A Tutorial Introduction to Linear Contrel Systems Theory

P. Hctrahul®

Abstract: Fundamental concepts of linear control system theory are presented

in an introductory manner. Only detarministic, finite-dimensional, linear,
time—invariant dynamical systems are considered, Discussed are the con-
cepts of systams acd states, the state-space formulation o! finite — dimen-
sional, linear, time-invariant plants, various types of responses, confrolla-
bility and observability, dynamical feedback and a description of linear
regulator theory.

1. Introduction

Around the 1956'3 control theoretical study was based entirely on
the classical theory which relied heavily on the inpot—output relation of
the system or the transfer function to characterize the behaviour of the
system, Various graphical techniques, notably root locus plots, Nyquist
plots, etc. were developed as tools for the analysis and design of the
system, Generally system design in classical control theory was based on
trial-and-error procedures, This usually restricted the systems to deter-
ministic, linear, ﬁme—invarinu't single input-single output systems and was
extremely difficult to generalise to more complex systems having several
inputs and outputs. Consequently this resulted in the accumulation of
highly specialised and complicated procedures for dealing with multiva-
riable systems.

Th!s_ situation, along with the development of digital computers

for large—scale calculation, motivated a completely new approach to the

-
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description of dynamical systems. About a decade ago, researchers began
to develop, instead of the transfer function description, a mathematical
framework which exhibits the internal structure of the dynamical systems.

This has led to the analysis and design of multivariate systems which are

very general, Besides, this new approach has made possible the study of

systems which are time-—-varying, nonlinear, stochastic and even distributed

systems described by partial differential equations. At present a great

deal of research activity is concentrated on these areas.

2. Systems and States

The concept of an abstract dynamical system is quite complex

(1-5). For our purpose it will ‘suffice to define an abstract dynamical
system to be a process that can be described by a finite number of
ordinary, linear, deterministic, time-invariant differential equations. That
is to say the time evolution of the system is governed by this set of
differential equations. The state of a dynamical system is defined as the

minimum information about a system which is required to predict its

future behaviour under any appjying stimuli, or inputs. The state space

then consists of all those values which the state may take on. This is best

illustrated by the following example,

Example 1 The behaviour of the circuit shown in fig. | can be determined

for all t 2o if the values of the inductor curremt i, and the capacitor
voltage v, are both known at t =o provided that the input voltage u(t)
is also known for t > 0. Thus the two state variables may be taken as

i(t) and v(t) and the differentail equations of the circuit are

O - () + o) (*
£Q - () - w() (
Defining x(t) = [:; 23] - [:, g;]

50



Then the state equation is
1 =2 (t) 2
[22;] [u ..3] :;_m]* [o]“(‘) (3)
The output y(t) is the current through the resistor and may be

expressed as

v(r)-v(t) o ] (2@ («)

e =1n
C=1F"T= T"’“) l =3

Fig. 1 Simple Linear Circuit

Equations (:1) and (-1) are examples of standard state variable
form for linear differential systems. More generally the state x = [xl. Xo,
xg....xn]'. the input u = [u,.uz.-..nm]' and the output y = [jfl.)'z.--.?'p]' may
be taken from real linear vector spaces of dimension n, m and p, respectively
The dynamical behaviour of the system is then governed by an ordinary
first order linear differential equation

x() = as() + Ba(y)
: (s)
v(t) = cx(y)
where A, B, and C are matrices of dimension nxn, nxm, and nxp respec-

tively,

state vector output vector
—

input vector |
yen

w () A

Fig. 2 Linear System
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2.1 Similarity Transformation
From the definition of the state, it should be clear that state
vectors may be chosen arbitrarily. In example 1, a state vector
= = [ ()
may just as adequately represent the system. Indeed, if Q is a nonsingular
nxm matrix, then the system (5) may as well be described by a new state

vector

x = Qx (7)
This change of x to x is known as a similarity transformation. Note that
X may be recovered from N by

x = Q_li (B)
The differential equation of the system in terms of x is

i) = eaa'x(t) + qBult)
y (t) - C'Q"l x (t) (?)

