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Abstract

In this paper, comparative performance of multiobjective evolutionary algorithms (MOEAs) for solving multiobjective optimal
reactive power dispatch (MOORPD) problems has been studied. The standard IEEE 30-bus and 57-bus power systems are
posed to optimize active power loss and voltage deviation. Design variables include generator bus voltages, tap setting
transformers, and shunt reactive power sources whereas design constraints are lower and upper bounds of the variables. A
number of MOEASs are implemented to solve the test problems and their performances are compared statistically. It is shown
that multiobjective gray wolf optimizer (MOGWO) is superior to other MOEAs based upon the hypervolume indicator. The
results can be set as the baseline for performance testing of MOEAs for such optimization problems.

Keywords: Multiobjective optimal reactive power dispatch, Non-dominated solution, Multiobjective evolutionary algorithms,

Pareto dominance

1. Introduction

In general, an electric power transmission system suffers
from the problems of the voltage drop at line end, high active
power loss as well as low stability from interference. To
reduce such undesirable phenomena, the Multi Objective
Optimal Reactive Power Dispatch (MOORPD) problem is
usually assigned and solved so as to find the best possible
solutions dealing with the problems. Generally, the aim of
the MOORPD is to minimize the active power loss (Pioss) and
voltage  profile  improvement  (voltage deviation
minimization: VD). The MOORPD is a process to control
lower and upper limits of generator bus voltages, tap setting
transformers, and shunt reactive power sources, while
satisfying large number of equality and inequality constraints
[1]. Several traditional techniques such as nonlinear
programming (NLP) [2], quadratic programming (QP)[3],
and an interior point method [4] have been used to solve
single objective ORPD problems. The use of meta-heuristics
such as genetic algorithm (GA) [5], differential evolution
(DE) [6], particle swarm optimization (PSO) [7] etc., has also
been reported. However, it has been found that there are
needs to optimize several objective function at the same time
as stated earlier. Thus, the use of multiobjective optimizers
for MOORPD is of importance. In the literature, several
MOEAs have been used to solve the MOORPD problems
such as Non-dominated sorting genetic algorithm-11 (NSGA-
1) [8], multi objective particle swarm (MOPSO) [9], multi
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objective  differential  evolution (MODE)[10] etc.
Nevertheless, since the last few decades, there have been a
great many of MOEAs being developed and it is interesting
to test them when solving MOORPD so that some top
performers can be figured out.

In this paper, a variety of MOEAs have been employed
to solve MOORPD problems. The design problems include
the standard IEEE 30-bus and the IEEE 57-bus power system
while design objectives are active power loss and voltage
deviation. The power flow calculation is carried out by using
Newton-Raphson Power Flow (NRPF). The optimum results
obtained from the various optimizers are compared based on
the hypervolume indicator and discussed.

2. Problem formulation
2.1 Objective functions

The design problem in this study has two objective
functions including active power loss and voltage deviations,
which can be detailed as:

2.1.1 Active power loss minimization

This aim is to minimize the system active power loss in
transmission lines which can be expressed as.

nline
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where V;, §; are voltage and phase angle of bus i; V;, 6; are
voltage and phase angle of bus j, g, is a conductance of

transmission line k, nline is a number of transmission lines.
2.1.2 Voltage deviations minimization

This objective is to minimize the load bus voltage
deviations between the normal value and those obtained
from calculation. It can be expressed as:

nbus

VD= ZIVK _de| @
k=1

where V, is voltage magnitude of bus k. V, is desired voltage

magnitude of bus k ,usual 1.0 per unit . nbus is a number of
load buses voltage.

2.3 Equality constraints

The equality constraints of the ORPD are real and
reactive power balance at each node i.e. load flow equations

given by g(x),

Ng
(P, —PDI)—Z‘YIJVIVj‘COS(ﬁu +8,-6;)=0
i 3
for i=1,23,..,N;-1

Ng
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for i — “
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where Pg; is an active power generation at bus i, Qg; is a
reactive power generation at bus i, Pp; is an active power
demand at bus i, Qp; is a reactive power demand at bus i;
Y;j, 8;; are magnitude and angle of Y, between bus i and
bus j, Ng is the number of bus, and Npg is the number of
PQ bus, respectively. It should be noted that these constraints
are dealt with during the process of activating the Newton-
Raphson power flow.

