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Abstract

This article proposes a multiobjective adaptive current search (MoACS) as a powerful metaheuristic optimization technique
for solving multiobjective optimization problems. MoACS is a newly modified version of the current search (CS) developed
from the behavior of current in an electrical network. In this study, the MoACS is developed and validated against three
standard multiobjective test functions. Results obtained from the MoACS are compared with those obtained by five well-
known algorithms from the literature. Then, the MoACS is applied to the design of two real-world multiobjective engineering
optimization problems, i.e., welded beam design and disc brake design. It was found that MoACS provided very satisfactory
solutions and had quite smooth Pareto fronts for all of the problems.
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1. Introduction

Engineering design can be considered as a class of an
optimization divided into single-objective or multiobjective
problems [1-2]. For single-objective, an optimization tends
to minimize (or maximize) only one objective such as
minimize loss or maximize profit. For multiobjective, it
tends to minimize (or maximize) several objectives such as
minimize loss and minimize cost. In fact, both loss and cost
are trade-off. The less the loss, the higher the cost, and vice
versa. Many real-world engineering design problems often
consist of many objectives which are conflict each other [2-
3]. This leads the multiobjective problems much more
difficult and complex than single-objective ones. The
multiobjective problem possesses multiple optimal solutions
forming the so-called Pareto front [4-5]. The challenge is
how to perform the smooth Pareto front containing a set of
optimal solutions for all objective functions. By literatures,
conventional optimization methods often face difficulties for
solving multiobjective problems. One of the alternative
approaches developed to solve multiobjective problems is
the metaheuristics approach [1-5]. The efficient
metaheuristics consecutively launched for multiobjective
optimization are, for example, vector evaluated genetic
algorithm (VEGA) [6], non-dominated sorting genetic
algorithm 11 (NSGA-II) [7], differential evolution for
multiobjective optimization (DEMO) [8], multiobjective
cuckoo search (MOCS) [9] and multiobjective multipath
adaptive tabu search (nMATS) [10].

In 2012, the current search (CS) metaheuristics was
proposed to solve optimization problems [11]. The CS
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algorithm was developed from the behavior of electric
current flown into the electrical networks. The CS was
successfully applied to control engineering [12] and analog
circuit design [13]. During 2013-2014, the adaptive current
search (ACS) was launched [14] as a modified version
of the conventional CS. The ACS was successfully applied
to assembly line balancing problems [14-15] and
transportation problems [16]. In this article, the
multiobjective adaptive current search (Mo0ACS) is
developed as one of the most powerful metaheuristic
optimization techniques for solving multiobjective
optimization problems. The developed MoACS will be
evaluated against three standard multiobjective test
functions. Results obtained will be compared with those
obtained by VEGA, NSGA-Il, DEMO, MOCS and
MMATS. Finally, the MoACS is then applied to design two
real-world  multiobjective  engineering  optimization
problems.

2. Materials and methods
2.1 Pareto optimality

Solving multiobjective optimization problems is based
on the Pareto optimality [3, 9]. Such the problem can be
formulated as expressed in Equation (1), where f(x) is the
multiobjective function consisting of fi(x),..., fa(x), n > 2,
gi(x), j =1, 2,...,m, is the inequality constraints and hk(x), k
=1,2,...,p, is the equality constraints. The optimal solutions,
x*, are ones making f(x) minimum and both gj(x) and h(x)
satisfied.
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Minimize f(x) ={fy(x), fo(x),..., f, ()} .
subject to gij(x)=<0, j=1...m h(x)=0 k=L1.., p}

)

Viefl...,n}:uj <viadiefl,...,n}iuj <vj. (2
P*={xeF|ax*eF: f(x*) < f(xX)}. (3)
PF*={seS|ds*eS:s*<s}. 4)

A solution vector, u = (ug,...,un)" € S, is said to dominate
another solution vector v = (v,...,vn)", denoted by u <, if
and only if ui < vifor Vi € {1,...,n} and for 3i € {1,...,n}: ui
<vi. This implies that no component of v is smaller than the
corresponding component of u, and at least one component
of u is strictly smaller stated in Equation (2). A solution x*
e S is called a non-dominated solution if no solution can be
found that dominates it. Mathematically, a solution x* e Siis
Pareto optimal if for every x e S, f(X) e F does not dominate
f(x*) e F, that is f(x*) < f(x). For a given multiobjective
optimization problem, the Pareto optimal set is defined as P*
stated in Equation (3). The Pareto front PF* of a given
multiobjective optimization problem can be defined as the
image of the Pareto optimal set P* expressed in Equation (4).