Since nothing is lost through a similarity transformation, systems (5) and
(9) are dynamical equivalent. Later on in the sequel, it will be shown that
everything of importance (,poles. transfer matrix, controllability and obser-
vability) is invariant under a similarity transformation. A similarity trans-
formation may provide an added insight (o the internal structure of the
system and may often be used to provide a new system that is easy to
handle computationally. For instance, if A has a linear independent set
of eigenvectors and Q is chosen to be U—l. U being a matrix of eigenvec-
tors, Then the system of eguation (9) takes on the diagonal form,
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é{b) 25 X 4 U-lﬁu(f-‘)

(10)

,y(t’) = C..Ui(‘J

3. Solution of Homogeneous Differential Equations: Natural Response

In this section solutions of the homogeneous differential equation
i(t) = Ax (t) (14)
with initia] state

!(D) - xo

(12)
will be examined. To find the solution of (11), we take its Laplace trans-
form

L {x{t)} = X (s) = Xy = A:(s) (13)
Rearranging equation (13) and taking the inverse transform yields

x(s) = (o1 = A} x
o) = 17§ -a Jx,

(1)
- | .
One method to solve for x(t) is to expand (sI —A) in a matrix Binomial
series, that is
(sI —A)‘I =T+ s A+ AT s L (15)
and taking the inverse transform term by term in this series yields
%2 3¢3
L (s1-a) =1+ At + A;-—t + A2

—_—

1! ------ .

(16)
Then the golution of the homogeneous differential equation (H) is given
as

(1) = ey,

()
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At

where the matrix ¢ is known as a transition matrix.

Clearly equation (16) is quite impractical to implement as it

involves summation of infinite series. Another method for obtaining eM is

as follows, First we invert (s’I-A)'I to obtain

- -1 = Q(S-) Py Qﬂ e le e TS P e Qn...z sn-; ,
(“~ 2 P(s) Py +Pis + o e (18)

where (P) is the characteristic polynomial of (s1-A) defined by
P (s) = det (s1-a)
The matrix coefficients Q; and the scalar coefficients P; can be generated

from Faddeev's algorithm [l?]

Quk = Uk+1 A T dpgya! (13}
and oy ™ = :? tr (Qn—-kA) (20)
k= l..n and Q, = 0, @, = I

To be specific, suppose

 (s) = (1) (s-2pgn)or(-25) (21)
That is, the first eigenvalue of A is repeated m times and the others
are distinct. Equation (tu) may then be expanded in a partial fraction

expression as

1 _9 (') R R +.
(SI-A} P (s) (s—-.l ) (s—) )2 ’ (s i )3
Rm+] Rn (22)

’ (T-I; P Gt (i)
where R,, R,...Rm are matrices of residues,
Taking the inverse Laplace transform of each term, we find
that
£ { (s1-a)"" } = oM = ettt 4 thc Fon + Rt ™1

A 41
+ Ry, @ m+1' L Rpe ® (23)
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or, if the eigenvalues are all distinct
M = ;:l; Rieiit (24)
=1
equations (23) and (2&) are known as the spectral factorization of A and
explicitly display the stability properties of the homogeneous differential
equation ('H).
Theorem 3,1 Let 4, 4,.... 4, be the eigenvalues of A

a) All solutions of the homogeneous differential equation
£(t) = ax(r) (2¢)
approach zeroc as t—> = (that is, the system is asymptotically
stable) if and only if
Re(s;) < o = 1,20, (26)
where Re (.ii) denotes the real part of 4
b) All solutions of equation (25) remain bounded as t —> *
(that is, the system is stahla) if and only if
Re(gi)-:o i= 12..n0 (27)
and the residue matrices of order greater than one are all

zero for any repeated eigenvalues with zero real part.

