

## Turbid Water Clarification Using Extraction of Cowpea Seeds

A.G. Liew<sup>1</sup>, M.J.M.M. Noor<sup>2</sup> and Y.M. Ng<sup>1</sup>

<sup>1</sup>Department of Chemical & Environmental Engineering, Faculty of Engineering,  
Universiti Putra Malaysia, Malaysia. 43400 UPM Serdang Selangor Malaysia

E-mail: ghaniey@eng.upm.edu.my

<sup>2</sup> Department of Civil Engineering, Faculty of Engineering,  
Universiti Putra Malaysia, Malaysia. 43400 UPM Serdang Selangor Malaysia

### Abstract

Coagulation is an important process in water treatment. The common chemical coagulant used in the water treatment is alum. However, since the publicity of *Moringa Oleifera* seed as natural coagulant, researchers have tried to exploit the possible usage of natural coagulants as well as developing new natural coagulants from other plants. The potential of a locally available vegetable, cowpea, to act as natural coagulant was studied using jar test. Turbid water used was prepared by adding kaolin to distilled water. It was discovered that cowpea alone could not remove the turbidity. However, the coagulation activity was remarkable only when bivalence cation such as  $Ca^{2+}$  and  $Mn^{2+}$  were added. In this study, the active component of cowpea was extracted using NaCl salt solution. The cowpea extract achieved an average turbidity removal efficiency of 80%.

**Key words:** Clarification, turbidity, NaCl extraction, jar test, cowpea

## Introduction

Water born diseases are one of the main problems in developing countries, millions of people are compelled to use contaminated water. However in many communities of these countries water clarification methods like flocculation, coagulation and sedimentation are often inappropriate because of the high cost and low availability of chemical coagulants. The use of natural materials of plant origin to clarify turbid water is not a new idea. Among all the plant materials that have been tested over the years, the seeds from *Moringa Oleifera* have been shown to be one of the most effective as a primary coagulant for water treatment and can be compared to those as of alum (conventional chemical coagulant). However, alum in water treatment can cause Alzheimer's disease. Its residual in water also triggers similar health related problems. The coagulation effect of *Moringa Oleifera* seeds receives a great deal of attention. Among others were on coagulation active agents, mechanism of coagulation and improve method to extract coagulation active component.

Cowpea [*Vigna unguiculata* L.Walp.], an annual legume, is also commonly referred to as southern pea, blackeye pea, crowder pea, lubia, niebe, coupe or frijole. Cowpea originated in Africa and is widely grown in Africa, Latin America, Southeast Asia and in the southern United States. It is chiefly used as a grain crop, for animal fodder, or as a vegetable. It often called *long bean* in eastern countries, is a potential natural coagulant. Cowpea has a shape of smooth pale green pods. It is frequently used in oriental cooking. Cowpea can grow up to 40cm. Some varieties such as yard-cowpeas can even grow longer. It is a cheap priced vegetable that grows in Malaysia and ready to harvest in just around 50~60 days.

Generally, coagulants are used for (physical and chemical) purification of turbid raw waters. At very high turbidity the water can no longer be adequately treated by using filters. Coagulants have to be applied to transform water constituents into forms that can be separated out physically. In large scale treatment plants Aluminium Sulphate or alum is used as a conventional chemical coagulant. As an alternative to conventional coagulants, cowpea seeds may be used as a natural coagulant (primary coagulant) in household water treatment as well as in the community water treatment systems.

The purpose of this study is hence to examine the quality of the turbid water treated by clarification process using cowpea seeds to explore its potentiality and compare it with that of the alum treated water.

## Materials and Methods

### *Model Turbid Water*

For the purpose of this study, a synthetic turbid water was prepared by adding kaolin of laboratory grade into distilled water. Coagulation study was conducted based on this turbid water. Two grams of kaolin were added into a beaker containing 800ml distilled water. The suspension was stirred at 100 rpm for 30

minutes using jar test apparatus for uniform dispersion of the particles. The suspension was then allowed to stand for at least 20 hours to allow for complete hydration of the kaolin. This was used as the stock solution for the preparation of water samples for the coagulation tests. From the stock solution, turbidity of 100 NTU was prepared by serial dilution of the stock solution. Turbidity was measured with a Hach turbidimeter Model 2100N. Four types of bivalence cationic salts i.e.  $\text{FeSO}_4 \cdot 7\text{H}_2\text{O}$ ,  $\text{MnSO}_4 \cdot 1\text{H}_2\text{O}$ ,  $\text{CaCl}_2 \cdot 2\text{H}_2\text{O}$  and  $\text{Ca}(\text{OH})_2$  were also added into the diluted turbid water accordingly.

