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Abstract 

 

In this paper, comparative performance of multiobjective evolutionary algorithms (MOEAs) for solving multiobjective optimal 

reactive power dispatch (MOORPD) problems has been studied. The standard IEEE 30-bus and 57-bus power systems are 

posed to optimize active power loss and voltage deviation. Design variables include generator bus voltages, tap setting 

transformers, and shunt reactive power sources whereas design constraints are lower and upper bounds of the variables. A 

number of MOEAs are implemented to solve the test problems and their performances are compared statistically. It is shown 

that multiobjective gray wolf optimizer (MOGWO) is superior to other MOEAs based upon the hypervolume indicator. The 

results can be set as the baseline for performance testing of MOEAs for such optimization problems. 
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1. Introduction 
     
 In general, an electric power transmission system suffers 

from the problems of the voltage drop at line end, high active 

power loss as well as low stability from interference.  To 

reduce such undesirable phenomena, the Multi Objective 

Optimal Reactive Power Dispatch (MOORPD)  problem is 

usually assigned and solved so as to find the best possible 

solutions dealing with the problems.  Generally, the aim of 

the MOORPD is to minimize the active power loss (Ploss) and 

voltage profile improvement (voltage deviation 

minimization: VD). The MOORPD is a process to control 

lower and upper limits of generator bus voltages, tap setting 

transformers, and shunt reactive power sources, while 

satisfying large number of equality and inequality constraints 

[1].  Several traditional techniques such as nonlinear 

programming (NLP) [2], quadratic programming (QP)[3], 

and an interior point method [4] have been used to solve 

single objective ORPD problems. The use of meta-heuristics 

such as genetic algorithm (GA) [5], differential evolution 

(DE) [6], particle swarm optimization (PSO) [7] etc., has also 

been reported. However, it has been found that there are 

needs to optimize several objective function at the same time 

as stated earlier. Thus, the use of multiobjective optimizers 

for MOORPD is of importance. In the literature, several 

MOEAs have been used to solve the MOORPD problems 

such as Non-dominated sorting genetic algorithm-II (NSGA-

II) [8], multi objective particle swarm (MOPSO) [9], multi 

objective differential evolution (MODE)[10] etc. 

Nevertheless, since the last few decades, there have been a 

great many of MOEAs being developed and it is interesting 

to test them when solving MOORPD so that some top 

performers can be figured out.  

      In this paper, a variety of MOEAs have been employed 

to solve MOORPD problems. The design problems include 

the standard IEEE 30-bus and the IEEE 57-bus power system 

while design objectives are active power loss and voltage 

deviation. The power flow calculation is carried out by using 

Newton-Raphson Power Flow (NRPF). The optimum results 

obtained from the various optimizers are compared based on 

the hypervolume indicator and discussed. 
 

2. Problem formulation 
 

2.1 Objective functions 
 

      The design problem in this study has two objective 

functions including active power loss and voltage deviations, 

which can be detailed as:  
 

2.1.1 Active power loss minimization 
 

       This aim is to minimize the system active power loss in 

transmission lines which can be expressed as. 
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where 𝑉𝑖 , 𝛿𝑖 are voltage and phase angle of bus i; 𝑉𝑗 , 𝛿𝑗  are 

voltage and phase angle of bus j, g
k 

is a conductance of 

transmission line k, nline is a number of transmission lines. 

 

2.1.2 Voltage deviations minimization 

 

     This objective is to minimize the load bus voltage 

deviations between the normal value and those obtained 

from calculation. It can be expressed as: 
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where V
k 
is voltage magnitude of bus k. V

dk  is desired voltage 

magnitude of bus k ,usual 1.0 per unit . nbus is a number of 

load buses voltage. 

 

2.3 Equality constraints 

 

      The equality constraints of the ORPD are real and 

reactive power balance at each node i.e. load flow equations 

given by g(x), 
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where 𝑃𝐺𝑖  is an active power generation at bus i, 𝒬𝐺𝑖  is a 

reactive power generation at bus i, 𝑃𝐷𝑖  is an active power 

demand at bus i, 𝒬𝐷𝑖 is a reactive power demand at bus i; 

𝑌𝑖𝑗, 𝜃𝑖𝑗 are magnitude and angle of  𝑌𝑏𝑢𝑠 between bus i and 

bus j, 𝑁𝐵 is  the number of bus, and  𝑁𝑃𝒬 is  the number of 

𝑃𝒬 bus, respectively. It should be noted that these constraints 

are dealt with during the process of activating the Newton-

Raphson power flow.  