Another useful expression for the transition mstrix is [1]

M= 5 (1) Al (2s)

i=1
0
where eci(t) are scalar time functions and A is defined to be I

4. Solution of Nonhomogeneous Differential Equations:

Forced Response

We now consider the system of the previous sedtion with
an input and output defined as
55



x(t) - &x[t) + Bu(t) . x(o) - X5
y(t) - C,:(l) (29)
The solution of equation (19) may again be found by
taking Laplace transform
L) - ) - % = a0 s ) ()
x(t) = {ll*A)-l}xﬂ + L'I{(sl-A)'IBu(s)z (31)
The first term on the right is the natural response and the second
term is the forced response due to the input u(t). This second
term is a convolutian in time domain of L“lz(sl—u\)'lﬂ} and
L‘i{n(s)}.
x(t) = eMx, + 1A Ipy(r)ar (22)

This equation is often known as the variation of constants formula.

The output y is given by
y(t) = ceMx, + AT gy Jar (33)
If the natural response is ignored (xu=0) the input/output
relation of the system is
v(t) = £CATgy(r)ar (s0)
or in the transform domain
v(s) = [c(sr-a)""8]u(s) (s5)
Thus we see that
H(t) = ce™s (36)
is the impulse response matrix of the system of eqguation (29) and
its transform '
H(s) = c(s1-a)"'s (37)
is the transfer function matrix from input to output,
For the system of equation (9) the transfer function ma-
trix can readily be written as
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fi(s) = c'o'(st-0a~")""qB
- ¢la-(a-ana-)a] s ()
= o (s1-a)"'B
then the transfer function matrix is invariant under a - similarity

transformation. Also, since the poles of the transfer function or

the eigenvalues of A are found from the determinant of (aI-A).
L
then poles are also invariant.

Theorem 4.1 The systems of equations (20) and (9) have the same

transfer function and the same poles.
The ideas of sections 3 and & are {llustrated by the

following example,

Example 2 For the system of f{fig. !, the system equatin were

found in e.:alrlple 1 as
x(t) - Ax(l) + bn.(l)
y(t) - c'x(t)

- '
where A = [? -%- Iy - [5]' ¢ - [0 3]
To determine the response of this system. we first compute
1 ‘ $4-3 —_2
1 s 2 (s+1)(5+2) (s+ 1) (s+2)
(s1-a)~ = -
|G+ 1) (3+2) (s+1)(5+2)
—
-t 2 . -
At 1 1 2e a2 ~2e " 420 2
add ¢ = L {(‘1‘5) }‘ —t -2t —t,, =2t
e —e -e +2e
-
Thus the transfer function for this single ioput-single output
system is
/ 1
h(s) - c(eI—A)" b = §

(s+ 1) (s+2)

.‘rhi; is because
det (sI-QAQ-x) = det (Q (‘I“A)Q—z)
= det(s1-a)
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and the impulse response is

h(t) = cellhy = gelge2
we note that the system has eigenvalues -1 and -2 and is asymptoti-
cally stable.

The forced response for an initial capacitor voltage and

inductor current of -1 and a unit step input is
y(t) = c'emxo + f:c‘eMt_”hu(}’)df
= [0 s]eM[Z}] + afl(e -T2y

2 -2t —t

+ 3 + 3e ~6e "t =3 - et

= -3

Suppose a new state x(t) is defined as
x(t) = axt) = [} T30
‘Then the new differential equations are
x(t) = Ax(t) + bult)
s(t) = ¢x()

A=ase = [ S0 310 -5
b= [ 6 = L]
¢ = r:'CI“1 = [0 3] [f :] = [3 3]

These equations have the uncoupled or diagonal form as shown in

where

fig. 3
+ t pXC
2 jo )
)
wie) o=l i
+ t ;t,d)
- S
+ =
Bl
—=J

Fig. 3 Diagonal Form for Circuit of Fig. 1
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And the trapsition matrix for this new system reduces to

