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Abstract 

 

In this paper, we survey the role of mathematics in electrical network connections. We discuss the behavior of current flows, 

voltages and impedances, mainly for series-parallel networks. In both one-port and multiport electrical networks, currents are 

governed by Maxwell’s power principle. The joint impedances of the networks, given in terms of series and parallel sums, 

satisfy the series-parallel inequality. An abstract idea can be formulated in functional analysis in which any network connection 

is viewed as a binary operation for positive operators satisfying certain algebraic, order and topological properties.   
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1. Introduction 

 

In electrical engineering, an electrical network is an 

interconnection of physically electrical components (e.g. 

batteries, resistors, capacitors, inductors, switches) or a 

model of such an interconnection, consisting of electrical 

elements (e.g. voltage/current sources, resistances, 

inductances). This paper provides a discussion of the flows 

of currents through an electrical network obeying Ohm’s law 

and Kirchhoff’s voltage/current laws: 

Ohm’s law: the current through an electrical device is 

the ratio between the voltage (electrical potential difference) 

dropped on this device and its impedance. 

Kirchhoff's current law: the sum of currents meeting at 

a node is zero.  

Kirchhoff's voltage law: the sum of voltages in a closed 

electrical circuit is zero. 

The main concern here is the joint impedance of series-

parallel network.  Various properties of series and parallel 

additions and their physical interpretations are investigated.  

For one-port network, the impedance of the network can 

be described by the notion of parallel sum for scalars. 

Algebraic properties of this operation were investigated in 

[1]. The current flow in the network is governed by the so 

called Maxwell’s power principle. Elementary algebra and 

calculus shows that the joint impedance of the network 

satisfies the series-parallel inequality [2].  

The analysis will become more complicated in the case 

of multiport electrical networks. Here, the joint impedance 

of the network is represented in terms of matrix. Many 

authors discussed the role of linear algebra and matrix theory 

for network synthesis, focused on series-parallel connections 

(see e.g. [3-5]). The main tool for analyzing multiport 

electrical networks is the notion of parallel sum for positive 

definite matrices, introduced in a seminal paper [6]. It turns 

out that the flows of electrical currents satisfy Maxwell’s 

principle and series-parallel inequality as in one-port case 

[6].  The theory of parallel sums was then discussed by many 

authors (see e.g. [7-8]). This motivated the study of 

mathematical operations derived from electrical networks, 

such as parallel subtraction (see e.g. [9-10]), hybrid 

connection (e.g. [11-12]), Wheatstone bridge connection 

([13]), shorted operator ([14-17]).    

To extend the idea of network connections, the 

perspective of functional analysis is an appropriate 

framework. The joint impedance of the network can be 

viewed as a positive operator acting on a Hilbert space. 

Currents and power dissipations are described by vectors and 

inner products on that Hilbert space. The notion of parallel 

sum for positive operators was considered in [15]. Algebraic, 

order and topological properties of the parallel sum were 

discussed in [15] and [18-20]. It turns out that the series-

parallel inequality and Maxwell’s principle also hold in this 

setting [19]. Notice that the parallel sum was characterized 

via a set of certain properties in [18]. Applications of parallel 

sum also go to the area of matrix/operator inequalities and 

equations (see e.g. [21-23]). 

More abstractly, the idea of connection, introduced by 

Kubo and Ando [24], is a suitable generalization of series 

and parallel connections. A general connection is a binary 

operation for positive operators satisfying certain algebraic, 

order and topological properties. Series connection and 

parallel connection are typical examples of this concept. This 

beautiful theory was developed by many mathematicians; 

see e.g. [24-28]. Every connection can be realized as a 

weighted series connection of weighted parallel connections. 

This paper is organized as follows. The next section is an 

analysis of one-port electrical networks. The third section 
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deals with the role of linear algebra in multiport network 

connections. Analysis of electrical connections is presented 

in the language of functional analysis in the fourth section. A 

general setting for network connection is settled in the fifth 

section. Finally, we summarize the role of mathematics for 

electrical network connections. 