#### **Preparation Of Cowpea suspension**

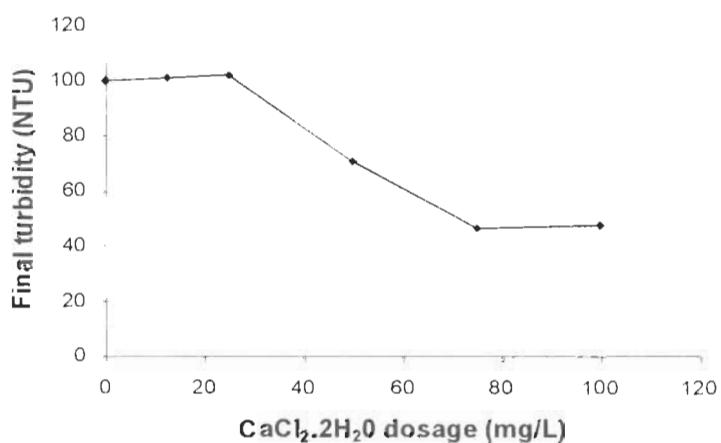
Cowpea used for this study was procured from local market. First, it was sun-dried for two weeks and heated for half an hour in an oven at 55°C before ground into powder using ordinary food blender. Active coagulation component of cowpea was extracted using 1 mol/l. sodium chloride (NaCl) solution. One gram ground cowpea and 5.85g NaCl salt were added into 100ml distilled water and stirred at 100rpm for 30 minutes using jar test apparatus to extract the active ingredient. Then the residual was filtered using a Whatman filter paper. The filtered green coloured stock solution was used as coagulant. The stock solution was prepared fresh for use and when needed since deterioration sets after extended period of storage.

#### **Preparation Of Alum**

Alum  $[\text{Al}_2(\text{SO}_4)_3 \cdot 18\text{H}_2\text{O}]$  was used to compare the performance of the cowpea as a potential coagulant. The alum solution used for the comparison test was prepared by adding 10 gram of alum into 1 litre distilled water.

#### **Coagulation Test**

Coagulation tests were conducted using jar test apparatus of Phipps & Bird having a base floe illuminator. Six beakers were filled with 400 ml of the suspension to be tested and were agitated simultaneously at a speed varying from 0 to 400 rpm, and time control up to 1 hour.


First, a rapid mix at 100 rpm for 2 minutes at which during this time, the required coagulant dosage was quickly added into all beakers using pipette. Then followed by a slow mix of 30 minutes at 40 rpm. After that, followed by 30 minutes of sedimentation.

Comparative coagulation tests were run under the same conditions as described above but using alum solution instead of cowpea.

### **Results and Discussion**

It was discovered that *Moringa Oleifera* seed contains two different active coagulation components. One can dissolve in distilled water and the other can dissolved in NaCl solution contained 1 mol/l. NaCl. The NaCl extracted *Moringa Oleifera* coagulant showed a remarkable coagulation activity when the turbid water contained strong bivalence cation such as  $\text{Mg}^{2+}$ ,  $\text{Ca}^{2+}$ , or  $\text{Ba}^{2+}$ . These bivalence cations might electrically absorbed to the negatively charged *Moringa Oleifera*

active component to form insoluble net-like structure to capture the suspended kaolin particle. On the other hand, the univalent cation cannot form net because one valence cannot connect to two active components together. A mechanism called "enmeshment" mechanism was therefore been suggested. [Ndabigengesere *et al.*, 1995; Okuda *et al.*, 2001].



**Fig 1. Effect of  $\text{CaCl}_2 \cdot 2\text{H}_2\text{O}$  with 40 mg/L cowpea suspensions on turbid water with initial turbidity of 100 NTU.**

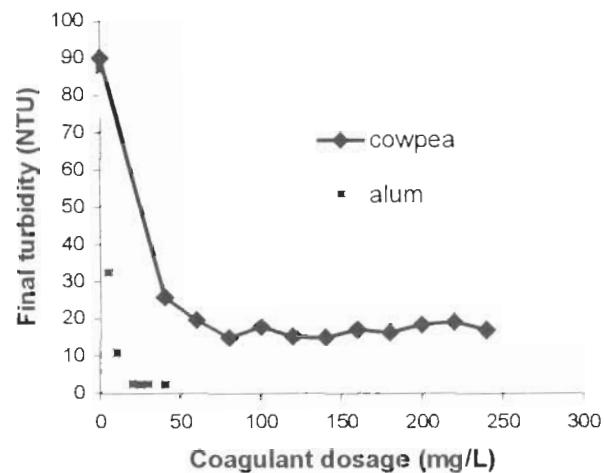
Earlier study on *cowpea* indicated that it did not dissolve completely in water and hence did not contain water soluble coagulation active component. When 1 mol/L NaCl extracted cowpea suspension was used, it showed coagulating characteristics when the model turbid water contain sufficient dosage of CaCl<sub>2</sub> salt. This can be seen in Fig. 1. below.

