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Abstract 

For a numerical solution of solidification problems, a fixed-grid finite-difference method is a 
popular approach due to the ease of its implementation and less computational effort than the 
moving-grid system. However, the simple discretisation of the fixed-grid method has a tendency to 
osdllate numerically in temperature and solid-liquid interface position. The numerical oscillations 
arise from improper handling of the evolution of the latent heat at the solid-liquid interface. In this 
work, a modified discretisation is described such that the numerical error could be overcome. A one­
dimensional solidification problem with known analytical solution is applied to demonstrate the 
efficiency of the method. 

Keywords: finite difference method, fixed grid, solidification, phase change 

Original manucript submitted: July 14, 2004 and Final manucript received: August 17,2004 

T 
! 

I 

1 

So 
Thermalef 
in the maki 
welding of 
operation. ! 
they are en 
[Flemings, 

Sc 
liquid inter 
the interfac 
difficult du 
numerical 
Sunderland 
and Lee, S 
oscillatory 
the interfa< 
from conve 

T 
removes n 
energy-bal' 
discretisati< 
which knm 

s 
(Figure I) 

adiabatic. 

temperatuJ 

is initiate< 
increases' 



ethod 

n University. 

Khan Kaen 

ce method is a 
,!fort than the 
a tendency to 

:al oscillations 
terface. In this 
:rcome. A one­
:monstrate the 

US! 17,2004 

T 

I 

A Fixed-Grid Finite-Difference Method for Solidification Problems 199 

Introduction 

Solidification is a heat transfer controlled process by which a liquid changes to solid. 
Thermal effects during solidification are of great interest in many engineering applications such as 
in the making -of ice, the freezing of food, thermal energy storage, growth of crystals, casting and 
welding of metals, etc. The ·effect of solidification is most evident when casting is the final 
operation. Since a solidification structure and its associated defects are difficult to eliminate once 
they are created, good control of the solidification at the starting point is therefore most important 
[Flemings, M. C. 1974.]. 

Solidification is governed by nonlinear equations and the complexity is that the solid­
liquid interface is moving as the latent heat is released at the interface; as a result, the location of 
the interface is a priori unknown and must follow as a part of solution. The numerical technique is 
difficult due to the presence of this highly nonlinear moving boundary condition. To overcome this 
numerical difficulty, a great many methods have been developed [Muehlbauer, J. C. and 
Sunderland, J. 1965., Voller, V. R., Cross, M. and.Markatos, N.C. 1987., Schneider, G. E. 1987. 
and Lee, S. L., Tzong, R. Y. 1991.]. However, most of the finite-difference methods predicted 
oscillatory temperature and interface due to improper handling of the evolution of the latent heat at 
the interface. The oscillation would give an incorrect solution and prevent the numerical solution 
from converging. 

The objective of this work is to develop a fixed-grid finite-difference method which 
removes numerical ·oscillation in temperature and solid-liquid interface position. An interfacial 
energy-balance equation was used to track the solid-liquid interface in combination with a modified 
discretisation of heat fluxes crossing control surfaces. A one-dimensional solidification problem 
which known analytical solution is applied as a numerical example. 
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Figure 1 Physical model 

Mathematical Model 

Solidification due to temperature change at one end of pure materia! in an enclosure 
(Figure I) has been studied; the wall at x' = 0 and x' = L are isothermal while the others are 

adiabatic. Initially, the cavity is filled with an isothermal liquid (I/> r:, ). At t' > 0, the 

temperature is lowered below the melting temp~rature ( Td < r:,) at the left wall, and solidification 

is initiated thereafter. The interface propagates into the liquid and the thickness of the solid 
increases with the passage of time. 
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The energy equation is expressed in term of temperature, with a source term (in square 
bracket) representing an amount of latent heat liberated at the solid-liquid interface: 

'c' aT' =_i_(k' 0T')-[ 'h OJ;] 
P p at' ax' ax' P 1 at' (I) 

where p, cp, k, t represent density, specific heat, thermal conductivity and time. h1 is the 
latent heat and Ji is the liquid fraction which is unity in the liquid phase and zero in the solid phase. 
Thus, Ji falls from unity to zero after a liquid is completely solidified. Primes denote dimensional 
quantities. 

The solid-liquid interface is tracked with the use of an interfacial energy equation: 

, h ox; = (k' oT; _ k' 8T/) 
p / 0/' ·' OX' I OX' (2) 

where the solid-liquid interface is given by x' = x; (t'). s and I denote solid and liquid, 

respectively. After introducing a non-dimensional transformation, defined by 

T =(T' -T~)I t>.T'; 'I ' p=p p,; 

Ste = c~(T,;,- T~)l h1 ; t = t'k; l(p'c~L2 ); 

' I ' cP = cP _cp,.\·; x = x' I L; 

k = k' I k' · ', x, = x; I L .(3) 

!J.T' can be either T,;, - r; or T/- T;. Assuming constant properties, equations (I) and 

(2) become 

c aT _j_(kaT)-[-I oft] 
P P or - ox ox Ste or ' (4) 

8x, = Ste(k. oT, - k oT,). 
ot ·'ax 'ox (5) 