 

2. One-port electrical networks 

  

 Consider a simple electrical circuit consisting of a battery 

of fixed voltage E  and a resistor of resistance ,R  as shown 

in Figure 1. 

 
 

Figure 1 A simple electrical circuit  

 

By Ohm’s law, the current I  flowing in the circuit is given 

by /I E R . For the case of alternative current circuits, 

the voltage source generates sinusoidal waves and electrical 

components in the circuit may be not pure resistors (e.g. 

capacitors, inductors). In this case, resistances are replaced 

by impedances, which are complex numbers, and the Ohm’s 

law still holds. 

 A one-port network is a “black box” with a single pair of 

input/output terminals. Consider two resistors connected in 

series as in Figure 2: 
 

 
Figure 2 A series connection of two resistors  

 

By Kirchhoff’s voltage law and Ohm’s law, the joint 

resistance R  between terminals 1 and 2 is determined by 

R A B  . Circuit equivalently (using Figure 1), two 

resistors together act as if they were a single resistor whose 

resistance is given by the series sum R .  

 

Next, consider the parallel connection shown in Figure 3. 

 

 
 

Figure 3 A parallel connection of two resistors 

Using Kirchhoff’s current law and Ohm’s law, the joint 

resistance R  between terminals 1 and 2 satisfies the relation 

 

1 1 1

R A B
   or  

1
1 1 AB

R A B
A B


   


.                   (1) 

 

More precisely, the resistors together act as if they were a 

single resistor whose resistance is given by the parallel sum 

,R  denoted by :A B  (see [1]). The algebraic operation :  is 

termed the parallel addition. The network model shows that 

the parallel addition is commutative and associative. 

Moreover, multiplication is distributive over this operation.  

 

Consider a series-parallel connection as in Figure 4: 

 

 
Figure 4 A series-parallel network 

 

The joint resistance of this network is given in terms of series 

addition and parallel addition as follows: 

 

  : :R A B C D E     .             (2) 

 

Every series-parallel connection network can be 

interpreted in terms of series addition and parallel addition. 

However, not every network is a series-parallel connection, 

for example, the Wheatstone bridge connection in Figure 5. 

 

 
Figure 5 A Wheatstone bridge connection 

 

In fact, a network is a series-parallel connection if and only 

if there is no embedded network having the Wheatstone 

bridge connection, see [5]. There is also a simple 

characterization of series-parallel connection given by [4]. 

Recall that the flow of currents through electrical circuits 

is governed by Maxwell’s power principle: the current will 

take flow paths in such the way that the power dissipation is 

minimized. This principle, also known as Rayleigh’s 

principle, is equivalent to a variational description of the 

parallel sum :A B  as follows: 

 

2 2

1
: min

x y
A B Ax By

 
  .                                  (3) 
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 The extremal characterization (3) can be derived using 

optimization technique in multivariable calculus. This serves 

an easy proof of Lehman’s series-parallel inequality (see [3]) 

as follows.  
 

Consider an electrical network as shown in Figure 6. 
 

 
 

Figure 6 An electrical network for proving the series-parallel 

inequality  

 

When the switch S  is open, the joint resistance is given by 
  

   :oR A C B D   .                                                     (4) 

 

On the other hand, when S  is closed, the joint resistance 

becomes 
 

   : :cR A C B D  .                                                     (5) 

 

Since the current takes the path of least resistance (that is, 

least power) and there is less constraint with the switch close, 

we arrive at the Lehman’s series-parallel inequality: 
 

       : : :A C B D A B C D    .                            (6) 

 

Alternatively, the series-parallel inequality can be expressed 

as 
 

  A B C DAC BD

A C B D A B C D

 
 

    
.                                   (7) 

 

It is worth nothing that the connection in Figure 6 

corresponds to replacing the resistor E  in the Wheatstone 

bridge connection in Figure 5 with a switch. Let wR  be the 

joint resistance of Wheatstone bridge. By Rayleigh’s 

principle, we obtain 
 

0c wR R R  .                                                                 (8) 

 

3. Multiport electrical networks  
 

A multiport network consists of several pairs of 

input/output terminals. In this section, we analyze multiport 

electrical networks using linear algebra.  
 