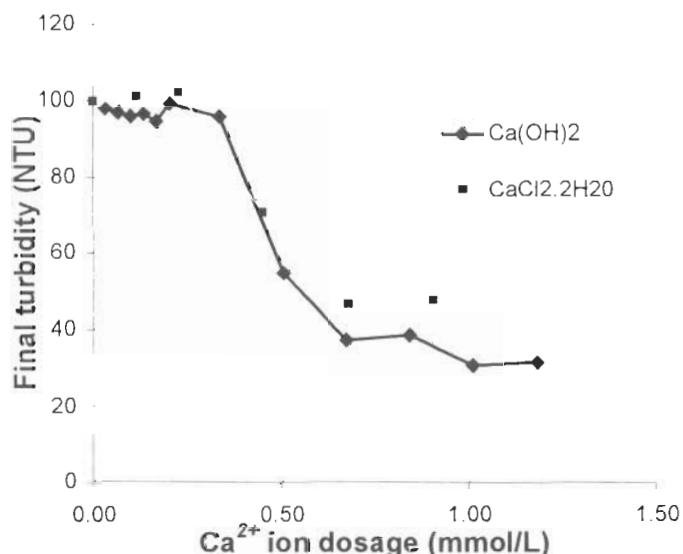
The calcium chloride used in the study was calcium dihydrate [ $\text{CaCl}_2 \cdot 2\text{H}_2\text{O}$ ]. Fig. 1 shows that the optimum dosage of  $\text{CaCl}_2 \cdot 2\text{H}_2\text{O}$  was found to be at 75 mg/L. A minimum dosage around 25–50 mg/L of  $\text{CaCl}_2 \cdot 2\text{H}_2\text{O}$  was needed for coagulation. This is equivalent to 0.23–0.45 mmol/L  $\text{CaCl}_2 \cdot 2\text{H}_2\text{O}$ . This finding was comparable with results obtained by Okuda *et al.* (2001) that at least 0.2 mmol/L  $\text{Ca}^{2+}$  was necessary for coagulation using salt extracted *Moringa Oleifera* coagulant.

Bivalence cation, such as  $\text{Ca}^{2+}$  by itself can react as coagulant agent at a sufficient dosage because it can destabilize negatively charged colloid. However, the possibility of that, flocs formed due to  $\text{CaCl}_2$  instead of cowpea was not true. Jar test was conducted using  $\text{CaCl}_2 \cdot 2\text{H}_2\text{O}$  as coagulant without cowpea to justify this hypothesis. The results have shown that at least 125 mg/L  $\text{CaCl}_2 \cdot 2\text{H}_2\text{O}$  was needed to form the flocs.

However, in this study of using cowpea, it showed that 75 mg/L  $\text{CaCl}_2 \cdot 2\text{H}_2\text{O}$  was enough for coagulation purposes. Thus, cowpea has coagulation

effect up to a certain degree. Cowpea was then further studied by varying its dosage at 75mg/L of  $\text{CaCl}_2 \cdot 2\text{H}_2\text{O}$  to obtain its optimum coagulation condition as shown in Fig.2.