 

2.4 Inequality constraints 

       

 MOORPD inequality constraints indicate the limitations 

of the equipment in the power system such as generation size, 

voltage bus control size, tap setting transformers and shunt 

reactive power sources.  As a result, there are two types of 

inequality constraints the inequality constraints on security 

limits (dependent variables) and the inequality constraints on 

control ( independent)  variable limits.The formers are given 

by: 
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While, the latters are are given by: 
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where  𝒬𝐺𝑖
𝑚𝑖𝑛, 𝒬𝐺𝑖

𝑚𝑎𝑥 are minimum and maximum of reactive 

power generation at bus i; 𝑉𝐺𝑖
𝑚𝑖𝑛, 𝑉𝐺𝑖

𝑚𝑎𝑥  are minimum and 

maximum of magnitude voltage at bus i; 𝑇𝑖
𝑚𝑖𝑛, 𝑇𝑖

𝑚𝑎𝑥  are 

minimum and maximum of a tap setting transformer at bus i; 

𝒬𝑐𝑜𝑚𝑝,𝑖
𝑚𝑖𝑛 , 𝒬𝑐𝑜𝑚𝑝,𝑖

𝑚𝑎𝑥 are minimum and maximum of a shunt 

reactive power source at bus i, respectively.    

 

3. Multi objective optimization 

      

 Multiobjective optimization is a design problem posed to 

find optimal design variables such that optimizing more than 

one objective functions. The optimal solutions are trade-off 

between the design objectives; as a result, there have been 

more than one optimum solution, traditionally called a set of 

Pareto optimal solutions or a Pareto front in cases that they 

are viewed in the objective function domain. A typical 

mathematical formulation of multi objective optimization 

can be written as: 

 

 1 2{ , ( ),..., ( )}Nf f ff x x x    (11) 

Subject to 

 

( ) 0

( ) 0

i

i

g

h





x

x
 

  (12) 

 where 𝑓𝑁(𝐱)  is the number of objective functions;                 

𝐱 = (𝑥1, 𝑥2, … , 𝑥𝑛)𝑇  is a vector of the decision variables; 

g
i

(𝐱) ≤ 0  and  ℎ𝑖(𝐱) = 0 are inequality and equality 

constraints respectively. The constraints define the feasible 

region and vector x in the feasible region is called a feasible 

solution.  

 

4. Numerical experiment 

     

 This investigation is conducted using MATLAB. For 

each test system, 10 independent runs for each optimizer 

were operated. A personal computer (PC) with Intel Core i7-

4790K CPU 4.00 GHz 16.0 GB RAM was used. The IEEE 

30-bus and the IEEE 57-bus power systems are employed as 

the test problems of MOORPD. More details of MOEA 

optimization settings are: 

 

4.1 Parameter settings 

 

       The general parameters of various algorithms such as the 

population size (𝑁𝑝𝑜𝑝), the maximum number of iteration 

(max𝑖𝑡𝑒𝑟) and the allowable archive size (𝑁𝐴𝑟𝑐) for each test 

system are pre-specified. For the IEEE 30-bus power system, 

𝑁𝑝𝑜𝑝 = 20, max𝑖𝑡𝑒𝑟 = 100, and 𝑁𝐴𝑟𝑐 = 500. For the IEEE 

57-bus power system, 𝑁𝑝𝑜𝑝 = 30 ,  max𝑖𝑡𝑒𝑟 = 100 , and 

𝑁𝐴𝑟𝑐 = 500. The other parameters specifically used by a 

particular optimizer are given below: 

 

4.1.1 Multiobjective Differential Evolution Population-

based Increment Learning (MDEPBIL)  setting [11] : initial 

learning rate (LR0)=0.25, mutation probability 

(Mut_prob)=0.05, mutation shift (Mut_shft)=0.20, crossover 

probability (pc)=0.7, Scaling factor for differentail evolution 

(DE) operator (F)=0.8,and probability of chosing element 

from offspring in crossover (CR)=0.5. 

mailto:CPU@4.00
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4.1.2 Multiobjective Particle Swarm Optimisation (MOPSO) 

setting [12] : inertia weight (w)=0.5, intertia weight damping 

rate (wdamp)=0.99, personal learning coefficient (c1)=1, 

global learning coefficient (c2)=2, number of grids per 

dimension (nGrid)=7, inflation rate (alpha)=0.1, leader 

selection pressure (beta)=2  deletion selection pressure 

(gamma)=2, and mutation rate (mu)=0.1. 

