with the experimental result obtained 

from the technique in this work. 

7 .. Conclusions 

Deflection of a cantilever beam made of aluminium alloy 

6061-T6 s ubjected to a point load was measured by using 

double-exposure HI. The deflection obtained from the experiment 

compared quite well with the results from beam theory and computer 

simulation. Due to poisson's ratio ef fect, the fringe pattern was 
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curved upward. This was because of the· anticlastic behavior of the 

beam. Combining this effect with the beam theory, poisson ' s ratio of 

the material was found and agreed quite well with the published data. 

The computer generated holographic fringe pattern due to the 

deflection of the cantilever beam was generated from the data obtained 

from the three-dimensional finite element analysis . The computer 

generated fringe pattern compared very well with the experimentally 

obtained fringe pattern. 

8. Notation 

b width of the beam 

C light from the image of an object, constant 

d displacement vector 

E Young's modulus 

F point load 

h thickness of the beam 

I intensity distribution of the image 

I second moment of area around x-axis x 

1 unit vector in the x-direction 

~ 

j unit vector in the y-direction 

~ 

k unit vector in the z-direction 

L length of the beam 

M bending moment around x-axis x 

N fringe order 

N fringe order at the center of the beam at any section y 
cy 

N fringe order at the edge the beam at any section y ey 

R ,R radius of curvature in the x- and y-direction 
x y 
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u displacement in the x-direction 

v displacement in the y-direction 

w displacement in the z-direction 

y distance along the length of the beam 

6 the difference between the deffection of the center of the 

beam and its edge. 

6~ optical phase difference 

6. incident angle 
1 

6
0 

reflection angle 

A wavelength of the light 

v poisson' s ratio 

BS beam spl itter 

HI holographic interferometry 

HP holograph ic plate 

IB illuminating beam 

RB reference beam 
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