Consider an electrical network with two pairs of terminals as 

in Figure 7: 
 

 
 

 

Figure 7 A two-port electrical network 

The first pair of terminals is in circuit 1 and the second 

one is in circuit 2. Then the currents and voltages in these 

circuits are related by the following system of linear 

equations: 
 

1 11 1 12 2

2 21 1 22 2

E R I R I

E R I R I

 

 
.                                                         (9) 

 

Rewrite these equations in vector/matrix form as 
 

E RI                                                                              (10) 
 

where 
 

1

2

E
E

E

 
  
 

, 
11 12

21 22

R R
R

R R

 
  
 

, 
1

2

I
I

I

 
  
 

. 

 

If the resistor box R  contains interconnected resistors, then

12 21R R , that is R  is a symmetric matrix. Moreover, the 

conservation law of energy implies that R  is a positive 

semidefinite matrix, more precisely 0Tx Rx   for all 𝑥 ∈ R2. 

In what follows, a positive semidefinite symmetric matrix 

will be called a resistance matrix.  

 

Resistor boxes can be added in series as is show in Figure 8. 

 

 

 
Figure 8 A series connection of two-port networks 

 

Here, we assume that the current 1I  in the first circuit of box

A  is the same as the current in the first circuit of the box B
. It is similar for the current 2I . This can be achieved via use 

of isolation transformers.  

If A  and B  are the resistance matrices of these 

networks, then the joint resistance matrix R  is given by 

R A B  . In other words, series connection of resistance 

boxes corresponds to addition of their resistance matrices. 

Figure 9 gives a symbolic meaning of the series addition of 

resistor boxes. 
 

 

 
 
 

Figure 9 A symbolic meaning of the series addition  

 

From the relation (10), any current vector I  can be an 

input of a resistor box. However, not every voltage vector E  

can be an input if the resistance matrix R  is not invertible. 

In any cases, the following fact relates the range spaces of 

the series connection of the networks.     

 

     Range Range RangeA B A B                        (11) 

 

Now, consider the case when we connect the resistor boxes 

in parallel as in Figures 10 and 11. 
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Figure 10 A parallel connection of two-port networks 

 

 
 

 

Figure 11 A symbolic form of a parallel connection 

 

Suppose that both A  and B  are represented by invertible 

positive semidefinite matrices (that is, positive definite 

matrices). Then the joint resistance matrix R  of the parallel 

connection and the resistance matrices A , B  are related by 

 
1 1 1R A B    .                                                          (12) 

 

We obtain that  
1

R A A B B


  . For simplicity, we write

:A B  for R  and call it the parallel addition of A  and B , 

that is  

 

 
1

:A B A A B B


  .                                                 (13) 

 

Note that the relation (11) shows that Range (𝐴 + 𝐵) ⊇
 

Range(𝐵). This means that A B  is invertible on its range. 

Hence, (𝐴 + 𝐵)−1 𝐵 is a well-defined matrix. Thus, the 

parallel addition is a well-defined operation for any pair of 

positive semidefinite matrices. Various algebraic, order and 

analytic properties of this operation were investigated in [10-

13]. We will discuss some of these properties. 

By virtue of the network model, the parallel addition is 

expected to be commutative and associative. Here, we give a 

direct proof of commutativity: 

 

    

     

1 1

1 1

:

:

A B A B B A B B B B A B B

B A B A B A B B B B A B B

 

 

      

      

      (14) 

 

This implies that 

 

 
1

:A B B A B A


  .                                                   (15) 

 

From the definition (13) of parallel sum, we clearly  have 

Range (𝐴 + 𝐵) ⊆
 
Range (𝐴) . Similarly, the relation (15) 

shows that Range (𝐴 + 𝐵) ⊆
 
Range (𝐵) . Further analysis 

gives 

     Range = Range Range .A B A B                   (16) 

 

The relations (11) and (16) reveal a remarkable duality 

between series addition and parallel addition. 

 

To give an application of the above duality principle, we will 

analyze the networks in Figures 12 and 13. 

