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Abstract 

 

This paper presents an artificial bee colony algorithm to solve the vehicle routing problem with backhauls and time windows 

(VRPBTW). This problem is a combination of the vehicle routing problem with backhauls (VRPB) and the vehicle routing 

problem with time windows (VRPTW). In VRPBTW, a homogenous fleet of vehicles are utilized to deliver goods to customers 

in linehaul set and then to pick up goods from customers in backhaul set. Vehicle capacity, backhaul and time windows are 

the major constraints for this problem. The objective of VRPBTW is to minimize the sum of route distance that satisfy all 

constraints. An artificial bee colony (ABC) algorithm with local search procedures are proposed to solve the modified 

Solomon’s VRPTW benchmark problems. The results of computational experiments reveal that the performance of the 

proposed ABC algorithm is comparable to the other metaheuristics in terms of the quality of solution. 
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1. Introduction 

 

The vehicle routing problem with backhaul and time 

windows (VRPBTW) is a combination of the vehicle routing 

with backhual (VRPB) and the vehicle routing problem with 

time windows (VRPTW). In this VRPBTW, a homogeneous 

fleet of vehicles are utilized to deliver goods from a central 

depot to customers (linehauls) and then to pick up goods 

from customers (backhauls) to the depot. This delivery and 

pick up procedure allows company to fully utilize the fleet of 

vehicles and leads to reduce the fuel oil consumption. The 

major constraints are the vehicle capacity and time windows 

constraint. Each customer must be serviced within specified 

time interval or time windows between earliest and latest 

time deadline. All linehaul customers must be done before 

backhaul customers, because it is inconvenient to rearrange 

the delivery goods onboard so that new pickup goods will be 

accommodated. The objective of this VRPBTW is to 

minimize the sum of route distance to service all customers 

with vehicle capacity and time windows constraints.  

A literature on the heuristic approach to solve VRPBTW 

was proposed by [1]. The route construction and heuristic 

were tested with the modified solomon’s benchmark 

problem. The quality of solution is acceptable. A Genetic 

algorithm (GA) and a Tabu search heuristic for VRPBTW 

were performed by [2] and [3], respectively. Both papers 

used the same benchmark problems as in [1]. A metaheuristic 

namely a guide local search approach (GLSA) was also done 
by [4]. GLSA did not perform well comparing to GA in [2]. 

Recently, a differential evolution algorithm (DEA) for 

VRPBTW was proposed by [5]. They could find some of the 

results were better than the best known solution. In additions, 

[6] proposed a Hybrid metaheuristic algorithm (HMA) 

which employed simulated annealing and tabu search to 

solve VRPBTW. The proposed algorithm could also found 

better solutions than the best known solutions in practical 

computational time.  The performance of HMA in [6] was 

superior to that of DAE in [5]. Since this VRPBTW is a NP 

hard problem, we propose an artificial bee colony (ABC) 

algorithm with the local search procedure to solve it. The 

Solomon’s benchmark problems of which their optimal 

solutions are known in [7] are used to evaluate the 

performance of the ABC algorithm in solving the VRPBTW. 
 

2. Problem definition 

 

The VRPBTW is a variant of the vehicle routing problem 

(VRP). In VRPBTW, there are two subsets of customers 

including linehauls and backhauls. A central depot supplied 

a given quantity of goods to each linehaul customer and a 

given quantity of goods is picked up from each backhaul 

customer and then returned to the depot. Each customer’s 

demand cannot be split.  The backhauls must be visited after 

the linehauls in each route.  

The characteristics of this VRPBTW are as follows: (1) 

there is a single depot and a fleet of homogeneous fleet of 

vehicles, (2) each vehicle services only one route, (3) the 

linehaul vertices must precede the backhaul vertices on each  



405                                                                                                                                                                              KKU ENGINEERING JOURNAL 2016;43(S3) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Artificial bee colony algorithm for solving the VRPBTW 

 

route, (4) the time of beginning of service at each vertex must 

be within to the lower bound and upper bound of time 

windows of each customer  [𝑎𝑖 , 𝑏𝑖] . The mathematical 

modeling of this VRPBTW can be found in [5-6]. The 

objective of this VRPBTW is to minimize the sum of route 

distances to service all customers with vehicle capacity and 

time windows constraints. 