 

4.1.3 Multiobjective Population-based Increment Learning 

(MOBPBIL) setting [13]: initial learning rate (LR0)=0.5,  

mutation probability (Mut_prob)=0.05, and mutation shift 

(Mut_shft)=0.2. 

 

4.1.4 Multiobjective Differential Evolution (MODEMO) 

setting [14]: crossover probability (pc)=0.7, Scaling factor 

for differential evolution (DE) operator (F)=0.8, and 

probability of choosing element from offspring in crossover 

(CR)=0.5. 

 

4.1.5 Multiobjective Differential Evolution (MODEs) setting 

[14]:  scaling factor for differential evolution (DE) operator 

(F)=0.5, and Crossover probability in DE algorithm (CR)= 

0.2. 

 

4.1.6 Multiobjective Niched Pareto Genetic Algorithm II 

using Real Codes( MORNPGA) setting [15]: crossing-over 

probability (pc) = 1.0, and mutation probability (pm) = 0.5. 

 

4.1.7 Multiobjective Non-Dominated Sorting Genetic 

Algorithm II using binary codes (MORNSGA) setting 

[15]:crossing-over probability (pc) = 1.0, and mutation 

probability (pm) = 0.1. 

 

4.1.8 Multiobjective Grey Wolf Optimizer(MOGWO) setting 

[16]: grid inflation parameter (alpha)=0.1, number of grids 

per each dimension (nGrid)=10, leader selection pressure 

parameter (beta)=4, and extra (to be deleted) repository 

member selection pressure (gamma)=2. 

 

4.1.9 Multiobjective Particle Swarm Optimisation 

(MORPSO) setting [12]:  starting inertia weight (Wst) = 0.75, 

ending inertia weight (Wen) = 0.1, cognitive learning factor 

(C1) = 0.75, and social learning factor (C2) = 0.75. 

 

4.1.10 Multiobjective Population-Base Incremental 

Learning muliple prob vectors + crossing-over version using 

binary codes (MORPESA) setting [17]: mutation 

probability(Mut_prob)=0.1. 

 

4.2 Test systems 

 

       For test system include IEEE 30-bus and the IEEE 57-

bus power systems. 

 

4.2.1 IEEE 30 bus power system 

 

     The IEEE 30- bus power system comprises of 6 

generators at bus 1, 2, 5, 8, 11 and 13 (See Figure 1).  Bus 1 

is set as the slack bus whereas the rest are generator bus 

voltages.  4 under load tap setting transformers are used, 

which are placed in line 6-9, 6-10, 4-12, and 28-27.  The 

shunt reactive power sources are placed in bus 10, 24 and 29. 

There are 41 transmission lines, as shown in Figure 1.  The 

system data and initial operating conditions can be found in 

[18]. The upper and lower limits of PVbus voltages, PQbus 

voltages, and tap setting transformer (p.u.) are shown in 

Table 2. The upper and lower limits of control variables are 

shown in Table 3. 

 
 

Figure 1 Single diagram of the IEEE 30-bus power system 

 

4.2.2 IEEE 57 bus power system 

 

      The IEEE 57- bus power system comprises of 7 

generators at bus 1, 2, 3, 6, 8, 9, and 12.  The slack bus is Bus 

1 whereas the rest are generator bus voltages.  17 under load 

tap setting transformers are used, which are placed in line 4-

18, 4-18, 21-20, 24-25, 24-25, 24-26, 7-29, 34-32, 11-41, 

15-45, 14-46, 10-51, 13-49, 11-43, 40-56, 39-57, and 9-55. 

The shunt reactive power sources are placed in bus 18, 25 

and 53.  80 transmission lines are used. The system data and 

initial operating conditions can be found in [19].The upper 

and lower limits of PVbus voltages, PQbus voltages, and tap 

setting transformer (p.u.) are shown in Table 2. The upper 

and lower limits of control variables are shown in Table 3. 

      The details of the MOORPD test problems are given in 

Table 1.  The upper and lower limits of PVbus voltages, 

PQbus voltages, and tap setting transformer (p.u.) are given 

in Table 2, while the upper and lower limits of control 

variables are shown in Table 3. 

 

5. Results and discussion 
     

 After solving the IEEE 30-bus and IEEE 57-bus power 

system for 10 optimization runs of 10 algorithms, the 

comparative results are shown in Table 4 and Table5, 

respectively.   From the tables, the best optimizer is decided 

based on the mean value of the hypervolume indicator. 