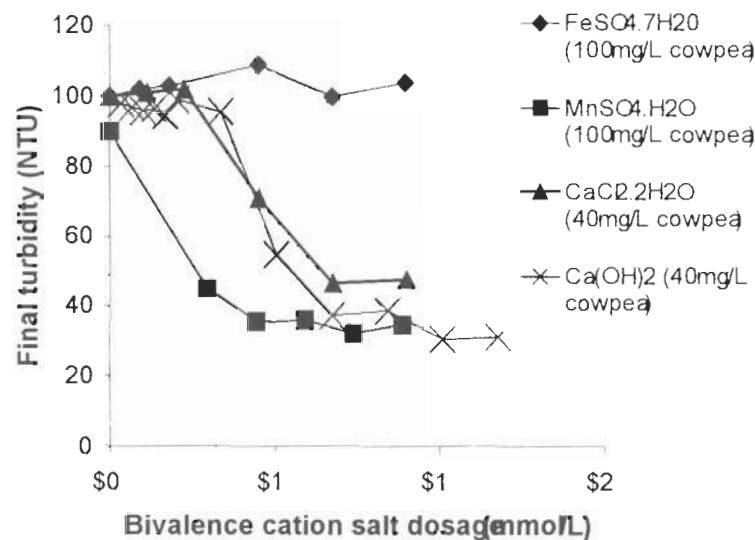




Fig. 2. Coagulating activity of (a) cowpea with 75mg/L calcium chloride [ $\text{CaCl}_2 \cdot 2\text{H}_2\text{O}$ ], and (b) alum with 10mg/L hydrated lime [ $\text{Ca}(\text{OH})_2$ ].

Unfortunately, the turbidity removal efficiency of cowpea was far behind of that compared to alum. At optimum dosage, cowpea achieved an average turbidity removal efficiency of 80% whereas alum achieved a higher percentage of 97.2%.

Observation has showed that the flocs formed faster as the cowpea dosage was increased. However, the trend line of cowpea suggested that the optimum cowpea dosage was around 100 mg/L. There was no significance improvement with the increase of cowpea dosages after this. This was mainly because of the coagulation activity depended on both cowpea dosages and  $\text{CaCl}_2 \cdot 2\text{H}_2\text{O}$  dosages. For cowpea dosages of 100 mg/L or above, the 75 mg/L  $\text{CaCl}_2 \cdot 2\text{H}_2\text{O}$  was fully utilized to achieve final turbidity of around 16 NTU. Similarly, at  $\text{CaCl}_2 \cdot 2\text{H}_2\text{O}$  dosage of 80 mg/L or above, the 40 mg/L cowpea was fully utilized to achieve final turbidity of 46.6 NTU (Figure 1). Hence, the turbidity removal efficiency using cowpea as shown in Figure 2 will be improved by increasing the calcium chloride dosages. On the other hand, the turbidity removal efficiency in Figure 1 will be improved as well by increasing the cowpea dosages.

It must be noted that the flocs formation using cowpea do not settled completely within 30 minutes. The complete sedimentation process took approximately 1 ½ hours. It was not due to the flocs size because the flocs size were comparable to those at optimum alum dosage. It may be possible that the flocs using cowpea is lighter in weight as compared those using alum.


The study of cowpea was repeated using hydrated lime  $[\text{Ca(OH)}_2]$  to replace  $\text{CaCl}_2$ . Interesting result was obtained as shown in Fig. 3. Although lime is not a true coagulant, it is known as coagulant aid and has certain turbidity removal ability. However, in spite of coagulation effect of lime, it showed a similar turbidity removal trend line when compared with  $\text{CaCl}_2$  at the same molar dosage as can be seen in Fig. 3. Its difference only became significant when  $\text{Ca(OH)}_2$  dosage was above 0.5 mmol/L. This suggested that cowpea depended on bivalence cation  $\text{Ca}^{2+}$  to form the flocs but not anion  $\text{Cl}^-$  or  $\text{OH}^-$ . It was very similar to the criteria suggested by Okuda et al. (2001) for their "enmeshment" coagulation mechanism for *Moringa Oleifera* seed coagulation. Thus, it suggested that cowpea may have the same "enmeshment" mechanism.



**Fig. 3. Comparison of the turbidity removal by 40 mg/L cowpea coagulant, with  $\text{Ca}^{2+}$  ion from two different salts: (a) hydrated lime  $[\text{Ca(OH)}_2]$  and (b) calcium chloride  $[\text{CaCl}_2 \cdot 2\text{H}_2\text{O}]$ .**

Besides  $\text{Ca}^{2+}$ ,  $\text{Ba}^{2+}$  and  $\text{Mg}^{2+}$  also showed a remarkable coagulating activity. For this study, attention was mainly paid to bivalence cations that contained in raw water. If there are suitable bivalence cations existing in raw water, this means that cowpea can be used in raw water treatment directly, without necessity to add extra bivalence cations into the raw water. The bivalence cations that matched this purpose were  $\text{Ca}^{2+}$ ,  $\text{Mg}^{2+}$ ,  $\text{Fe}^{2+}$  and  $\text{Mn}^{2+}$ . However, ferrous and manganese are two major parameters need to be removed from raw water for the purpose of water treatment. Their presence in raw water is often significant. For  $\text{Ca}^{2+}$  and  $\text{Mg}^{2+}$ , WHO Water Quality Standard stated that the maximum allowable concentration of calcium ion is 200mg/L and magnesium ion is 150mg/L [Nik