 

3. The proposed algorithms 

 

This section describes the artificial bee colony procedure, 

generation of initial solution and local search operation. The 

local search namely  -interchange which try to exchange 

customer nodes between 2 routes. 

 

3.1 Artificial bee colony algorithm 

 

The artificial bee colony algorithm is an evolutionary 

algorithms inspired by behavior of honey bees that try to 

search for the food or nectar sources around their hive. The 

search strategy of ABC algorithm starts the initial solutions 

so called food sources and then groups of bees try to exploit 

the food sources to obtain the best nectar quantity. The ABC 

algorithm classifies bees into three types [8] which are 

employed bee employees, onlookers and scouts. Employed 

bees exploit the available food sources and gather required 

information. This information is shared to onlookers and the 

onlookers select the existing food source by utilizing the 

roulette wheel selection method to explore the further food 

source. Employed bees can abandon the old food source 

when the onlookers can find the best food source. In this 

case, the employed associated with the old food sources will 

be assigned to the best food source found by onlookers. 

However, any food sources will also be abandoned if the 

quality of food source is not improved for a limit successive 

iterations, limit. After that, the employed bee becomes a 

scout to look for new food source randomly.  

The overall ABC algorithm adapted from [8] can be 

summarized as in Figure 1. The fitness function 𝑓(𝑋𝑖)  is 

equal to1/𝑍(𝑋𝑖); where 𝑍(𝑋𝑖) is the sum of route distances 

of the food source 𝑋𝑖. The lower the sum of route distances 

it is, the more fitness it obtains.  

 

3.2 Initial solutions  

 

 The initial solution is generated based on the time-

oriented nearest neighbor heuristic proposed by Solomon 

(1987) [9]. Solomon’s nearest neighbor heuristic considers 

both graphical and temporal closeness of customer. The 

heuristic starts every route by searching the unrouted 

customer which is closest to the depot. Next, unrouted 

customers are sequentially added to current routes or depot. 

Every unrouted customer who is feasible to be added to 

routes has to satisfy the time windows, capacity and backhaul 

constraint. 

 Let the last customer on the partial route be customer i 

and let j denote any unrouted customers who are next visit. 

The algorithm finds the best unrouted customer to be 

assigned to the best route by utilizing the cost function, costij, 

to select the best unrouted customer [10]. This cost function 

can be determined from three factors: (1) the direct distance 

between two customers, 𝑑𝑖𝑗; (2) the urgency of delivery from 

customer i to customer j, 𝑢𝑖𝑗 and (3) the waiting time which 

is the time remaining until the vehicle’s last possible service 

start, 𝑤𝑖𝑗 . The formulation of three factors and the cost 

function are as follows: 

 

2 2( ) ( )ij i j i jd y y x x                                          (1) 

 

where ( , )i ix y  is geometric location of customer i; 

 

(T )ij j i i iju b s t                                             (2) 
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Figure 2 A possible interchange of nodes between two routes when  = 2 for both routes 
 

 

Figure 3 Results from DOE of ABC-II for problem size of 25, 50, and 100 customers 

 

 
 

Figure 4 Interaction plot for average distance of problem of 

100 customers 

where  𝑇𝑖  denotes the service start time of customer, 
is  is 

defined as the service time of customer i, 𝑡𝑖𝑗 denotes travel 

time between customer i’s location to customer j’s location; 

 

max{0, (T )}ij j i i ijw a s t                                      (3) 

  

d ij u ij w ijd u w                                       (4) 

 

where , , ,d u w    are the weight of distance, urgency, 

and waiting time, respectively. 

The lower value of costij is more preferable. To generate 

different initial food sources, the initial weight of distance, 

urgency, and waiting time are randomly search from range 1 

to 15.  