Boldface numbers are used to indicate the best algorithm 

which is MOGWO for both cases. For the measure of search 

consistency, the most consistent method is still MOGWO. 

The best Pareto fronts of the IEEE 30-bus and IEEE 57-bus 

power systems obtained from the various MOEAs are shown 

in Figure 2 and Figure 3, respectively. In the Figure 2, the 

reference point is the active power loss of 16.2639 MW and 

the voltage deviation of 0.1311 p.u., while the maximum and 

minimum of the active power loss and the voltage deviations 

are 16.271057 MW, 15.963755 MW, 0.131111 p.u. and 

0.088702 p.u., respectively. In the Figure 3, the reference 

point is the active power loss of 26.0324 MW and  the 

voltage deviation of 2.2511 p.u., while the maximum and 

minimum of the active power loss and the voltage deviations 

are 26.6715168 MW, 22.2612421 MW, 2.2511058 p.u. and 

0.5062548 p.u., respectively. From both figures, it is seem 

that MOGWO algorithm obtained the best Pareto-front. 
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Table 1 The description of the test IEEE power system 

 

Description IEEE 30-bus IEEE 57-bus 

No. of buses 30 57 

No. of generator 6 80 

No. of transformer 4 15 

No. of shunt reactive 3 3 

No. of branches 41 80 

No. of control variable 13 25 

No. of discrete variable 6 20 

No. of equality constraints 60 114 

No. of inequality constraints 125 245 

 

Table 2 The upper and lower limits of PVbus voltages, PQbus voltages, and tap setting transformer (p.u.) 

 
min

GV  
max

GV  
min

PQV  
max

PQV  min

iT  
max

iT  

0.9 1.1 0.9 1.1 0.9 1.1 

 

Table 3 The upper and lower limits of shunt reactive power source (p.u.) 

 

IEEE30bus IEEE57bus 

Bus 
min

compQ  max

compQ  Bus 
min

compQ  max

compQ  

10 0 0.22 18 0 10 

24 0 0.15 25 0 5.9 

29 0 0.15 53 0 6.3 

 

Table 4 Statistical comparison of result of the IEEE 30-bus power system with hypervolume 

 

Algorithm Best Worst Mean Std.Dev. 

MDEPBIL 0.0075164 0.0017472 0.0054576 0.002156 

MOPSO 0.0100649 0.0058136 0.0079852 0.001398 

MOBPBIL 0.0096932 0.0047553 0.0080790 0.001568 

MODEMO 0.0092376 0.0016282 0.0067288 0.00234 

MODEs 0.0113431 0.0064588 0.0082888 0.00124 

MORNPGA 0.0074546 0.0044814 0.0061029 0.000945 

MORNSGA 0.0083362 0.0030884 0.0063505 0.001680 

MOGWO 0.0096330 0.0072013 0.0087575 0.000655 

MORPSO 0.0089406 0.0065423 0.0078388 0.000733 

MORPESA1 0.0113197 0.0056585 0.0083801 0.00151 

 

Table 5 Statistical comparison of result of the IEEE 57-bus power system with hypervolume 

 

Algorithm Best Worst Mean Std.Dev. 

MDEPBIL 5.627706 3.682647 4.539523 0.719524 

MOPSO 2.543698 0.120526 1.593809 0.982869 

MOBPBIL 6.071489 3.288047 4.120897 1.051255 

MODEMO 5.554075 0.399714 2.903512 2.268346 

MODEs 4.222762 3.833545 4.004724 0.145350 

MORNPGA 4.787113 2.094060 3.190180 0.972534 

MORNSGA 5.286547 3.743513 4.437886 0.565457 

MOGWO 7.072235 3.411733 4.832789 0.961155 

MOPSO 2.543698 0.120526 1.593809 0.982869 

MORPESA1 4.728260 3.089275 3.621505 0.682074 
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Figure 2 The best obtained Pareto-fronts for IEEE 30-bus 

power system 

 

 
 

Figure 3 The best obtained Pareto-fronts for IEEE 57-bus 

power system 

 

6. Conclusions 

     

 In this paper, a comparative performance of MOEAS for 

multi objective optimal reactive power dispatch has been 

investigated. The MOORPD problem has two objective 

functions that are active power loss and voltage deviation.  

Based on the hypervolume comparison, it has been shown 

that MOGWO is superior to the other MOEAs according to 

the measures of a convergance rate and a search consistency 

for both design cases. This investigation is said to be one of 

the very first studies on MOORPD using MOEAs. The 

obtained results can be used as the starting baseline for 

performance comparison of MOEAs for MOORPD. 
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