 

 

 
 

Figure 12 A series-parallel network 1 

 

 

 
 

Figure 13 A series-parallel network 2 

 
 

Clearly the joint resistance matrix of the first network is 

given by 

 

     1 : :R A B B C C A                                      (17) 

 

Let , ,X Y Z  be the range spaces of , ,A B C  respectively. 

From (11) and (17), we have 

 

       1Range R X Y Y Z Z X                     (18) 

 

On the other hand, the joint resistance matrix of the second 

network is 

 

   2 : :R A B C B A C          .                            (19) 

 

Hence, the range of 2R  is 

 

      2Range R X Y Z Y Z X        .          (20) 

 

Now, recall that the collection of subspaces of a vector space 

form a modular lattice. From modular identity, we have  

I2                                                             I2  

I1                                                             I1   

B 

A 

I                                                    I 
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     

    

X Y Y Z Z X

X Y Z Y Z X

    

       

        (21) 

 

This means that 

 

   1 2Range RangeR R .                                              (22) 

 

Thus, various analogous procedures for constructing 

networks with the same range can be obtained by the duality 

principle.  

The network connection used by Lehman [3] to obtain 

the series-parallel inequality for positive reals can be 

extended to resistor boxes. More precisely, for positive 

semidefinite matrices , , ,A B C D  of the same size, we have 

 

       : : :A C B D A B C D    .                               (23) 

 

Here, the partial order X Y  means that B A  is positive 

semidefinite whenever X  and Y are Hermitian or real 

symmetric matrices. 
 

 

 
 
 

Figure 14 The joint impedance of the network with parallel 

first and series last 
 

 

 
 
 

Figure 15 The joint impedance of the network with series 

first and parallel last 

 

The series-parallel inequality means that the joint impedance 

of the network in Figure 14 is not greater than that in Figure 

15. 

Consider the network connections in which some circuits 

are put in series and some circuits are put in parallel. Such a 

connection is called the hybrid connection as shown in 

Figure 16. 
 

 
 

Figure 16 A hybrid connection 

An elegant network synthesis of the hybrid connection 

can be found in [6].  The joint resistance of the hybrid 

connection is called the hybrid sum. In this type of 

connections, the series-hybrid inequality is valid. 

 

4. Perspective of functional analysis in electrical network 

connections 

 

Let us formulate the theory of electrical networks in the 

viewpoint of functional analysis. An abstract idea is to 

consider arbitrary networks, including infinite networks [29]. 

See [26, 28, 30-31] for surveys.  

Let  (𝐻, 〈∙,∙〉)  be a Hilbert space, which may be of 

infinite-dimensional. Each current in the network considered 

here is given by a vector in. The impedance of this network 

can be represent by a positive operator which transforms any 

input current vector in 𝐻  to an output current vector in the 

same space 𝐻 . The voltage vector when the current x  flows 

through the impedance operator A  is given by Ax  

according to Ohm’s law. The power dissipation of the 

network with impedance operator A  and current vector x  

is given by the inner product 〈𝐴𝑥, 𝑥〉 . Note that the term  
〈𝐴𝑥, 𝑥〉 is always nonnegative due to the positivity of the 

operator A . 

Let A  and B  be invertible positive operators acting on 
 𝐻 . Each of them describes the impedance of each 

subnetwork. The ordinary sum A B  simply expresses of 

the total impedance of the series connection of these 

networks. The parallel sum  

 

 
1

1 1:A B A B


                                                     (24) 

 

indicates the total impedance of the parallel connection of 

these two networks.   

The normal situation is that the impedance operators 𝐴 

and 𝐵 are strictly positive. However, the case  𝐴 = 0  or      

𝐵 = 0,  that is a short circuit, can be handled by letting  

𝐴: 𝐵 = 0. This motivates us to define the parallel sum for 

arbitrary positive operators 𝐴  and 𝐵  by perturbing 𝐴  and 𝐵  

with   and taking limit as 𝜀  tends to 0 in the strong-

operator topology: 

 

   
0

: lim : .A B A I B I


 


                                      (25) 

 

Here, 𝐼  denotes the identity operator. It is clear that the 

parallel sum is commutative, associative and the 

multiplication is distributive over this operation. 