Analysis of Variance for Avg. Distance (coded units)for 25 customers 

Source                   DF  Seq SS  Adj SS  Adj MS     F      P 

  Number of bees          1   2.040   2.040  2.0402  7.06  0.057 

  Lambda                  1   2.040   2.040  2.0402  7.06  0.057 

  Number of bees*Lambda   1   2.040   2.040  2.0402  7.06  0.057 

Residual Error            4   1.155   1.155  0.2888 

Total                     7   7.276 

R-Sq = 84.12%   R-Sq(adj) = 72.21% 

 

Analysis of Variance for Avg. Distance (coded units) for 50 customers 

Source                   DF   Seq SS   Adj SS  Adj MS     F      P 

  Number of Bees          1   793.21   793.21   793.2  3.09  0.154 

  Lambda                  1   745.37   745.37   745.4  2.90  0.164 

  Number of Bees*Lambda   1  1601.21  1601.21  1601.2  6.23  0.067 

Residual Error            4  1027.32  1027.32   256.8 

Total                     7  4167.12 

R-Sq = 75.35%   R-Sq(adj) = 56.86% 

 

Analysis of Variance for Avg. Distance (coded units) for 100 customers 

Source                   DF   Seq SS   Adj SS   Adj MS      F      P 

  Number of bees          1    0.000    0.000    0.000   0.00  0.996 

  Lambda                  1   33.211   33.211   33.211   1.78  0.253 

  Number of bees*Lambda   1  779.730  779.730  779.730  41.88  0.003 

Residual Error            4   74.467   74.467   18.617 

Total                     7  887.408 

R-Sq = 91.61%   R-Sq(adj) = 85.31% 
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3.3 The  -interchange local search method  

 

The interchange local search method introduced by [11] 

is a local search that based on  parameter. Two routes are 

randomly selected and then the interchange operation is 

applied. In this paper,  is equal to 2 for both selected routes 

that means the maximum number of customers be 

interchanged is 2 nodes. There are two procedures of local 

search in this study including:  

(1) One-time  -interchange referred to ABC-I which 

make the interchange between routes only one time in each 

operation and  

(2) Best-improvement  -interchange referred to ABC-

II which utilizes all possible  -interchanges for improving 

the selected routes and then selects the best improvement. 

 An example of  -interchange procedure used in this 

paper is illustrated in Figure 2. 
 

4. Experiment results and discussions 
 

The ABC algorithm with the nearest neighbor heuristic 

and the  -interchange were tested with the modified 

Solomon’s benchmark problems. First five problems of 

Solomon’s R1-type data set were modified by randomly 

selecting 10%, 30%, and 50% of demand nodes to be 

backhaul customers without changing other characteristics of 

problem.  

The parameters for ABC-I comprise of number of bees, 

limit, and maximum iteration; while those for ABC-II consist 

of number of bees, limit, maximum iteration, and  

(Lambda).  

 Since there are two local search procedures, we define 

the parameters for ABC-I based on the past experiment. 

However, for ABC-II, three design of experiments (DOE) 

are conducted to determine the appropriate parameters. 

Number of bees, limit, and  (Lambda) are the factors for the 

2k full factorial design. The levels of each factor are in Table 

1. The maximum iteration is fixed at 40,000.  The number of 

customers is denoted by N_node. The response variable of 

DOE is the sum of route distance. 
 

Table 1 Factor and level of factors of DOE for ABC-II 
 

Parameter Low (-1) High (1) 

Number of bees N_node/10 N_node/2 

limit 5N_node 10N_node 

Lambda 1 2 
 

 The results of DOE for problem size of 25 (R105c), 50 

(R105c), and 100 (R102c) customers are depicted in Figure 

3. It is found that the number of bees and  are the significant 

factors affecting to the sum of route distance. The interaction 

plot of the DOE for problem of 100 customers is displayed 

in Figure 4. The suitable parameter for ABC-II is in the 

circle. Thus, the proper parameters of ABC-I and ABC-II can 

be summarized as in Table 2. 
  