5. Controllability and Observability

In the previous sections we intreduced the concept of a
linear dynamical system (fig. 2) with input, output and state vectors
governed by differential equations. We also discussed the general
form of the response of the system for the initial state x, and
control u(t). Now we consider the {fundamental problems of con-
trolling the state of such a system with the control u(t) and
observing (or determiniuz) its state from the output y(t) The
following definition gives a precise meaning to controlling the state,
Definition 5.1 A particular state X of the system

x(t) = ax(t) + Bule)
y(t) = cx() (39)

is controllable if for every T o there exists a control u(t).

o“t"T, that drives the system from the initial state 1(0) = x
to z(T) = 0

The entire system of eguation (25) is completely con-
trollable if every state is controllable,

Conditions for a state to be controllable is given by the following
theorem.

Theorem 5.1 A state x of the system of equation (39) is controllable if

- 7 \®
and only if x belongs to the range space R(P) .where P is the nxmm

controllability matrix

“ - -
If x belongs to R (P) then there exists a vector y such that x = Py
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o . 2 3 ) -
P = [B:AB :A'B ‘... A" 'B] (40)
Proof Suppose first that x is controllable, then from definition 5.1, there

—

exists a control n(.) such that

0 = x(T) = eAT 3 4 1 AT-T)gy(r)ar (e1)

AT and using equation (28) yields

multiplying equation (30) by e
i = -1 e A u(r)ar

= - f.3=, (-r)a-'Bu(r)ar

i=1
- 2 a1 f ey (r)u(r)ar (2)
=1
defining the m-vector
bi = J -=i(-7)ar i = 1,2.....,0 (a3)
an the mn-vector
b = [b,% by" e’ ba) (e2)
equation (31) may be written as
i = [B:aB: A’B! ... A" '8]p = BB (as)

If X is controllable, then the equation has a solution and it is clear that x
must belong to the range space R (P)... Conversely, if x belong to R(F)
then equation (45) has a solution b. Because of the properties of ui(,),
i=1,2,....n,a control n(.) may always be found to generte b via equa-

tions (63) and (44) and X is controllable.
Q.ED.

Another proof may be found in references [1.2,5-9] along with
the generalization to time varying systems.
The condition of complete controllability of a system follows easily from

Theorem 3 and the proof is left {or interested readers.

Corollary 5.1 The system of eqguation (2&) is completely controllable if
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and only if the matrix P has full rank (ie rank n). For a single input
system the condition reduces to P being nonsingular,
To illustrate the above concepts, let us consider the following example.
Example 3 Consider the system

(=03 1 =@+ [Fu().x(c) ==

y(0) =l 1) x(o)
This system is not completely controllable, as (45)

p=[o av] =7 -]

has rank = 1. The controllable states are those which belongs to the range

space of P. Here only those controllable states If:i @ [’i] } may be

driven to O.°

To verify this, we compute
1 2

(sr-a)" = [02 21} 52 6= G5

o (s-1)

& [ zm —2e1‘—e!]

Then, from equation (42)
S radl | Bl PO P
= [ 5 u(t) dt
Regardless of what u() is chosen, only those states which have this form
may be driven to O.
Nov; we turn to the question of whether a particular state is observable
at the output of the system. For the system of equation (39) if the input
n() is known, then the forced response at the output due to u ()
f'c’ *-Tpy(r)ar

&1

-



is a known quanfity independently of the imitial state. Thus it suffices

to consider instead a system with zero input

i(t) = Ax (t)

r(t) = C'x(!)

Definition 5.2 A particular state x of the system of equation (4?) is

unobsarvable if for every T > 0 the initial condition x(o) =X produces

an output
y(t) = 0 oSNt T
The entire system is said to be completely observable if no nonzero
state is unohservable.
Conditions for observability are as follows.