In this setting, the flow of currents through the electrical 

network is governed by Maxwell’s power principle as 

follows:  

 

   : , inf , , : , and .A B x x Ay y Bz z y z H y z x       (26)  

 

That is the current flows to each subnetwork in such a way 

that the total power dissipation is minimized. From this 

principle, one can easily derive the following properties of 

parallel sum: 

 

(1) monotonicity: 1 2 1 2 1 1 2 2, : :A A B B A B A B     

A 

C 

B 

D 

A B 

C D 

 I1              I2 

    A                                   B 

 I1              I2 
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(2) transformer inequality:      : :S A B S S AS S BS    

for all operators S  on H  

 

(3) continuity from above: if nA A  and nB B , then 

: : .n nA B A B  

 

Here, the notation 𝑋𝑛 ↓ 𝑋  means that (𝑋𝑛)𝑛=1
∞  is a 

decreasing sequence of positive operators (with respect to the 

positive semidefinite ordering for Hermitian operators) 

converging to X  in the strong-operator topology. 

The transformer inequality has a physical interpretation 

as follows. The positive operator 𝑆∗ 𝐴𝑆 represents the 

impedance of a network connected to a transformer. The 

transformer inequality states that the impedance of parallel 

connection with transformer first is greater than that with 

transformer last. 

The Maxwell’s principle (26) also leads to the series-

parallel inequality as follows: 

 

       : : :A B C D A C B D                               (27) 

 

for all positive operators , , ,A B C D . 

 

5. General network connections   

 

The notion of parallel sum is generalized to the concept 

of connection by Kubo and Ando in [24]. See [28, 30-31] for 

surveys of the theory and [27, 32-33] for variants of the 

theory.  

A connection is a binary operation   assigned to each 

pair of positive operators such that the following conditions 

are fulfilled for all positive operators  𝐴, 𝐵, 𝐶, 𝐷 

 

(C1) monotonicity: ,A B C D A C B D       

 

(C2) transformer inequality: 

     C A B C CAC CBC   

 

(C3) continuity from above: if nA A  and nB B , then 

.n nA B A B   

 

The property (C2) shows how network connection behaves 

when connected to a transformer. Typical examples of a 

connection are the sum (the series connection) and the 

parallel sum (the parallel connection). 

These axiomatic properties (C1)-(C3) imply the 

following properties: 

 

 positive homogeneity, i.e. (A )kA kB k B  for 

any 0.k     
 

 transformer inequality (general form): 

     * * *X A B X X AX X BX 
 
for any operator .X  

 

 congruent invariance, i.e. for any invertible operator ,X
                               

* * *( ) ( ) ( ) .X AX X BX X A B X                       (28) 

 

 concavity, i.e. for any [0,1]t ,
    

  

[ (1 ) ] [ (1 ) ]

( ) (1 ) ( )

tA t B tA t B

t A A t B B



 

     

  
          (29) 

 

The series-parallel inequality for parallel sum is now a 

special case of the following inequality: 

 

       .A B C D A C B D                                   (30) 

 

Every connection   is associated to an operator monotone 

function :[0, ) [0, )f     via the formula 

 
1/2 1/2 1/2 1/2( )A B A f A BA A                                    (31) 

 

where A  and B  are strictly positive, and the formula can 

be extended to positive operators by a continuity argument 

using (C1) and (C3). See [21, 30, 34-36] for more 

information about the role of operator monotone functions in 

the theory of connections. 

 A connection with the property that A A A   for any 

positive operator A  is known as a mean. It turns out that 

every mean arises as a scalar multiple of a nonzero 

connection. For example, the harmonic mean is the twice 

parallel sum.  For example, the harmonic mean is the twice 

parallel sum. 

     There are four ways of operations to produce new                                

connections from the existing ones. First, an action, called 

the scalar multiplication, of a connection      with a scalar 

0   is defined by  

 

: ( , ) ( ).A B A B     

 

The second way is to use a binary operation, called the sum. 