Table 2 Parameter for ABC Algorithm 
 

Parameter ABC-I ABC-II 

Number of bees 100 N_node/10 

Limit 

 

1,000 

NA 

5N_node# 

2 

Maximum iteration 20,000 40,000 
# N_node is number of customer nodes, NA: Not available. 

 

The computational experiments for all problem sets are 

depicted in Table 3-5. HMA, GA, and DEA in Table 3-5 

refer to the algorithms used in [6], [2], and [5], respectively. 

In these comparisons, the %Gapopt can be written as 
 

% 100%opt

metaheuristic solution optimal solution
Gap

optimal solution


  .  

 

 For ABC-I and ABC-II, each problem is solved in five 

replicates. The best solutions and % coefficient of variation 

(%CV) are shown in these table. The ABC-II obviously 

yields better solutions than ABC-I for the problem of 50 and 

100 customers. The solutions obtained from ABC-II are 

comparable to those from HMA and GA; while DEA seems 

to be the worst. The average computational time of ABC-II 

for  25  and  50  customers  are  11.85,  117.33,  and  261.10  

(seconds);  respectively;  while,  the average solving time of 

 

Table 3 Computational results for 25 customers 

 

Problem 
Optimal 

solution 

ABC-I   ABC-II         HMA*   GA*   DEA*   %GapOptimal 

Dist. NV   Dist. NV %CV   Dist.    Dist.   Dist.   ABC-II HMA GA DEA 

R101a 643.4 643.4 9  643.4 9 0.00  643.4  643.4  643.4  0.00% 0.00% 0.00% 0.00% 

R101b 711.1 721.8 11  721.8 10 0.00  721.8  721.8  721.8  1.50% 1.50% 1.50% 1.50% 

R101c 674.5 676.8 10  676.8 10 0.00  676.8  682.3  676.8  0.34% 0.34% 1.16% 0.34% 

R102a 563.5 563.5 7  563.5 7 0.00  563.5  563.5  565.3  0.00% 0.00% 0.00% 0.32% 

R102b 622.3 628.1 9  628.1 9 0.00  628.1  622.3  629.0  0.93% 0.93% 0.00% 1.08% 

R102c 584.4 584.4 9  584.4 8 0.00  584.4  584.4  585.3  0.00% 0.00% 0.00% 0.15% 

R103a 476.6 476.6 6  476.6 5 0.00  478.8  476.6  489.0  0.00% 0.46% 0.00% 2.60% 

R103b 507.0 507.0 7  507.0 7 0.00  507.0  507.0  510.9  0.00% 0.00% 0.00% 0.77% 

R103c 475.6 483.0 6  483.0 6 0.00  483.0  483.0  495.0  1.56% 1.56% 1.56% 4.08% 

R104a 452.5 453.8 5  453.8 5 0.00  453.8  452.8  459.1  0.29% 0.29% 0.07% 1.46% 

R104b 467.6 468.5 6  468.5 6 0.66  468.5  468.5  469.6  0.19% 0.19% 0.19% 0.43% 

R104c 446.8 447.7 5  446.8 5 0.00  446.8  446.8  458.7  0.00% 0.00% 0.00% 2.66% 

R105a 565.1 565.1 7  565.1 7 0.00  565.1  565.1  565.1  0.00% 0.00% 0.00% 0.00% 

R105b 623.5 623.5 8  628.0 8 0.26  623.5  630.2  630.2  0.72% 0.00% 1.07% 1.07% 

R105c 591.1 591.1 8   591.1 8 0.00   592.1   592.1   598.5   0.00% 0.17% 0.17% 1.25% 

Dist.: the best distance; NV: number of vehicle; %CV: % coefficient of variation; HMA: hybrid metaheuristic algorithm 

  



KKU ENGINEERING JOURNAL 2016;43(S3)                                                                                                                                                                              408 

 
 

Table 4 Computational results for 50 customers 
 

Problem 
Optimal* 

solution 

ABC-I   ABC-II    HMA   GA   DEA  %GapOptimal 

Dist. NV   Dist. NV %CV  Dist.    Dist.   Dist.  ABC-II HMA GA DEA 

R101a 1122.3 1137.0 15  1134.0 15 0.15  1135.8  1138.1  1138.3  1.04% 1.20% 1.41% 1.43% 

