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Abstract 

 

This article proposes a multiobjective adaptive current search (MoACS) as a powerful metaheuristic optimization technique 

for solving multiobjective optimization problems. MoACS is a newly modified version of the current search (CS) developed 

from the behavior of current in an electrical network. In this study, the MoACS is developed and validated against three 

standard multiobjective test functions. Results obtained from the MoACS are compared with those obtained by five well-

known algorithms from the literature. Then, the MoACS is applied to the design of two real-world multiobjective engineering 

optimization problems, i.e., welded beam design and disc brake design. It was found that MoACS provided very satisfactory 

solutions and had quite smooth Pareto fronts for all of the problems. 
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1. Introduction 

 

Engineering design can be considered as a class of an 

optimization divided into single-objective or multiobjective 

problems [1-2]. For single-objective, an optimization tends 

to minimize (or maximize) only one objective such as 

minimize loss or maximize profit. For multiobjective, it 

tends to minimize (or maximize) several objectives such as 

minimize loss and minimize cost. In fact, both loss and cost 

are trade-off. The less the loss, the higher the cost, and vice 

versa. Many real-world engineering design problems often 

consist of many objectives which are conflict each other [2-

3]. This leads the multiobjective problems much more 

difficult and complex than single-objective ones. The 

multiobjective problem possesses multiple optimal solutions 

forming the so-called Pareto front [4-5]. The challenge is 

how to perform the smooth Pareto front containing a set of 

optimal solutions for all objective functions. By literatures, 

conventional optimization methods often face difficulties for 

solving multiobjective problems. One of the alternative 

approaches developed to solve multiobjective problems is 

the metaheuristics approach [1-5]. The efficient 

metaheuristics consecutively launched for multiobjective 

optimization are, for example, vector evaluated genetic 

algorithm (VEGA) [6], non-dominated sorting genetic 

algorithm II (NSGA-II) [7],  differential evolution for 

multiobjective optimization (DEMO) [8], multiobjective 

cuckoo search (MOCS) [9] and multiobjective multipath 

adaptive tabu search (mMATS) [10].   
 In 2012, the current search (CS) metaheuristics was 

proposed to solve optimization problems [11]. The CS 

algorithm was developed from the behavior of electric 

current flown into the electrical networks. The CS was 

successfully applied to control engineering [12] and analog 

circuit design [13]. During 2013-2014, the adaptive current 

search (ACS) was launched [14] as a modified version           

of the conventional CS. The ACS was successfully applied 

to assembly line balancing problems [14-15] and 

transportation problems [16]. In this article, the 

multiobjective adaptive current search (MoACS) is 

developed as one of the most powerful metaheuristic 

optimization techniques for solving multiobjective 

optimization problems. The developed MoACS will be 

evaluated against three standard multiobjective test 

functions. Results obtained will be compared with those 

obtained by VEGA, NSGA-II, DEMO, MOCS and  

mMATS. Finally, the MoACS is then applied to design two 

real-world multiobjective engineering optimization 

problems. 

 

2. Materials and methods 

 

2.1 Pareto optimality  

 

Solving multiobjective optimization problems is based 

on the Pareto optimality [3, 9]. Such the problem can be 

formulated as expressed in Equation (1), where f(x) is the 

multiobjective function consisting of f1(x),…, fn(x), n  2, 

gj(x), j = 1, 2,…,m, is the inequality constraints and hk(x), k 

= 1, 2,…,p, is the equality constraints. The optimal solutions, 

x*, are ones making f(x) minimum and both gj(x) and hk(x) 

satisfied.  
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A solution vector, u = (u1,…,un)T  S, is said to dominate 

another solution vector v = (v1,…,vn)T, denoted by u  v, if 

and only if ui  vi for i  {1,…,n} and for i  {1,…,n}: ui 

 vi. This implies that no component of v is smaller than the 

corresponding component of u, and at least one component 

of u is strictly smaller stated in Equation (2). A solution x* 

 S is called a non-dominated solution if no solution can be 

found that dominates it. Mathematically, a solution x*  S is 

Pareto optimal if for every x  S, f(x)  F does not dominate 

f(x*)  F, that is f(x*)  f(x). For a given multiobjective 

optimization problem, the Pareto optimal set is defined as P* 

stated in Equation (3). The Pareto front PF* of a given 

multiobjective optimization problem can be defined as the 

image of the Pareto optimal set P* expressed in Equation (4). 