The sum of two connections   and  is 

 

: ( , ) ( ) ( ).A B A B A B      

 

The third way is to use a ternary operation, called the 

composition. Given three connections ,   and ,   the 

composition of them is defined by  

 

( ) : ( , ) ( ) ( ).A B A B A B       

 

The fourth way to produce new connections is to take a unary 

operation. We respectively define the transpose, the adjoint 

and the dual of a nonzero connection   to be the following 

operator connections 

 

* 1 1 1

1 1 1

: ( , ) , , 0

: ( , ) ( ) , , 0

: ( , ) ( ) , , 0.

T
A B B A A B

A B A B A B

A B B A A B

 

 

 

  

   







 

 

Here, recall that if 𝜎 is a nonzero connection, then  𝐴𝜎𝐵 > 0 

for any  𝐴, 𝐵 > 0 (see [37]). The connections 
*

  and 


are 

defined for arbitrary positive operators via a continuity 

argument using the monotonicity and the upper-continuity of 

connections. Physically, the transpose of a connection can be 

described as the interchange of two resistances. The dual of 

a connection is to “dualize” the way resistors connected, e.g. 

transform the series connection to the parallel connection.  

 Every nontrivial connection satisfies the following 

algebraic/order properties: positivity, strictness and 

cancellability (see [37-38]).  The   structure   of   the   set  of 
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connections was investigated in [39]; it is a normed ordered 

cone.  

 A fundamental theorem of Kubo-Ando [24] asserts that 

there is a one-to-one correspondence between connections 

and finite positive Borel measures   on the extended half-

line  0,  such that   

 

    
[0, ]

1
:A B A B d


   





                             (32) 

 

for any positive operators A  and .B  Here, the Banach 

space integral is taken in the sense of Bochner; the Banach 

space considered here is the algebra of bounded linear 

operators on .H  This integral can be transformed to a 

symmetric form as follows (see [40]): 

 

 
[0,1]

1 1
: .

1
A B A B d t

t t
 

 
  

 
                                (33) 

 

For the case of series connection, the associated measure   

is given by 
0 1,   here 

t  denotes the Dirac measure on 

[0,1]  concentrated at t . Recall that 
t  is defined for each 

Borel set E  in [0,1]  by 

 

1,
( )

0,
t

t E
E

t E



 


                                                          (34) 

 

The associated measure of the parallel connection is the 

measure
1/2(1/ 2) .  

The integral representation (33) means that a general 

connection represents a formation of making   a new 

impedance from two given impedances. Such a formation 

can be realized as a weighted series connection of weighted 

parallel connections. Thus, the theory of connections can be 

regarded as a mathematical theory of electrical network. 

 

6. Conclusion  

 

The treatment of calculus, linear algebra and functional 

analysis, applied to electrical network connections, results in 

the interpretations of Maxwell’s power principle, the series-

parallel inequality and many physical phenomena. An 

abstract network connection can be viewed as a binary 

operation for positive operators satisfying certain order, 

algebraic and topological properties  

 

7. Acknowledgements  

 

The author was supported by King Mongkut’s Institute 

of Technology Ladkrabang Research Fund grant no. 

KREF045710.  

 

8. References 

 

[1]   Erickson KE.  A new operation for analyzing series-

parallel networks.  IRE Trans Circ Theor. 1959;6(1): 

124-6. 

[2]   Lehman A.  Problem 60-5-A resistor network 

inequality.  SIAM Rev. 1962;4:150-5. 

[3]   Riordan J, Shannon CE.  The number of two terminal 

series-parallel networks.  J Math Phys. 1942;21:83-9. 

[4]   Duffin RJ.  Topology of series-parallel networks.  J 

Math Anal Appl. 1965;10:303-18. 

[5]   Duffin RJ, Hazony D, Morrison N.  Network synthesis 

through hybrid matrices.  SIAM J Appl Math. 1966;14: 

390-413.  

[6]   Anderson WN, Duffin RJ.  Series and parallel addition 

of matrices.  J Math Anal Appl. 1969;26:576-94. 

[7]   Mitra SK, Puri ML.  On parallel sum and differences 

of matrices.  J Math Anal Appl. 1973;44:92-7. 