2.2 MoACS algorithm

Regarding to the adaptive current search (ACS) [14-15],
it possesses the memory list (ML) used to escape from local
entrapment caused by any local minimum and the adaptive
radius (AR) mechanism applied to speed up the search
process. For the ACS algorithm, the feasible solutions called
neighborhoods will be randomly generated within the limited
circle area of the search space. Such the circle area is defined
by the search radius R. In AR mechanism, the search radius
R will be decreased once the search is close to the optimal
solution. From recommendations [14-16], the initial search
radius R = 20-25% of search space is suitable for most
applications. The proposed multiobjective ACS called the
MOACS is developed to minimize the f(x) in Equation (1).
The MoACS uses the ACS as the search core. Multiobjective
function f(x) in Equation (1) will be simultaneously
minimized according to the equality and inequality
constraints. In each iteration, the optimal solution found will
be evaluated. If the optimal solution found is a non-
dominated solution, it will be sorted and stored into the
Pareto optimal set P*. After the search stopped, all solutions
stored in P* will be conducted to perform the Pareto front
PF*. All solutions appeared on the PF* are the optimal
solutions of the multiobjective problem of interest. The
MOoACS algorithm is described as follows.

Step1 Initialize the multiobjective function f(x) =
{f1(x), f2(x),....7a()}, X = (X1,...,Xa)7, the
constraints gj(x) and hk(x), search spaces and
search radius R.

Step 2 Initialize ACSs,...,ACSx and Pareto optimal
set P*, jmaxand k =j = 1.

Step 3 Uniformly random initial solution Xi , i =
1,...,N within the search space.

Step4  Evaluate the multiobjective function f(X;) for

VX according to the constraints gj(Xi) and
hk(Xi), then rank Xi, where Xa< X<« -+ < Xn.
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Step5  Let Xo = Xk as selected initial solution.

Step 6  Uniformly random neighborhood xi, i = 1,...,n
around xo within radius R.

Step 7 Evaluate the multiobjective function f(xi) for
VX according to the constraints gj(xi) and
hk(xi)). A solution giving the minimum
objective function is set as x*.

Step 8 Check if it is Pareto optimal (non-dominated
solution), sort and store it into the Pareto
optimal set P*.

Step 9 If f(x*) < f(xo), et xo = x*, set j = 1 and return

to Step 6. Otherwise update j = j+1.
Step 10 Activate the AR by adjusting R = pR, 0 < p <
1.
If j < jmax, return to Step 6. Otherwise set j =1
and update k = k+1.
If k > N, terminate the search process, and sort
the current Pareto optimal solutions. Pareto
front PF* is then performed by the sorted
Pareto optimal solutions. Otherwise return to
Step 5.

Step 11

Step 12

In this work, the proposed MoACS algorithm was coded
by MATLAB run on Intel Core2 Duo 2.0 GHz 3 Ghytes
DDR-RAM computer. The search parameters of the MoACS
consist of number of initial solutions N, number of
neighborhood member n, number of solution cycling jmax,
initial search radius R and AR mechanisms. These
parameters are priori set from preliminary parametric study
[14-16] as follows: N = 60, n = 40, jmax = 10, R = 20% of
search space and AR = 2 states {(i) at 750" iteration,
adjusting R = 0.1R and (ii) at 1,500™ iteration, adjusting R =
0.01R}. Maxlteration = 2,000 is set as the termination
criteria (TC). This parameter set will be used for all problems
in this article. Each problem will be conducted with 100 trial
runs under the same condition in order to obtain the best
solution found.

2.3 Standard test functions

The proposed MOACS is evaluated against three
standard multiobjective test functions [9-10]. They are the
convex front ZDT1 stated in Equation (5) where d is the
number of dimensions, the concave front ZDT2 stated in
Equation (6) and the discontinuous front ZDT3 expressed in
Equation (7), where g and xi in Equation (6) and Equation (7)
are the same as in Equation (5). In comparison, the error Es
between the estimated Pareto front PFe and its
correspondingly true Pareto front PF: is evaluated via the
formulation stated in Equation (8), where N is the number of
sorted solutions.

ZDTL: fi(x) =%, fo(x)=9@-4f/9),

§ Q)
92X
d-1

g=1+

, X €[0,1, i=1....30
£)2
ZDT2: fi(X) =X, fz(x):g(l_glj. (6)

ZDT3: f,(x) = xq, fz(x)—g[l— \E —fglsin(lOﬂ'fl)]' Q)
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2.4 Real-world engineering applications

The MoACS is also applied to design two real-world
multiobjective engineering optimization problems. They are
welded beam design and disc brake design. Their details are
described as follows.

2.4.1 Welded beam design

As shown in Figure 1, the schematic structure of a
welded beam design shows that it has four design variables
[9, 17], i.e. the width w and length L of the welded area, the
depth d and thickness h of the main beam. The objective of
this problem is to minimize both the fabrication cost and the
end deflection on the beam 6. Therefore, the problem can be
formulated according to the multiobjective optimization
problems as stated in Equation (9) — (11), where fi(x) is the
fabrication cost, f2(x) is the end deflection of the beam, ris
shear stress, o'is bending stress in the beam and P is bucking
load on the bar.