Fuaad, 1990]. According to Ndabigengesere and Narasiah (1998), Sherbrooke tap water contained 48.0mg/L  $\text{Ca}^{2+}$  and 21.0mg/L  $\text{Mg}^{2+}$ . This concentration may not true for Malaysia scenario but it is true that raw water contained  $\text{Ca}^{2+}$  and  $\text{Mg}^{2+}$  (Brian, 1979). Even if the concentration of these four ions is low in Malaysian raw water, the total concentration of these four ions might be still sufficient for coagulation using cowpea. Since Okuda *et al.* (2001) already justified that  $\text{Ca}^{2+}$  and  $\text{Mg}^{2+}$  can caused remarkable coagulation activity, the study will also examined on other bivalence cations such as  $\text{Fe}^{2+}$  and  $\text{Mn}^{2+}$ . Ferrous sulphate  $[\text{FeSO}_4 \cdot 7\text{H}_2\text{O}]$  and manganese (II) sulphate  $[\text{MnSO}_4 \cdot \text{H}_2\text{O}]$  were chosen in this study. This was because these two salts are easily dissolved in water. Study showed that cowpea formed flocs with  $\text{Mn}^{2+}$  but not  $\text{Fe}^{2+}$  as seen in Fig.4.



**Fig. 4:** The effect of different bivalence cation salts on turbidity removal using cowpea: (a) ferrous sulphate  $[\text{FeSO}_4 \cdot 7\text{H}_2\text{O}]$  with 100 mg/L cowpea extract, (b) manganese (II) sulphate  $[\text{MnSO}_4 \cdot \text{H}_2\text{O}]$  with 100 mg/L cowpea extract, (c) calcium chloride  $[\text{CaCl}_2 \cdot 2\text{H}_2\text{O}]$  with 40 mg/L cowpea extract, and (d) hydrated lime  $[\text{Ca}(\text{OH})_2]$  with 40 mg/L cowpea extract.

Overall Fig. 4 showed that manganese (II) sulphate  $[\text{MnSO}_4 \cdot \text{H}_2\text{O}]$  has surprisingly coagulation effect when used with cowpea. On the other hand, ferrous sulphate  $[\text{FeSO}_4 \cdot 7\text{H}_2\text{O}]$ , a well-known chemical coagulant other than alum, showed low coagulation effect. Small flocs were formed at the dosage of 0.67mmol/L  $\text{FeSO}_4 \cdot 7\text{H}_2\text{O}$ . Ferrous salt performed the charge neutralization coagulation mechanism. This mechanism needs alkalinity in the water. So it was possible that the coagulation activity was low because there was insufficient alkalinity. At this stage, it was deduced that ferrous salt will not help coagulation using cowpea,

whereas manganese (II) ion and calcium ion tested were being able to formed floes when *cowpea* was used. These two cations may have concentration lower than expected in Malaysian raw water, or it may not be in free cation condition (may be in complex structure) that can react with cowpea.

Fig. 4 also showed that the coagulation using cowpea does not depend on pH. It is clear in this study that floes were formed when calcium chloride, manganese sulphate or hydrated lime was added. Turbid water was acidic when  $\text{Cl}^-$  or  $\text{SO}_4^{2-}$  is added, but it became alkaline when  $\text{OH}^-$  was added. Since floes formed in both acidic and alkaline cases, it indicated that coagulation using cowpea did not depend on pH. Also, final pH of treated water was in the range of 6.88~7.01. It suggested that coagulation using cowpea do not significantly affect the pH value.

### **Effect of NaCl**

The cowpea active component was extracted using NaCl, and  $\text{Na}^+$  is a univalent cation. Thus, NaCl would have certain coagulating effect. In fact, in the study of colloid science, the coagulation power of NaCl is been tested long ago [Jirgensons and Straumanis, 1962]. It showed that univalent cation such as NaCl has coagulation power 20~80 times weaker than bivalence cation salt such as  $\text{CaCl}_2$ . However, the coagulation effect of cations mixture was additive [Jirgensons and Straumanis, 1962]. It means that if NaCl has coagulation power of 0.1 unit, and  $\text{CaCl}_2$  has coagulation power of 1.0 unit, the mixture of NaCl and  $\text{CaCl}_2$  will have total coagulation power of 1.1 unit. Hence the NaCl contained in cowpea will enhance the charge neutralization coagulation effect of  $\text{Ca}^{2+}$ . However, the coagulating power of NaCl was not high. It would not enhance the coagulation power of  $\text{CaCl}_2$  to a significant degree. Hence, if mixture of NaCl and  $\text{CaCl}_2$  were to cause the charge neutralization mechanism in the study, it would not be dominant mechanism in the coagulation process. The dominant mechanism still was the reaction between cowpea and  $\text{CaCl}_2$ .

