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Abstract

For a numerical solution of solidification problems, a fixed-grid finite-difference method is a
popular approach due to the ease of its implementation and less computational effort than the
moving-grid system, However, the simple discretisation of the fixed-grid method has a tendency to
oscillate numerically in temperature and solid-liquid interface position. The numerical oscillations
arise from improper handling of the evolution of the latent heat at the solid-liquid interface. In this
work, a modified discretisation is described such that the numerical error could be overcome. A one-
dimensional sclidification problem with known analytical selution is applied to demonstrate the

efficiency of the method.
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Introduction

Solidification is a heat transfer controlled process by which a liquid changes to solid.
Thermal effects during solidification are of great interest in many engineering applications such as
in the making of ice, the freezing of food, thermal energy storage, growth of crystals, casting and
welding of metals, efc. The -effect of solidification is most evident when casting is the final
operation. Since a solidification structure and its associated defects are difficult to eliminate once
they are created, good control of the solidification at the starting point is therefore most important
{Flemings, M. C. 1974.1.

Solidification is governed by nonlinear equations and the complexity is that the solid-
liquid interface is moving as the latent heat is released at the interface; as a result, the location of
the interface is @ priori unknown and must follow as a part of solution. The numerical technique is
difficult due to the presence of this highly nonlinear moving boundary condition. To overcome this
numerical difficuity, a great many methods have been developed [Muehlbauer, J. C. and
Sunderland, 1. 1965. , Voller, V. R., Cross, M, and Markatos, N. C, 1987. , Schneider, G. E. 1987,
and Lee, S. L., Tzong, R. Y. 1991.]. However, most of the finite-difference methods predicted
oscillatory temperature and interface due to improper handling of the evolution of the latent heat at
the interface. The oscillation would give an incorrect solution and prevent the numerical sclution
from converging.

The objective of this work is to develop a fixed-grid finite-difference method which
removes numerical oscillation in temperature and solid-liquid interface position. An interfacial
energy-balance equation was used to track the solid-liquid interface in combination with a modified
discretisation of heat fluxes crossing control surfaces. A one-dimensional solidification problem
which known analytical solution is applied as a numerical example.

direction of moving interface

Adiabatic wall —
. Liquid 2 < Liquid
© ) 5
O = o — o
: X x
x'=0 Adiabatic wall x'=L f x'=1L

(@ =0 b) '>0

Figure 1 Physical model

Mathematical Model

Solidification due to temperature change at one end of pure materia! in an enclosure
(Figure 1) has been studied; the wall at x'=0 and x" = L are isothermal while the others are

adiabatic. Initially, the cavity is filled with an isothermal liquid (7>T7,). At ¢'>0, the

temperature is lowered below the melting température (T{; < T”'; } at the left wall, and solidification

is initiated thereafter. The interface propagates into the liquid and the thickness of the solid
increases with the passage of time.
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The energy equation is expressed in term of temperature, with a source term (in square
bracket) representing an amount of latent heat liberated at the solid-liquid interface:

L, or 8 er . O
Gl 5 w

whete p, ¢, k, ¢ represent density, specific heat, thermal conductivity and time. hy is the
latent heat and f; is the liquid fraction which is unity in the liquid phase and zero in the solid phase.
Thus, £ falls from unity to zero after a liquid is completely solidified. Primes denote dimensional
quantities.

The solid-fiquid interface is tracked with the use of an interfacial energy equation:
s ! =(k oT! k,g?i’}
Tor &' e
where the solid-liquid interface is given by X" =X} (). s and / denote solid and liquid,
respectively. After introducing a non-dimensional transformation, defined by

(2)

T=("-TH!ATs  p=plps c,=clc x=x"/Lj

ot
Ste=c/ (T2 ~T) /by t=tB PN k=k/k; x =x/L@

n

AT’ canbe either 7, =T, or T;~T; . Assuming constant properties, equations (1) and

(2) become
or o, a7\ [ 1 of
= — L, 4
Perar Bx[ 6x] [Ste a:} @
%:Ste(,’{ a_T_k .ai (5)
ot Ox Ox

One-Dimensional Finite-difference Discretisation

The energy equation is discretised by a direct substitution of backward difference
approximations in time and central difference approximations in space, together with an
application of semi-implicit scheme:

51 [, @ATDAE AT AT T (AR
= N j—% (Ax)z Ste A[ .

where i and £ are notation indexes for a control volume and time, respectively. k,__: and
2

k,. .1 are thermal conductivities at boundaries of the control volume /.
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In solidification problems, temperature gradient may be discontinuous across the solid-
liquid interface due to the latent heat liberated at the interface. The discontinuous temperature
gradient is controlled by a Stefan number and a liquid-solid thermal conductivity ratio as shown in
Figure 2. The discontinuous temperature gradient becomes large with decreasing Stefan number or

increasing values of k, / k.
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(a) various Stefan number

