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Abstract

This paper discusses about the technigue to determine the
surface deflection of a cantilever beam subjected to a point load by
using a double-exposure holographic interferometry. The computer
generated holographic fringe pattern compares very well with the
experimental result. The obtained fringe pattern represents both
deflection and anticlastic behavior of the surface of the beam due to
the three dimensional effect. Combining the anticlastic behavior with
the beam theory we could get poisson's ratio of the material.
Experimental result using aluminium alloy 6061-T6 as a cantilever beam
indicates that 1its poisson's ratio is equal to 0.355 which aqgrees

with the value in the published data to within 2,3%
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1. Introduction

The wavefront reconstruction technique or holography is an

optical method which allows one to record and reproduce a three
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dimensional image of an object. In 1948, D. Gabor {1] discovered that
if a coherent wave is made to interfere with the diffracted wave from
an object, then the whole information, i.e., both amplitude and phase
of the object wave can be recorded. From such a recorded interfe;ence
pattern called hologram, an image of the original object can be seen
during the reconstruction process even though the object has been
removed. N

In holographic interferometry (HI) two states of the object
from the recorded hologram are compared interferometrically during the
/reconstruction process. An interference fringe pattern, due to the
differential change of the surface displacement fields between the two
states, will form and superimpose on the virtual or real image of the
specimen. The fringe pattern aqts as a gaging element for measuring
changes in\the surface displacements of the specimen. . Applications of
HI for measuring displacement components were made by several
investigators [2-7].

In this paper, HI technique was used to measure the
deflection of a cantilever beam éubjected to a point load. The fringe
pattern gives the surface deflection contour of the beam and also the

anticlastic behavior of the beam. Combining the later with the beam

theory, poisson's ratio of the beam material was found.

2. Holographic Interferometry

In HI, the three-dimensional image of an objcet from the two
different states, which have been recorded in the hologram are
compared interferometrically during the reconstruction process. With

this technique, deformation, displacement or rotation of the object
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can be recorded holographically in terms of the interference fringe
patterns. They are basically three types of HI, i.e,

a) Double-exposure HI,

b) Real-time HI, and

c) Time—a&erage HI.

2.1 Double-exposure HI In this method the first exposure

is made when the object is in an undeformed or reference state and the
second exposure is made on the same photographic plate when the object
is in a deformed‘ state. When the hologram is illuminated by the
original reference beam one will see through it a three-dimensional
virtual image of the objgct overlaid with an interference fringe

pattern 'due to displacements between the two exposures. These fringes

are called frozen fringes.

2.2 Real-Time HI The film plate is exposed only once in

real-time HI, when the object is in the ‘initial state. After
developing, the hologram is then repositioned exactly in the same
place so that the virtual image superimposes exactly on the object.
When the object 1is deformed, live fringes will form in the virtual
image. Thus, deformation of the object can be investigated in
real-time through interference fringes.

2.3 Time-average HI In time-average HI, a vibrating object

is hologrammed for analysisf Only a single exposure is required, but
an exposure time has to be longer than the period of vibration. A
series of images will be recorded since the object is vibrating during
the exposure. For sinusoidal motion, the object will spend most of
its time at the maximum vibrating excursions resulting in two primary

images. During the reconstruction of the hologram, it will show



interference fringes due to these two images.

In double-exposure HI, the intensity distribution for both

the virtual and real images through the hologram is given by

I=c+ cagdiyy ¢ - Ly o Yes L, 1)
where ' C = constant due to amplitude of light intensity
Ap = change in optical phase due to deformation of the object
(1 + cosAg) ; interference fringe pattern

3. Deflection of a Cantilever Beam

In terms of fringe order and optical path different, pp can be

written as

Ap = 2N
Ap = (2/X)(k_ - k.).4 2l 53 20
o i
For measuring deflection of the cantilever beam, qptical

arrangement as shown in Fig. 1 was used. From Fig.1 the displacement

Vector d and the propagation vectors E1 and E& are given by:

=2 Ind =d od

d = ui + v) + wk

— - - —>

k. = _sin ©8.j - cos 8. k
i 1 i

— . ! - o

k = _-sin 86 i+ cos ®6_ kx ... 3)
o o) o)

Substituting equation 3) into equation 2) and rearranging yields
(sin &, - sin 6 _)u + (cosB. + cos 6 )w = N)
i o) 1 o
and for ei = 60, one gets
w = NA/(2 cos ei) ..... 4)

where N = 0,1,2,...... for bright fringes
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Equation 4) gives the deflection w of the beam in terms of

fringe order N, wavelength of laser light and the incident angle Bi

M

M(Mirror)
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a) HI optical path arrangement
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b) Geometry of the optical path for HI arrangement

Fig. 1 HI arrangement for deflection measurement

4, Poisson's Ratio Determination

Fig. 2 shows holographic fringe pattern due to deflection
w = 25.4um at a distance L = 63.5 mim from fixed end of the cantilever
beam, Near fixed end fringes bend upward. Equation 4) tells us that
the surface deflection across the width of the beam at any section vy
varies symmetrically about the center of the width, This is the
wellknown anticlastic behavior of the beam which is controlled by

poisson's ratio of the material.
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Fig.2 HI fringe pattern due to deflection

w=25.4uymat L = 63.5 mm

A

Section A-A

Fig.3 Pure bending of beam.

From beam theory, curvature of the beam in the x-and

y-direction due to pure bending are given by (see Fig 3)
1/Rx = -v/Ry and 1/Ry = M /(EI ) S R i)

Assuming for the first approximation that Equation 5) is also

valid for the case of a cantilever beam under locad F as shown in Fig 4.
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Fig. 4 Deformed shape of a cantilever beam

subjected to a point load F.