2.4 Inequality constraints

MOORPD inequality constraints indicate the limitations
of the equipment in the power system such as generation size,
voltage bus control size, tap setting transformers and shunt
reactive power sources. As a result, there are two types of
inequality constraints the inequality constraints on security
limits (dependent variables) and the inequality constraints on
control (independent) variable limits. The formers are given

by:

P < Qeieae < Qe ®)
g;in SQGi SQg:ax i=1’2’3""’NPQ (6)
Vprgin gVPQ Svpnéax i=12,3,...,Ng %)

While, the latters are are given by:
\’Qgrin < \IZSi < \/Lg?ax (53)
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Qmin < < (Omax (10)

comp,i — “<comp,i — “<comp,i

where QM™, QMAX are minimum and maximum of reactive
power generation at bus i; Vg?i”, V% are minimum and
maximum of magnitude voltage at bus i; Ti’”i", T™** are
minimum and maximum of a tap setting transformer at bus i;

gi,ﬁp'i, Comp,i @re minimum and maximum of a shunt
reactive power source at bus i, respectively.

3. Multi objective optimization

Multiobjective optimization is a design problem posed to
find optimal design variables such that optimizing more than
one objective functions. The optimal solutions are trade-off
between the design objectives; as a result, there have been
more than one optimum solution, traditionally called a set of
Pareto optimal solutions or a Pareto front in cases that they
are viewed in the objective function domain. A typical
mathematical formulation of multi objective optimization
can be written as:

f ={f,(x), f,(x)...., fy ()} 11)
Subject to
g,(x)<0 (12)
h(x)=0

where fy(x) is the number of objective functions;
X = (x4, %3, ..., x,)T is a vector of the decision variables;
g, (x) <0 and hy(x) =0 are inequality and equality
constraints respectively. The constraints define the feasible
region and vector x in the feasible region is called a feasible
solution.

4. Numerical experiment

This investigation is conducted using MATLAB. For
each test system, 10 independent runs for each optimizer
were operated. A personal computer (PC) with Intel Core i7-
4790K CPU 4.00 GHz 16.0 GB RAM was used. The IEEE
30-bus and the IEEE 57-bus power systems are employed as
the test problems of MOORPD. More details of MOEA
optimization settings are:

4.1 Parameter settings

The general parameters of various algorithms such as the
population size (Ny,,), the maximum number of iteration
(max;.,-) and the allowable archive size (Ny,..) for each test
system are pre-specified. For the IEEE 30-bus power system,
Npop = 20, maX;¢e, = 100, and Ny, = 500. For the IEEE
57-bus power system, Ny,, =30, max,., = 100, and
N4y = 500. The other parameters specifically used by a
particular optimizer are given below:

4.1.1 Multiobjective Differential Evolution Population-
based Increment Learning (MDEPBIL) setting [11] : initial
learning rate  (LR0)=0.25, mutation  probability
(Mut_prob)=0.05, mutation shift (Mut_shft)=0.20, crossover
probability (pc)=0.7, Scaling factor for differentail evolution
(DE) operator (F)=0.8,and probability of chosing element
from offspring in crossover (Cr)=0.5.
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4.1.2 Multiobjective Particle Swarm Optimisation (MOPSO)
setting [12] : inertia weight (w)=0.5, intertia weight damping
rate (wdamp)=0.99, personal learning coefficient (c1)=1,
global learning coefficient (c2)=2, number of grids per
dimension (nGrid)=7, inflation rate (alpha)=0.1, leader
selection pressure (beta)=2 deletion selection pressure
(gamma)=2, and mutation rate (mu)=0.1.

4.1.3 Multiobjective Population-based Increment Learning
(MOBPBIL) setting [13]: initial learning rate (LRo)=0.5,
mutation probability (Mut_prob)=0.05, and mutation shift
(Mut_shft)=0.2.