 

2.2 MoACS algorithm  

 

 Regarding to the adaptive current search (ACS) [14-15], 

it possesses the memory list (ML) used to escape from local 

entrapment caused by any local minimum and the adaptive 

radius (AR) mechanism applied to speed up the search 

process. For the ACS algorithm, the feasible solutions called 

neighborhoods will be randomly generated within the limited 

circle area of the search space. Such the circle area is defined 

by the search radius R. In AR mechanism, the search radius 

R will be decreased once the search is close to the optimal 

solution. From recommendations [14-16], the initial search 

radius R = 20-25% of search space is suitable for most 

applications. The proposed multiobjective ACS called the 

MoACS is developed to minimize the f(x) in Equation (1). 

The MoACS uses the ACS as the search core.  Multiobjective 

function f(x) in Equation (1) will be simultaneously 

minimized according to the equality and inequality 

constraints. In each iteration, the optimal solution found will 

be evaluated. If the optimal solution found is a non-

dominated solution, it will be sorted and stored into the 

Pareto optimal set P*. After the search stopped, all solutions 

stored in P* will be conducted to perform the Pareto front 

PF*. All solutions appeared on the PF* are the optimal 

solutions of the multiobjective problem of interest. The 

MoACS algorithm is described as follows. 

 

Step 1  Initialize the multiobjective function f(x) = 

{f1(x), f2(x),…,fn(x)}, x = (x1,…,xd)T, the 

constraints gj(x) and hk(x), search spaces and 

search radius R. 

Step 2  Initialize ACS1,…,ACSk and Pareto optimal 

set P*, jmax and k = j = 1. 

Step 3  Uniformly random initial solution Xi , i = 

1,…,N within the search space. 

Step 4  Evaluate the multiobjective function  f(Xi ) for 

X according to the constraints gj(Xi) and 

hk(Xi), then rank Xi, where X1< X2< < XN.  

Step 5  Let x0 = Xk as selected initial solution.  

Step 6  Uniformly random neighborhood xi, i = 1,…,n 

around x0 within radius R.  

Step 7  Evaluate the multiobjective function f(xi) for 

x according to the constraints gj(xi) and 

hk(xi). A solution giving the minimum 

objective function is set as x*.  

Step 8  Check if it is Pareto optimal (non-dominated 

solution), sort and store it into the Pareto 

optimal set P*. 

Step 9  If f(x*) < f(x0), set x0 = x*, set j = 1 and return 

to Step 6. Otherwise update j = j+1.  

Step 10  Activate the AR by adjusting R = R, 0 <  < 

1. 

Step 11  If j < jmax, return to Step 6. Otherwise set j = 1 

and update k = k+1.  

Step 12  If k > N, terminate the search process, and sort 

the current Pareto optimal solutions. Pareto 

front PF* is then performed by the sorted 

Pareto optimal solutions. Otherwise return to 

Step 5.          

 

In this work, the proposed MoACS algorithm was coded 

by MATLAB run on Intel Core2 Duo 2.0 GHz 3 Gbytes 

DDR-RAM computer. The search parameters of the MoACS 

consist of number of initial solutions N, number of 

neighborhood member n, number of solution cycling jmax, 

initial search radius R and AR mechanisms. These 

parameters are priori set from preliminary parametric study 

[14-16] as follows: N = 60, n = 40, jmax = 10, R = 20% of 

search space and AR = 2 states {(i) at 750th iteration, 

adjusting R = 0.1R and (ii) at 1,500th iteration, adjusting R = 

0.01R}. MaxIteration = 2,000 is set as the termination 

criteria (TC). This parameter set will be used for all problems 

in this article. Each problem will be conducted with 100 trial 

runs under the same condition in order to obtain the best 

solution found.  

 

2.3 Standard test functions  

 

The proposed MoACS is evaluated against three 

standard multiobjective test functions [9-10]. They are the 

convex front ZDT1 stated in Equation (5) where d is the 

number of dimensions, the concave front ZDT2 stated in 

Equation (6) and the discontinuous front ZDT3 expressed in 

Equation (7), where g and xi in Equation (6) and Equation (7) 

are the same as in Equation (5). In comparison, the error Ef 

between the estimated Pareto front PFe and its 

correspondingly true Pareto front PFt is evaluated via the 

formulation stated in Equation (8), where N is the number of 

sorted solutions.      
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2.4 Real-world engineering applications  

 

 The MoACS is also applied to design two real-world 

multiobjective engineering optimization problems. They are 

welded beam design and disc brake design. Their details are 

described as follows.    