Consider at any section y from F, the radius of curvature in
the x-direction is related to the geometry of the beam as follows

(see Fig.3):

2 1 2 1 2
(Rx+—2—h-6) + (xb) BRAAHED

1
(Rx+§h) >

Rearranging Equation 6) and assuming that.%b >> 6 and Rx >> 1/2h, then

R (b2/8 6) oy

X

Substituting Equation 7) into Egation 5) yields

\V

8(E1x/Fb2)[6(y)/y'] ot et 3]

where M = Fy, and 6

% 8(y)

&(y) may be obtained from the fringe pattern. Consider at any

section y' from load F (see Fig. 5), we get

6{y) = wcy T viora e d)
Substituting Equation 4) into Equation a),yields

6ly) =. (/2 cos ei )(Ncy -Ney) e
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Substituting Equation 9) into Equation 8), one gets poisson's ratio as
follows:
2
= 4(EI . i
v (EI_/F) (/b cose. ) [(Ncy Ney)/y ] ceseel0)
From simple beam theory, deflection w at any section y
from the fixed end of a cantilever beam due to load F is

[for 0o <y < L] w

(FL? /6B )13(v/L)° - (/L)) vevedb)

lat Y = L) .. w = FL3/ (3E1 ) s $C)
L x

- Substituting Equation (c) into Egquation 10) yields

: 3
= 4Ab/3 ) ( i <
v (4xb/ chosei)(,L/b) [(NCy Ney)/y ]
sl ¢ 147)
Equation 11) gives the relationship between poisson's ratio
and the known parameters from the geometry, loading and fringe.pattern

of the cantilever beam.

5. Computer Generated Holographic Fringe Pattern (CGHFP)

The three~dimensional finite element elastic code called
SHAPES [8] was used to calculate the deflection of the cantilever beam

subjected to a point load. The finite element model shown in Fig. 6
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Fig.6 Finite element model of a cantilever beam

used only the linear strain isoparametric elements. It has 150
elements, 364 nodes and 1092 degree of freedoms. A deflection
w =25.4 yum was applied at a distance 63.5 mm from the fixed end.
The beam is made of a;uminium alloy 6061-T6. By using Equations 1),
2) and 4) and the surface deflection data from the finite element
analysis, the computer generated holographic fringe pattern was
generated as shown in Fig. 7. It agrees very well with the
experimentally obtained fringe pattern as shown in Fig. 2 Details of

the CGHFP technique can be found elsewhere [7].

6. Experimental Results

The cantilever beam used in this work is made of aluminium

alloy 6061-T6. Fig. 2 shows the fringe pattern due to deflection

w=25.4 pm at adistance L = 63.5 mm from the fixed end. A He-Ne

gas laser with a wavelength ) = 6328 A was used. The incident angle

ei = 34 degrees.

29



Fig.7 Computer generated holographic fringe pattern

due to deflection of the cantilever beam

subjected to a point load.
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Fig. 8 Def lection of the beam
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From Fig. 2 and Equation 4) graph of the begm deflection 1is
shown in Fig. 8 together with the result from beam theory and the
three-dimensional finite element analysis. The experimental result
compared quite well with the results from beam theory and computer
simulation.

For poisson's ratio, Equation 14) gives the prediction for
left and right edge at any section y 'from F. For example, considering
at section y' = 38.1 mm, the fringe oraer at the center line and both
edges are given as follows

N = A5, N = 16.7, and N = 16.6

cy eyL eyR

Substituting the relevant parameters into Equation 14) , we get

v = 15.9029[NCy = Ney)/y']
for left edge, VL = 0.334
for right edge, Ve = 0.376
-1 =
and Vaverage = E(\)R + vL) = ‘0,355

From the published data [9], v = 0.347 for aluminium alloy
6061-T6 which agrees quite well with the experimental result obtained

from the technique in this work.

7. Conclusions

Deflection of a cantilever beam made of aluminium alloy
6061-T6 subjected to a point load was measured by using
double-exposure HI. The dJdeflection obtained from the experiment
compared quite well with the results from beam theory and computer

simulation. Due to poisson's ratio effect, the fringe pattern was
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curved upward, This was because of the anticlastic behavior éf the
beam. Combining ghis effect with the beam theory, poisson's ratio of
the material was found and agreéd quite well with the published data.
The computer' generated holographic fringe pattern due to ‘the
deflection of the cantilever beam was generated from the data obtained
from the three-dimensional finite element analysis. The computer
generated‘ fringe pattern compared very well with the experimentally

obtained fringe pattern.

8. Notation

od

b width of the beam

C light from the image of an object, constant
displacemen£ vector

E Young's modulus

F ~ point load

h thickness of the beam

I intensity distribution of the image

Ix second moment of area around x-axis

ki unit vector in the x-direction

3 unit vector in the y-direction

* unit vector in the z-direction

L length of the beam

Mx bending moment‘around X-axis

N fringe order

Ncy fringe order at the center of the beam at any section y

Ney fringe ofder at the edge the beam at any section y

Rx’Ry radius of curvature in the x-and y-direction
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u displacement in the x-direction

v displacement in the y-direction

w displacement in the z-direction

y distance along the length of the beam

6 the difference between the deffection of the center of the

beam and its edge.

Ap optical phase difference
ei incident angle

eo reflection angle

X wavelength of the light

v poisson's ratio

BS beam splitter

HI holographic interferometry

HP holographic plate
iB illuminating beam

RB reference beam
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