4.1.4 Multiobjective Differential Evolution (MODEMO)
setting [14]: crossover probability (pc)=0.7, Scaling factor
for differential evolution (DE) operator (F)=0.8, and
probability of choosing element from offspring in crossover
(Cr)=0.5.

4.1.5 Multiobjective Differential Evolution (MODES) setting
[14]: scaling factor for differential evolution (DE) operator
(F)=0.5, and Crossover probability in DE algorithm (Cr)=
0.2.

4.1.6 Multiobjective Niched Pareto Genetic Algorithm 11
using Real Codes( MORNPGA) setting [15]: crossing-over
probability (pc) = 1.0, and mutation probability (pm) = 0.5.

4.1.7 Multiobjective Non-Dominated Sorting Genetic
Algorithm 1l using binary codes (MORNSGA) setting
[15]:crossing-over probability (p) = 1.0, and mutation
probability (pm) = 0.1.

4.1.8 Multiobjective Grey Wolf Optimizer(MOGWO) setting
[16]: grid inflation parameter (alpha)=0.1, number of grids
per each dimension (nGrid)=10, leader selection pressure
parameter (beta)=4, and extra (to be deleted) repository
member selection pressure (gamma)=2.

4.1.9 Multiobjective  Particle Swarm  Optimisation
(MORPSO) setting [12]: starting inertia weight (Wst) = 0.75,
ending inertia weight (Wen) = 0.1, cognitive learning factor
(C1) =0.75, and social learning factor (C2) = 0.75.

4.1.10 Multiobjective  Population-Base  Incremental
Learning muliple prob vectors + crossing-over version using
binary codes (MORPESA) setting [17]: mutation
probability(Mut_prob)=0.1.

4.2 Test systems

For test system include IEEE 30-bus and the IEEE 57-
bus power systems.

4.2.1 IEEE 30 bus power system

The IEEE 30- bus power system comprises of 6
generators at bus 1, 2, 5, 8, 11 and 13 (See Figure 1). Bus 1
is set as the slack bus whereas the rest are generator bus
voltages. 4 under load tap setting transformers are used,
which are placed in line 6-9, 6-10, 4-12, and 28-27. The
shunt reactive power sources are placed in bus 10, 24 and 29.
There are 41 transmission lines, as shown in Figure 1. The
system data and initial operating conditions can be found in
[18]. The upper and lower limits of PVbus voltages, PQbus
voltages, and tap setting transformer (p.u.) are shown in
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Table 2. The upper and lower limits of control variables are
shown in Table 3.

Figure 1 Single diagram of the IEEE 30-bus power system
4.2.2 IEEE 57 bus power system

The IEEE 57- bus power system comprises of 7
generatorsatbus 1, 2, 3,6, 8, 9,and 12. The slack bus is Bus
1 whereas the rest are generator bus voltages. 17 under load
tap setting transformers are used, which are placed in line 4-
18, 4-18, 21- 20, 24- 25, 24-25, 24-26, 7-29, 34-32,11-41,
15-45, 14-46, 10-51, 13-49, 11-43, 40-56, 39-57, and 9-55.
The shunt reactive power sources are placed in bus 18, 25
and 53. 80 transmission lines are used. The system data and
initial operating conditions can be found in [19].The upper
and lower limits of PVbus voltages, PQbus voltages, and tap
setting transformer (p.u.) are shown in Table 2. The upper
and lower limits of control variables are shown in Table 3.

The details of the MOORPD test problems are given in
Table 1. The upper and lower limits of PVbus voltages,
PQbus voltages, and tap setting transformer (p.u.) are given
in Table 2, while the upper and lower limits of control
variables are shown in Table 3.