Figure 1 Welded beam design problem

Minimize f(x)={f1(x), f2(x)},
f1(x) =1.10471w?L + 0.04811dh(14.0+ L), b
fo(x) =0

©)

Subject to :
g1(x) =w-h<0,
g2(x) =0(x)-0.25<0,
g3(x) = 7(x)—13,600 <0,
g4(x) = o(x)—30,000 <0,
g5(x) = 0.10471w? + 0.04811dh(14.0+ L) -5.0 <0,
gg(x) =0.125-w<0,
g7(x) =6,000 - P(x) <0,
0.1<L,d <10.0,
0.125 <w,h < 2.0

. (10)

where :

504,000
o(x)= >
hd

, Q= 6,000(14.0+%} D= %\/L2 +(w+d)?,

2 2
J:@N{L , (w+d) } 565858 QD 6000

- s = f y X =—F——,
6 2 30,000hd® J Nes

3
2(x) = |a? +%+ﬁ2, P = 0.61423 x106%(1—%]

an
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2.4.2 Disc break design

The structure of a multiple disc break design is shown in
Figure 2. This design problem consists of four design
variables [9, 18], i.e. the inner radius r and outer radius R of
the discs, the engaging force F and the number of the friction
surface S. The objective of this problem is to minimize the
braking time and the overall mass. By this, the design
problem can be performed as expressed in Equation (12) —
(13), where f1(x) is the braking time, f2(x) is the overall mass.

i

Figure 2 Disc break design problem

Minimize f(x)={f,(x), f,(x)},
f,(x) =4.9x10° (R? —r?)(S -1),

9.82x10°(R% —r?)
FS(R®-r?)

(12)
f,(x)=

Subject to :
9:(x)=20-(R-r) <0,
9,(x) =25(S +1)-30 <0,

P os<0, | (13)

3.14(R% =r?)

2.22x10°F(R® -r?)

(RZ _rz)z

0.0266 FS(R® - r?) -
(R%-r?) N

55.0 <r <80.0, 75.0<R<110.0,

1,000 < F<3,000, 2.0<5<20.0

g3(x) =

-1<0,

9,(x) =

05(X) =900 -

3. Results
3.1 Results of standard test functions

For comparison to five selected well-known algorithms
from literatures, results of the functions ZDT1 — ZDT3
obtained by the VEGA, NSGA-II, DEMO and MOCS from
[9] and those by the MATS from [10] are summarized in
Table 1. With the defined TC and 100 trial runs, the best
results of the functions ZDT1 — ZDT3 obtained by the
proposed MoACS are also summarized in Table 1. The
Pareto fronts obtained by the MoACS and the true fronts of
functions ZDT1 — ZDT3 are depicted in Figure 3 — 5,
respectively.
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Table 1 Evaluation results of standard multiobjective test
functions

. Error Ef
Algorithms ZDT1 ZDT2 ZDT3
VEGA [9] 3.79e-02 2.37e-03 3.29e-01
NSGA-II [9] 3.33e-02 7.24e-02 1.14e-01
DEMO [9] 1.08e-03 7.55e-04 1.18e-03
MOCS [9] 1.17e-04 2.23e-05 2.88e-05
mMATS  [10] 1.14e-04 2.15e-05 1.07e-05
MoACS 1.02e-04 2.01e-05 1.01e-05
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Figure 4 Pareto front of ZDT2 (concave front)
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Figure 5 Pareto front of ZDT3 (discontinuous front)
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3.2 Results of real-world engineering applications

By applying the MoACS to two selected real-world
engineering applications with the same parameter setting and
the preset TC, a set of optimal (non-dominated) solutions
obtained performs the well-smooth Pareto fronts as depicted
in Figure 6 — 7.
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f2(X): deflection of the beam (in.)

f1(X): fabrication cost ($)

Figure 6 Pareto front of welded beam design problem
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Figure 7 Pareto front of disc break design problem
4. Discussion

For results of standard test functions, referring to Table
1, the proposed MoACS shows superior results to other
algorithms with less error Er. Moreover, Figure 3 — 5 reveal
that the MoACS can provide the smooth Pareto fronts very
coincide with the true fronts of each standard multiobjective
test function with good distribution and good spread. For
results of real-world engineering applications, referring to
the well-smooth Pareto fronts depicted Figure 6 — 7, it was
found that both welded beam design and disc break design
problems can be satisfactory solved by the proposed
MoACS.

5. Conclusions

The multiobjective adaptive current search (MoACS)
has been developed and proposed in this article for solving
multiobjective optimization problems. Based on the
conventional current search (CS), developed algorithm of the
MOoACS has been elaborated. The proposed MoACS has
been evaluated against three standard multiobjective test
functions in order to perform its effectiveness. As results, it
was found that the MoACS could provide superior solutions
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to VEGA, NSGA-1I, DEMO, MOCS and mMATS over three
selected test functions with less error. In this article, the
MOACS has been also applied to design two real-world
multiobjective engineering optimization problems, i.e.
welded beam design and disc brake design. As simulation
results, it was found that a set of non-dominated solutions of
each application obtained by the MoACS could perform the
well-smooth (good distribution and spread) Pareto fronts. It
can be concluded that the proposed MoACS is one of the
most efficient multiobjective optimizers. For the future
trends, the popular performance metrics such as the
Generational Distance (GD), Generalized Spread (GS) and
Hypervolume (HV) will be emphasized for performance
comparison of the proposed algorithm with other well-
known methods for multiobjective optimization problems. In
addition, hybridization of the proposed algorithm with other
selected algorithms will be developed and proposed.
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