One-Dimensional Finite-difference Discretisation 

The energy equation is discretised by a direct substitution of backward difference 
approximations in time and central difference approximations in space, together with an 
application of semi-implicit scheme: 

where i and k are notation indexes for a control volume and time, respectively. k , and 
1-·i 
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In solidification problems, temperature gradient may be discontinuous across the solid­
liquid interface due to the latent heat liberated at the interface. The discontinuous temperature 
gradient is controlled by a Stefan number and a liquid-solid thermal conductivity ratio as shown in 
Figure 2. The discontinuous temperature gradient becomes large with decreasing Stefan number or 

increasing values of k1 I k, . 
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Figure 2 Temperature profiles 
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Figure 3 Temperature profiles for discretisation method 

In a simple discretisation, a piecewise-linear profile of temperature (Figure 3a) is assumed 
between mesh points [Patankar, S. V. 1980.]. This simple profile assumption cannot handle the 
discontinuity and produces some spatial oscillations. A linearised profile (Figure 3b) is proposed in 
order to represent the interface by a ·surface rather than a control volume. To account for the 
discontinuity of temperature gradient, thermal conductivities at boundaries of the solidifYing 
control-volume are calculated by equation (7). . 
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(7) 

The interface is tracked with the use of the interfacial energy-balance equation, discretised 
as 

, k-1 ( T T 
XI -XI = S k _!!!_m_-~,c::·-,_1 

te ·' 
/:;t x1 -x,_1 

Once the interface position is found, the liquid fraction is calculated by 

/:;x 

0 for X1 >X. 1 •+, 

Numerical Solutions 

(8) 

(9) 

The finite-difference equations obtained in the previous section are solved following the 
procedures described below. 

~ SpecifY the initial and boundary conditions. SpecifY time step ( /:;t) such that the initial 

movement of the interface is less than a half of grid size ( x1 < 0.5/:,.x ). Initially using a small 

time step could overcome difficulties caused by a sudden change in boundary condition in the 
initial stage. 
Step 2. Compute thermal conductivities at control-volume boundaries by equation (7). 
Step 3. Compute interface location and liquid fraction by equation (8) and (9). 
Step 4. Compute temperature from equation (6) using the tri-diagonal matrix algorithm. 
Step 5. Repeat steps 2 through 4 until the temperature values are converged. Convergence criterion 

10-8 I ~IT"·' T"-1·'1 was &r = , where &r = 
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Here, the subscript n is the iteration index and NX is the number of nodes. 
Step 6. For the next time step, repeat steps 2 through 5 with the data at the previous time step. 

Numerical Example 

One-dimensional solidification (Stefan problems) in a half space (x 2 0) was used as a test 
problem. The analytical solution of the Stefan problem is known as Neumann's solution [2] and is 

given by 

" 
0 erfc +T (T -T) ( x ) 

erf(A.) 2ra/ 0 

T(x,t) = 

where A is obtained from 

a is thennal diffusivity, defined as a= k /(peP). 

A.J; 
Ste 

(10) 

(II) 

(12) 

For comparison purposes, the parameters were assigned the same values as Lee and 

Tzong[6]: Ste ~ 1.2 and [ T,, T,, T,] = [ 1.667, 1, 0 ]. The properties for both the liquid and the 

solid were the same. 
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Figure 4 Interface position 

0.2 

Figure 4a shows the interface position from the present method and analytical solution for 
solidification period up tot~ 0.015. The numerical results by Voller eta/. [Voller, V. R., Cross, 
M. and Markatos, N.C. 1987.], Schneider [Schneider, G. E. 1987.], and Lee and Tzong [Lee, S. 
L., Tzong, R. Y. 1991.] were also plotted for comparisons. All numerical solutions used the same 

grid spacing ( /J.x = 0.02·) and time step ( D.t = 0.0001 ). The interface positions produced by 
Voller and Schneider are seen to produce zigzag variations. Voller and Schneider have simulated 
the enthalpy change at a grid point as the latent heat released from the corresponding control 
volume. The control volume will suddenly release its entire latent heat at the instant while the 
solid-liquid interface is sweeping through its grid point. Hence, the interface positions were 
approximated from the ratio of the volumetric latent heat and total enthalpy. This would result in a 
zigzag function with jumps having the size of grid spacing. 

The present solution and Lee and Tzong's solution are smooth and close to the analytical 
solution. This is because the latent heat is represented by the liquid fraction 1JiJ for each control 
volume such that the latent heat can be released evenly. However, the relative error of 2% is 
observed from Lee and Tzong's solution since the interface position was calculated by using the 
simplified interfacial energy-balance equation in which the transient term was neglected. The 
transient tenn was included in the present method and hence the predicted solution is very close to 
the analytical solution with a relative error of order 0.2%. Good agreements with the analytical 
solution were also observed for calculation up to I'~ 0.2 by; interface position (Figure 4b), 
temperature history at X~ o·.1 (Figure5a) and temperature profiles (Figure5b ). 
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Figure 5 Temperature history and profiles 
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This paper has described an efficient fixed-grid finite-difference method for solidification 
problems. The solid-liquid interface was tracked with the use of the interfacial energy-balance 
equation. The modified discretization was obtained in terms of the thermal conductivities at the 
control volume boundaries, to account for the discontinuity of temperature gradient in the vicinity 
of the solid-liquid interface. A one-dimensional half-space solidification problem was computed to 
validate the present method. This strategy has been proved to have an excellent performance as it 
can removes numerical oscillation when compared with other numerical solutions of the fixed-grid 
method. The present method can also be extended to two-dimensional problems without much 
difficulty for directional solidification whereas the analytical solution is applicable only to a 
simpler one-dimensional problem. 
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