5. Results and discussion

After solving the IEEE 30-bus and IEEE 57-bus power
system for 10 optimization runs of 10 algorithms, the
comparative results are shown in Table 4 and Table5,
respectively. From the tables, the best optimizer is decided
based on the mean value of the hypervolume indicator.
Boldface numbers are used to indicate the best algorithm
which is MOGWO for both cases. For the measure of search
consistency, the most consistent method is still MOGWO.
The best Pareto fronts of the IEEE 30-bus and IEEE 57-bus
power systems obtained from the various MOEAs are shown
in Figure 2 and Figure 3, respectively. In the Figure 2, the
reference point is the active power loss of 16.2639 MW and
the voltage deviation of 0.1311 p.u., while the maximum and
minimum of the active power loss and the voltage deviations
are 16.271057 MW, 15.963755 MW, 0.131111 p.u. and
0.088702 p.u., respectively. In the Figure 3, the reference
point is the active power loss of 26.0324 MW and the
voltage deviation of 2.2511 p.u., while the maximum and
minimum of the active power loss and the voltage deviations
are 26.6715168 MW, 22.2612421 MW, 2.2511058 p.u. and
0.5062548 p.u., respectively. From both figures, it is seem
that MOGWO algorithm obtained the best Pareto-front.
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Table 1 The description of the test IEEE power system
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Description IEEE 30-bus IEEE 57-bus
No. of buses 30 57

No. of generator 6 80

No. of transformer 4 15

No. of shunt reactive 3 3

No. of branches 41 80

No. of control variable 13 25

No. of discrete variable 6 20

No. of equality constraints 60 114

No. of inequality constraints 125 245

Table 2 The upper and lower limits of PVbus voltages, PQbus voltages, and tap setting transformer (p.u.)

AL V™ Voo Voo T, ™
0.9 11 0.9 11 0.9 11
Table 3 The upper and lower limits of shunt reactive power source (p.u.)
IEEE30bus IEEE57bus
Bus Qtomp Qcom Bus Qeomp Qcomp
10 0 0.22 18 0 10
24 0 0.15 25 0 5.9
29 0 0.15 53 0 6.3
Table 4 Statistical comparison of result of the IEEE 30-bus power system with hypervolume
Algorithm Best Worst Mean Std.Dev.
MDEPBIL 0.0075164 0.0017472 0.0054576 0.002156
MOPSO 0.0100649 0.0058136 0.0079852 0.001398
MOBPBIL 0.0096932 0.0047553 0.0080790 0.001568
MODEMO 0.0092376 0.0016282 0.0067288 0.00234
MODEs 0.0113431 0.0064588 0.0082888 0.00124
MORNPGA 0.0074546 0.0044814 0.0061029 0.000945
MORNSGA 0.0083362 0.0030884 0.0063505 0.001680
MOGWO 0.0096330 0.0072013 0.0087575 0.000655
MORPSO 0.0089406 0.0065423 0.0078388 0.000733
MORPESAL1 0.0113197 0.0056585 0.0083801 0.00151
Table 5 Statistical comparison of result of the IEEE 57-bus power system with hypervolume
Algorithm Best Worst Mean Std.Dev.
MDEPBIL 5.627706 3.682647 4.539523 0.719524
MOPSO 2.543698 0.120526 1.593809 0.982869
MOBPBIL 6.071489 3.288047 4.120897 1.051255
MODEMO 5.554075 0.399714 2.903512 2.268346
MODEs 4.222762 3.833545 4.004724 0.145350
MORNPGA 4.787113 2.094060 3.190180 0.972534
MORNSGA 5.286547 3.743513 4.437886 0.565457
MOGWO 7.072235 3.411733 4.832789 0.961155
MOPSO 2.543698 0.120526 1.593809 0.982869
MORPESA1 4.728260 3.089275 3.621505 0.682074
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Figure 2 The best obtained Pareto-fronts for IEEE 30-bus
power system
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Figure 3 The best obtained Pareto-fronts for IEEE 57-bus
power system

6. Conclusions

In this paper, a comparative performance of MOEAS for
multi objective optimal reactive power dispatch has been
investigated. The MOORPD problem has two objective
functions that are active power loss and voltage deviation.
Based on the hypervolume comparison, it has been shown
that MOGWO s superior to the other MOEASs according to
the measures of a convergance rate and a search consistency
for both design cases. This investigation is said to be one of
the very first studies on MOORPD using MOEAs. The
obtained results can be used as the starting baseline for
performance comparison of MOEAs for MOORPD.
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