Nondimensional distance along x-axis

(b) various &, / &,

Figure 2 Temperature profiles

(a) Piecewise-linear profile (b) Linearlised profile

Figure 3 Temperature profiles for discretisation method

In a simple discretisation, a piecewise-linear profile of temperature (Figure 3a) is assumed
between mesh points [Patankar, S. V. 1980.]. This simple profile assumption cannot handle the
discontinuity and produces some spatial oscillations. A linearised profile (Figure 3b} is proposed in
order to represent the interface by a surface rather than a control volume. To account for the
discontinuity of temperature gradient, thermal conductivities at boundaries of the solidifying
control-volume are calculated by equation (7). -
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( k forx, <x_ [ k forx, <x
N T-T ‘ N \T
k| ——— [ forx_ <x, <x_, k| —— == L for x, <x, <%,
i LT, )%—% : i L.-T )x,—x
() =1 2 i =9 (7)
: & VT -T ! N T =T
k\ - ”'—""]..forx;—l<xl <xJ k i__’.forx# <x[ H-i
T-T1, )% —x : LT )% —x
k, forx, > L k. forx >x,

The interface is tracked with the use of the interfacial energy-balance equation, discretised

as
ko k-t
X, =X T, -7, 7.-T
f =Ste [k\ n -1 _ k! i+ " (8)
At Xy X K =X
Once the interface position is found, the liquid fraction is calculated by
1 forx, <x_,
1S X
R "
fUMT Or X, <X, <X,,. &)
0 for x, > x,, ;

Numerical Solutions

The finite-difference equations obtained in the previous section are solved following the

procedures described below.

Step 1. Specify the initial and boundary conditions. Specify time step { Af) such that the initial
movement of the interface is less than a half of grid size (x, < 0.5Ax ). Initially using a small
time step could overcome difficulties caused by a sudden change in boundary condition in the

initial stage.

Step 2. Compute thermal conductivities at control-volume boundaries by equation (7).

Step 3. Compute interface location and liquid fraction by equation (8) and (9).

Step 4. Compute temperature from equation (6) using the tri-diagonal matrix algorithm.

Step 3. Repeat steps 2 through 4 until the temperature values are converged. Convergence criterion

was & = 1078, where g, =

n-1k
-7

NX(max |T" *

ZI
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Herg, the subscript » is the iteration index and NX is the number of nodes.
Step 6. For the next time step, repeat steps 2 through 5 with the data at the previous time step.

Numerical Example

One-dimensional solidification (Stefan problems) in 2 half space (x = 0) was used as a test
problem. The analytical solution of the Stefan problem is known as Neumann’s solution [2] and is
given by

x, () =2AJat (10)
(I;"_E’ erfc| —> +7, sx<Xx
erf(4) 2 Jad
T(x,t)=1 T, 1x=x (11)
L1, erfe| —x ;X>X
iT ’ 1
] erfc(/l\/ ala;) 2Jat

where A is obtained from

e-Az +_]&_ EZ_L Tm_T; e—il(a_\..fo:,) _/1\/; .
erf(1) &, T,-T, Jerfe(AJa, /) Ste

a is thermal diffusivity, defined as & = K /(pc,).

For comparison purposes, the parameters were assigned the same values as Lee and
Tzong[6}: Ste = 1.2 and []},i’:",ﬂ,] = [l .667,1,0]. The properties for both the liquid and the
solid were the same.
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Figure 4 Interface position

Figure 4a shows the interface position from the present method and analytical sotution for
solidification period up to ¢ = 0.015. The numerical results by Voller et af. [Voller, V. R., Cross,
M. and Markatos, N. C. 1987.], Schneider [Schneider, G. E. 1987.], and Lee and Tzong [Lee, S.
L., Tzong, R. Y. 1991.] were also plotted for comparisons. Al numerical solutions used the same
grid spacing (Ax = 0.02) and time step ( Af = 0.0001). The interface positions produced by
Voller and Schneider are seen to produce zigzag variations. Voller and Schneider have simulated
the enthalpy change at a grid point as the latent heat released from the corresponding control
volume. The control volume will suddenly release its entire latent heat at the instant while the
solid-liquid interface is sweeping through its grid point. Hence, the interface positions were
approximated from the ratio of the volumetric latent heat and total enthalpy. This would result in a
zigzag function with jumps having the size of grid spacing.

The present solution and Lee and Tzong’s solution are smooth and close to the analytical
solution. This is because the latent heat is represented by the liquid fraction (/) for each control
volume such that the latent heat can be released evenly. However, the relative error of 2% is
observed from Lee and Tzong's solution since the interface position was calculated by using the
simplified interfacial energy-balance equation in which the transient term was neglected. The
transient term was included in the present method and hence the predicted solution is very close to
the analytical solution with a relative error of order 0.2%. Good agreements with the analytical
solution were also observed for calculation up te = 0.2 by, interface position (Figure 4b),
temperature history at x = 0.1 (Figure5a) and temperature profiles (Figuresb).
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Figure 5 Temperature history and profiles

Conclusion

This paper has described an efficient fixed-grid finite-difference method for solidification
problems. The solid-liquid interface was tracked with the use of the interfacial energy-balance
equation. The modified discretization was obtained in terms of the thermal conductivities at the
control volume boundaries, to account for the discontinuity of temperature gradient in the vicinity
of the solid-liquid interface. A one-dimensional half-space solidification problem was computed to
validate the present method. This strategy has been proved to have an excellent performance as it
can removes numerical oscillation when compared with other numerical solutions of the fixed-grid
method. The present method can also be extended to two-dimensional problems without much
difficulty for directional solidification whereas the analytical solution is applicable only to a
simpler one-dimensional problem.
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