“ #
Theorem 5.2 A state x of the system of equation (67) is unobservable if

and only if it belongs to the null space N(M) where M is the pn X p

observability matrix
~— =
r

c
c'A

¢ 2
Cc'A

-
.

can-1
s -
Proof For an initial state x (o) = x, the output of the system is

y(t) - C’em x

At .
substituting for ¢ by equation (23) yields

n b

y(t) =5 = (1) ca 'z

i-1

.
A state is said to be observable if it is orthogonal to the null space
N(M). Thus a state may have both observable and unobservable components.
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=[e®1i «,(ri . =] [¢ x
ca
c'a’

C’An—l

(o1 F @@ o ealilus
If x belongs to N (M) (that isMx = 0), then y (t) = 0 and x is unobserva-
ble. Conversely if X is unobservable, by the definition y (t) = 0, 0 <t < T.
Then Mx = 0, 50 x belongs to N (M)

Another proof and generalization to time varying system may be
found in references [1.2.?—10] The condition for complete ohserability
follows easily and the proof is left for interested readers.

Corollary 5.2 The system of equation (47) is completely observable if and

only if the observability matrix
="'y =
C

CA
' 2
CA

can-!

has nullity 0 (or rank n). For a single output system this reduces to M
being nonsingular.,
Let us consider the following example
Example 4 Consider the system.

(=[x +[3]u(), x(c) ==

y(0)=[-1 o]=(s)
Since M= [2“] = [: :] the system is not completely observable.
The unobservable states are those belonging to the null space of M and

are proportional to [0 1 ]'. To verify this, we compute.
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(s1-2)" = I t

A . 0

Them for initial state x (l;j
; e o x, (o)
¥(t)=c x(a) = [+ o] o2t ot - (o)}

€
(i
and cleary any states of the form { X:X =« [ :] } produce zero output
and thus are unobservable,
The resemblance between the conditions for controllability and
observability should be apparent. In fact, they are dual concepts, as

explained in the following theorem,

Theorem 5.3 Controllability and observability are dual in the sense that the

system
x = Ax + Bu
¥y = Cx (51)
is completely coatrollable (obsenrable) if and anly if the system
f=a%+Co (s2)
y=Bx

is completely observable (controllable)

.P_rif The statement of this theorem is easily proved by noting that the
cantrollability (or observahility) matrix for one system becomes the
observability (or controllability) matrix for the other system.

Finally we note that both controllability are invariant under similarity
transformation,
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Theorem 5.4 Suppose two systems

.: = Ax + Bu (53)
y = Cx

and i - QAQ"‘I x + QBu (sg)
y=0Q x

are related by the similarity trans’ormation

LS

x=0Qx (55)
Then X is controllable (nnohsernble) if and enly if QX is controllable
(unoburvablc)

Proof The controllability matrices for systems of equation (53) and (Sn)

are
p=[B 4B AB...aA"18]
and
p = [oB|Q@AQ~'qB | ....(Qaq~" )" g ]
= QP
Thus X belonging to R (P) implies Py = X for some y and hence QPy = i_:}_ =
Qx. Conversely Q% belonging to R (P) implies !';y = QPy = Qx for some y

and Py = Q° Py = x.
The observability matrices are related by

A 1
M = MQ~

and the proof for unobservable states follows analogously.

6. Feedback Control

The fundamental problem of control systems theory is to determine
a control which is to be applied at the input of the system to produce.
some desired output. By far the most commeon form of control is that of

a feedback control law where some operation is performed at the output

of the system and the result is applied to the input. In the case of linear

&5
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systems, a linear function of the output is often added to the input to form

a proportional feedback control.