R101b 1191.5 1210.4 16  1191.6 16 0.61  1191.6  1192.7  1245.8  0.01% 0.01% 0.10% 4.56% 

R101c 1168.6 1183.9 16  1183.9 16 0.70  1183.9  1183.9  1183.9  1.31% 1.31% 1.31% 1.31% 

R102a 974.7 1003.8 12  976.5 12 0.21  976.8  976.8  978.7  0.18% 0.22% 0.22% 0.41% 

R102b 1024.8 1058.9 14  1054.6 14 0.09  1046.0  1029.2  1046.0  2.91% 2.07% 0.43% 2.07% 

R102c 1057.2 1072.3 14  1059.7 14 0.07  1061.6  1059.7  1153.0  0.24% 0.42% 0.24% 9.06% 

R103a 811.4 813.0 9  821.6 9 0.45  815.5  813.3  831.1  1.26% 0.51% 0.23% 2.43% 

R103b 882.8 902.0 11  887.1 11 1.17  889.3  892.7  895.1  0.49% 0.74% 1.12% 1.39% 

R103c 882.1 907.8 11  885.1 10 0.27  887.7  885.5  887.7  0.34% 0.63% 0.39% 0.63% 

R104c 733.6 751.8 8  739.3 8 0.23  738.2  741.4  742.2  0.78% 0.63% 1.06% 1.17% 

R105a 970.6 993.8 12  985.2 11 0.63  978.5  1002.5  972.8  1.50% 0.81% 3.29% 0.23% 

R105b 1007.5 1049.4 13  1024.7 12 0.85  1026.7  1047.8  1030.0  1.71% 1.91% 4.00% 2.23% 

R105c 993.4 1018.3 11  993.4 11 0.27  996.2  1018.0  1022.2  0.00% 0.28% 2.48% 2.90% 
* This table displays only the problems of which their optimal solutions are known. 

 

Table 5 Computational results for 100 customers 
 

Problem 
Optimal* 

solution 

ABC-I   ABC-II    HMA   GA   DEA   %GapOptimal 

Dist. NV   Dist. NV %CV   Dist.    Dist.   Dist.   ABC-II HMA GA DEA 

R101a 1767.9 1830.9 24  1818.6 24 0.42  1811.6  1815.0  1811.6  2.87% 2.47% 2.66% 2.47% 

R101b 1877.6 1996 25  1904.5 25 0.46  1891.1  1896.6  1925.9  1.43% 0.72% 1.01% 2.57% 

R101c 1895.1 2006.6 26  1928.2 24 0.40  1911.2  1905.9  1930.2  1.75% 0.85% 0.57% 1.85% 

R102a 1600.5 1692.7 21  1640.7 21 0.48  1623.7  1622.9  1649.8  2.51% 1.45% 1.40% 3.08% 

R102b 1639.2 1719.6 22  1717.3 22 0.48  1724  1688.1  1758.2  4.76% 5.17% 2.98% 7.26% 

R102c 1721.3 1807.4 23  1752.2 21 0.46  1759.8  1735.7  1777.1  1.80% 2.24% 0.84% 3.24% 

 

HMA for 25, 50, and 100 customers are 1.57, 15.91, and 

100.17 (seconds), respectively. However, the computational 

time of ABC-II is practically acceptable. Moreover, the 

overall %CV of ABC-II are lower than 1% which indicate 

that the ABC-II is capable to yield the solutions with low 

variation. 
 

5. Conclusions 
 

The proposed ABC algorithm with the  -interchange 

local search are examined with the modified Solomon’s 

benchmark problems. It can be concluded that the 

performance of the proposed ABC algorithm is comparable 

to HMA and GA. Moreover, it is superior to DEA. However, 

the improvement on the ABC algorithm to solve the large-

scale problem may be done for the future work by improving 

the route construction, since the number of vehicles required 

for some problems are still higher than that of other methods.  
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