 

2.4.1 Welded beam design  

 

 As shown in Figure 1, the schematic structure of a 

welded beam design shows that it has four design variables 

[9, 17], i.e. the width w and length L of the welded area, the 

depth d and thickness h of the main beam. The objective of 

this problem is to minimize both the fabrication cost and the 

end deflection on the beam . Therefore, the problem can be 

formulated according to the multiobjective optimization 

problems as stated in Equation (9) – (11), where f1(x) is the 

fabrication cost, f2(x) is the end deflection of the beam,  is 

shear stress,  is bending stress in the beam and P is bucking 

load on the bar.     
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Figure 1 Welded beam design problem 
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2.4.2 Disc break design  

 

 The structure of a multiple disc break design is shown in 

Figure 2. This design problem consists of four design 

variables [9, 18], i.e. the inner radius r and outer radius R of 

the discs, the engaging force F and the number of the friction 

surface S. The objective of this problem is to minimize the 

braking time and the overall mass. By this, the design 

problem can be performed as expressed in Equation (12) – 

(13), where f1(x) is the braking time, f2(x) is the overall mass. 
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Figure 2 Disc break design problem 
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3. Results 

 

3.1 Results of standard test functions 

 

 For comparison to five selected well-known algorithms 

from literatures, results of the functions ZDT1 – ZDT3 

obtained by the VEGA, NSGA-II, DEMO and MOCS from 

[9] and those by the MATS from [10] are summarized in 

Table 1. With the defined TC and 100 trial runs, the best 

results of the functions ZDT1 – ZDT3 obtained by the 

proposed MoACS are also summarized in Table 1. The 

Pareto fronts obtained by the MoACS and the true fronts of 

functions ZDT1 – ZDT3 are depicted in Figure 3 – 5, 

respectively. 
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Table 1 Evaluation results of standard multiobjective test 

functions 

 

Algorithms 
Error Ef 

ZDT1 ZDT2 ZDT3 

VEGA  [9] 3.79e-02 2.37e-03 3.29e-01 

NSGA-II  [9] 3.33e-02 7.24e-02 1.14e-01 

DEMO  [9] 1.08e-03 7.55e-04 1.18e-03 

MOCS  [9] 1.17e-04 2.23e-05 2.88e-05 

mMATS      [10] 1.14e-04 2.15e-05 1.07e-05 

MoACS 1.02e-04 2.01e-05 1.01e-05 
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Figure 3 Pareto front of ZDT1 (convex front) 
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Figure 4 Pareto front of ZDT2 (concave front) 
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Figure 5 Pareto front of ZDT3 (discontinuous front) 

3.2 Results of real-world engineering applications 

 

 By applying the MoACS to two selected real-world 

engineering applications with the same parameter setting and 

the preset TC, a set of optimal (non-dominated) solutions 

obtained performs the well-smooth Pareto fronts as depicted 

in Figure 6 – 7. 
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Figure 6 Pareto front of welded beam design problem 
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Figure 7 Pareto front of disc break design problem 

 

4. Discussion 

 

For results of standard test functions, referring to Table 

1, the proposed MoACS shows superior results to other 

algorithms with less error Ef. Moreover, Figure 3 – 5 reveal 

that the MoACS can provide the smooth Pareto fronts very 

coincide with the true fronts of each standard multiobjective 

test function with good distribution and good spread. For 

results of real-world engineering applications, referring to 

the well-smooth Pareto fronts depicted Figure 6 – 7, it was 

found that both welded beam design and disc break design 

problems can be satisfactory solved by the proposed 

MoACS. 

 

5. Conclusions 

 

The multiobjective adaptive current search (MoACS) 

has been developed and proposed in this article for solving 

multiobjective optimization problems. Based on the 

conventional current search (CS), developed algorithm of the 

MoACS has been elaborated. The proposed MoACS has 

been evaluated against three standard multiobjective test 

functions in order to perform its effectiveness. As results, it 

was found that the MoACS could provide superior solutions  
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to VEGA, NSGA-II, DEMO, MOCS and mMATS over three 

selected test functions with less error. In this article, the 

MoACS has been also applied to design two real-world 

multiobjective engineering optimization problems, i.e. 

welded beam design and disc brake design. As simulation 

results, it was found that a set of non-dominated solutions of 

each application obtained by the MoACS could perform the 

well-smooth (good distribution and spread) Pareto fronts. It 

can be concluded that the proposed MoACS is one of the 

most efficient multiobjective optimizers. For the future 

trends, the popular performance metrics such as the 

Generational Distance (GD), Generalized Spread (GS) and 

Hypervolume (HV) will be emphasized for performance 

comparison of the proposed algorithm with other well-

known methods for multiobjective optimization problems. In 

addition, hybridization of the proposed algorithm with other 

selected algorithms will be developed and proposed. 
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