6.1 Proportional Feedback

In terms of a linear system
x = Ax + Bu (s6)
y = Cx
Proportional feedback from output to input takes the form
u=Ky + u,., (5?)
where Ugyy i85 the external input and the resulting closed loop system is
= Ax + B (Ky + ugyy) = (4 + BRC) x4 Bugy,.  (58)

as illustrated in fig. 4

B WO L T N e e

@ @

]

Fig 4. Proportional Feedback from Output to Input.
Dashed lines (l) Feedback from State to Input
(2) Feedback from Output to State.
If all states are available for feedback, we may set C = [ in the control
law and obtain the clesed loop system
x = (A + BK) x + Bu .y _ (59)
y = C'x

This feedback from state to input is known as state variable feedback.
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There is another class of feedback known as output-to-state feedback.

This type of feedback is possible if all states can be controlled separately

and the closed loop system can be obtained by setting B =1 as,
x=(a+KC) x+ Bu,yt (s0)
y= Cx

The effects of feed back on the controllability and observability of a

system are as follows :—

Theorem 4.1 Controllability is invariant under feedback from state to

input and observability is invariant under feedback from output to state.
Both controllability and observability are invariant under output to input
feedback.
The proof of this theorem is left for interested readers.

In the design of control system, a common criterion i§ to have
a stable operating system. By means of feedback contrel law it is possi-
ble to prescribe the systems poles to any desired positions in the complex

plane, [10—11] This useful result can be stated as follows :—

Theorem 6.2 If the system

x = Ax + Bu (bl)

y=Cx
is controllable, then, for any‘ pre—assigned configuration of n poles in the
complex plane (with the restriction that complex poles must occur in con-
jugate puirs). there exists a state—to—input feedback matrix K, such th;lt
the closed loop system of equation (59) has its pole¢ in the given locations.
Dually, if the system of equation (61) is observable there exists an output—
to—state feedback matrix, K, such that the closed loop system of equation

(60) has its poles in the given locations
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I;toof We will establish the result for only a single input—single output

confrollable
x = Ax + Bu (s2)
¥
y = Cx

The reader is invited to verify that the transformation matrix of the form

P —
1 0 Daciisrisriinin)
1 - ) I
Q- = [AB l'b APl zb,m_mhb b] Pp—y ! Ouerpgrr seevnes0 (63)
Ph—s Pp—g Teorasrosssascadd

= - e
exists such that the system
H 1 A
Xx=QAQ™ X + Qbu=A x + bu )
is in standard controllable fo'm. where
— — r —
0 1 0 cvreen B 1]
0 o e 0
A=|| | b= (e5)
0 o | JECSER | 0
~Py = Py T PyreeenTPy—y 1
— —— - -

2 -
and p, p;s + p,s + S T : + s" is the characterictic polynomial

of A, For the feedback of the form
Ak a
0= KX + uext
Al
where k = (ku | S "kn—-l) (66)
We can see that the closed loop system becomes
A m s A
x=(2 + k)% + buent (e7)
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where

r 0 1 0 - 0
0 0 1 vessise 0
A+ bk = | ‘ (aa)
0 0 R 1
_—_(pu+kﬁ) (b, +k,) ~(p,+1,).croee(p +k,,2]

The characteristic polynomial of equation (53) is (PuH‘n) + ("1+k1)’ +.
2 - -1

(py#k,)s" +rvnt (Pt tkn—1)s™" + o

specified to give any desired positions of poles.

and its coefficients may be

Since the system of eguation (_53) and the system
i=0Q" (A+0k)Qx + QB uext
= (A+bE'Q) x + bueg (¢9)
are dynamical equivalent, Then the system of equation (69) has the saime
set of pre-assigned poles with a feedback control law of the form
= ;:rQ:: + Uggt (70)
The dual result may be proved in an analogous manner

6.2 Dynamic Feedback
In practice, the state variables in the system are not readily

accessible, thus feedback control laws directly involving the state may
not be possible. Therefore we need to reconstruct the state of the system
from output information using a device known as an observer, or state
estimator, Intuitively it should be clear that to be able to approximate
or reconstruct the state out of any output information, the systém should
be completely ohservable.
Suppose the system to be controlled is
x = Ax + Bu
y = Cx (!1)