Although NaCl did not help much in coagulation, it can extract the active coagulation agent in cowpea. The NaCl increases the affinity of the distilled water, causing it possible to extract the ionic active coagulation component contained in cowpea.

## **Conclusions**

NaCl extracted cowpea coagulant is proved to have coagulation effect when bivalence cation  $\text{Ca}^{2+}$  or  $\text{Mn}^{2+}$  is contained in turbid water. Since raw water contained these bivalence ions, it is an advantage to utilize these ions, other than to remove it. These ions will settle together with the floes. **Besides that, cowpea** coagulation does not depend on pH. Cowpea also has advantage as non-toxic coagulant. Unlike chemical coagulant such as alum, cowpea is an organic material.

The most important one is that its turbidity removal efficiency is lower than alum. The second disadvantage is that complete sedimentation of floes using cowpea takes more than 30 minutes. Third disadvantage is that it used NaCl salt to extract the active coagulation component.

Turbidity removal efficiency depends on both cowpea dosage and total concentration of bivalence cations contained in raw water. The coagulation efficiency dropped when either one is insufficient. Raw water does not have a constant turbidity and bivalence cations concentration.

***In short,***

- 1) One mol/L NaCl salt solution is used to extract active component of cowpea in this study.
- 2) Cowpea only removes turbidity when sufficient bivalence cations contained in turbid water such as  $\text{Ca}^{2+}$  and  $\text{Mn}^{2+}$  cations. The coagulation activity does not depend on anions such as  $\text{Cl}^-$ ,  $\text{OH}^-$ , and  $\text{SO}_4^{2-}$ .
- 3) Cowpea coagulant is not pH dependent.
- 4) At the tested dosage range, optimal dosage found for cowpea is 100 mg/L, with addition of 75 mg/L calcium chloride [ $\text{CaCl}_2 \cdot 2\text{H}_2\text{O}$ ]. It removes 80% of turbidity and hence cowpea turbidity removal efficiency is lower as compared to alum.

At this moment, *cowpea* still has many weaknesses and further research still needed.

## Reference

Bhole A. G., Relative evaluation of a few natural coagulants. *Journal of Water Supply Research and Technology-Aqua*, 44(6):284-290 (1995)

Brian H. S., *Reservoirs*, first published, The Macmillan Press Ltd, 72-74 (1979)

Diaz A., Rincon N., Escorihuela A., Fernandez N., Chacin E., Forster C. F., A preliminary evaluation of turbidity removal by natural coagulants indigenous to Venezuela, *Process Biochemistry* 35:391-395 (1999).

Jirgensons B. and Straumanis M. E.(1962) *A short textbook of colloid chemistry*. 2<sup>nd</sup> revised edition, Pergamon Press, 329-331(1962).

Ndabigengesere A. and Narasiah K. S., Quality of water treated by coagulation using *Moringa Oleifera* seeds, *Water Research*, 32(3): 781-791(1998).

Ndabigengesere A., Narasiah K. S. and Talbot B. G., Active agents and mechanism of coagulation of turbid waters using *Moringa Oleifera*, *Water Research*, 29(2):703-710 (1995).

Nik Fuad Nik Abllah, *Bekalan Air, Pembetungan dan Pengairan*, edisi awal, Penerbit Universiti Sains Malaysia, 47, 54-55 (1990).

Okuda T., Baes A. U., Nishijima W. and Okada M., Improvement of extraction method of coagulation active components from *Moringa Oleifera* seed, *Water Research* 33(15):3373-3378 (1999).

Okuda T., Baes A. U., Nishijima W. and Okada M., Coagulation mechanism of salt solution-extracted active component in *Moringa Oleifera* seeds, *Water Research* 35(3):830-834 (2001).

Ozacar M. and Sengil I. A., The use of Tannins from Turkish Acorns (Valonia) in water treatment as a coagulant and coagulant aid. *Turkish J. Eng. Env. Sci.* 26:255-263 (2002).