Then an observer is a second order linear system

z = Fz + Gu + Hy

w =Dz + Ey (72)
driven by the input and output of the system of equation (71) whose
output, w (t). approximates x (t) With a control law of the form

u = Kw + ugyy (73)

the augmented closed loop system becomes
£ A+BKEC  BKD x B
« 1T + Ugxt
z HC+GEKEC F+GKD z G
In general an observer should have dimension large enough to
supplement the p-dimensional information supplied by the output vector.
The following theorem ccenfirms this and establishes the existence of the

state estimator.

Theorem 6.3 Let the dimension of x,y,2, w be n, p, r and n, respectively

Ifr > (u-p) and the system of equation [n) is completely observable,
then there exists mairices F,.G,H,D and E such that the output, w (t). of
the system of equation (?2) approaches the state x (t) of the system of
equation (71) asymptotically as t > = regardless of the initial states x;
and z, and extermal input .y . The dynamic behaviour of the observer
(?2) is determined by the poles of F which may be chosen arbitrarily,

If the feedback law (?3) is applied, the poles of the (n-l-r) dimen-
sional closed loop system of éqnnﬁon (74) consists of the poles of (A—!-BK)
and those of F,

_N_B This result was first established by Luenberger (13-1&) and may also
be found in references (10. 12—1&)
6.3 Linear Regulator

In recent years optimal control theery has provided seme power-
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ful techniques for the design of both closed-Joop and open-loop contraol
laws. The simplest example of this theory is the linear regulator, in which
a feedback control law is to be designed for the system

x = Ax + Bu

y = Cx (75)
by choosing the control which minimizes a guadratic cost functional of
the form

3 = 5 (vRu+xQx) at (7s)
where matrices R and Q are generally positive definite and positive
semidefinite, respectively. The effect of the cost functional (76) is to
penalize large state and controls more heavily than small ones. Concep-
tually this is equivalent to saying that energy required for controlling
the system as well as the energy in the system should be kept minimum,

The optimal control has the form of feedback from state to

input as follows:

Theorem 6.4 Assume that the system of equation (?S) is controllable

and that R and Q are positive definite and positive semidefinite,
respectively. Then there exists the control
= i
u = &~ BPx(t) (77).
minimizing the cost functional of equation (1&). P is the positive
definite solution of

AP + PA-PBR BP + Q=0 (7s)
and the closed loop system
x = (a-Br-"B'R)x (9)

is asymptotically stable.

7. Summary and Conclusion

The state variable approach to finite — dimensional time

T



invariant, linear control systems theory has been introduced. In
section Z. the concepts of a dynamical system and its states were

discussed, The idea of similarity transformation was also explained.

Sections 3 and 4 dealt with the solutions of homogenous
and inhomogenous, linear time invariant differential equations which

were used for modelling of linear time invariant dynamical systems.

Solutions were obtained employing the “matrix exponential cm.

Various representations of eAl  were given along with Feddeeva s

algorithm for generating em. The solution of the inhomogenous

At

equation was found as a convolution of e with the forcing

function,

The concepts of controllability and obssrvability were defined
and explained in detail in section 5. Duality between controllability
and observability was noted. It was also seen that controllability
and observabiltty were invariant under similarity transformation,

The fundamental concept of wvarious feed back controls
were introduced in section 6. Of significant in this section is the
fact that if a system is controllable, pole assignment can be acheived
by state variable feedback. A briaf - introduction to the dynamic
observer and the optimization theory in the form of a linear
regulator was also given in this section.

This paper was meant to be only a brief tutorial introduction to
linear systems control theory. The material covered barely scratches
the surface of modern control theory. The interested reader is
refered to the texitbeoks (1—9) and the exceilent articles (15—16)
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