[8]   Duffin RJ.  Electrical network models.  In: Fulkerson 

DR, editor. Studies in graph theory, part I, math. 

Washington: The  mathematical association of 

America; 1975. p. 94-138. 

[9]   Anderson WN Jr, Duffin RJ, Trapp GE.  Parallel 

subtraction of matrices.  Proc Nat Acad Sci. 1972;69: 

2530-1. 

[10]   Anderson WN Jr, Duffin RJ, Trapp GE.   

Characterization of parallel subtraction.  Proc Nat 

Acad Sci. 1979;76:3599-601. 

[11]   Mitra SK, Trapp GE.  On hybrid addition of matrices.  

Linear Alg Appl. 1975;10:19-35. 

[12]   Mitra SK, Prasad KM.  The regular shorted matrix and 

the hybrid Sum.  Adv in Appl Math.1997;18:403-22. 

[13]   Ekel S.  The genesis of the Wheatstone bridge.  Eng 

Sci Educ J. 2001;10: 37-40. 

[14]   Anderson WN Jr. Shorted operators.  SIAM J Appl 

Math. 1971;20:520-5. 

[15]   Anderson WN Jr, Trapp GE.  Shorted operators II.  

SIAM J Appl Math. 1975;28:60-71. 

[16]   Kubo F.  Conditional expectations and operations 

derived from electrical networks.  J Math Anal Appl. 

1981;80:477-89. 

[17]   Antezana J, Corach G, Stojanoff D.  Bilateral shorted 

operators and parallel sums.  Linear Alg Appl. 

2006;414:570-88. 

[18]   Nishino K, Ando T.  Characterizations of operations 

derived from network connections.  J Math Anal Appl. 

1976;53:539-49. 

[19]   Morley TD.  Parallel summation, Maxwell’s principle 

and the infimum of projections.  J Math Anal Appl. 

1979;70:33-41. 

[20]   Mitra SK, Prasad KM.  The nonunique parallel sum.  

Linear Algebra Appl. 1997;259:77-99. 

[21]   Hiai F, Petz D.  Introduction to matrix analysis and 

applications.  New Delhi: Springer; 2014. 

[22]   Ando T.  Concavity of certain maps on positive 

definite matrices and applications to Hadamard 

products.  Linear Algebra Appl. 1979;26:203-41. 

[23]   Khadivi HR.  On solution of ,AX XB A   range 

inclusion and parallel sum.  J Math Anal Appl. 

1992;169:499-505. 

[24]   Kubo F, Ando T.  Means of positive linear operators.  

Math Ann. 1980;246:205-24. 

[25]   Arlinskii YM.  Theory of operator means. Ukrainian 

Math J. 1990;42(6):723-30. 

[26]   Chansangiam P.  Connections and means for positive 

operators on a Hilbert space [dissertation].  Bangkok: 

Chulalongkorn University; 2012. 

[27]   Chansangiam P, Lewkeeratiyutkul W. 

Characterizations of connections for positive 

operators.  Southeast Asian Bull Math. 2013;37:645-

57. 

[28]   Chansangiam P.  Operator means and applications.  In: 

Yasser HA, editor. Linear algebra: theorems and 

applications. Rijeka: InTech; 2012. p. 163-88.  

[29]   Zemanian AZ. Infinite electrical networks: a reprise.  

IEEE Trans Circ Syst. 1988;35(11):1346-58. 



54                                                                                                                                                       KKU ENGINEERING JOURNAL January – March 2016;43(1)                                                                                                                                                                                                                                                                                                               

 

 

[30]   Hiai F. Matrix analysis: matrix monotone functions, 

matrix means, and majorizations.  Interdiscip Inform 

Sci. 2010;16:139-248. 

[31]   Chansangiam P.  Properties and examples of means for 

positive operators.  SWU Sci J. 2015; 31(1):205-18.  

[In Thai]. 

[32]   Fujii JI, Fujii M, Seo Y.  An extension of the Kubo-

Ando theory: solidarities.  Math Japon. 1990;35:387-

96. 

[33]   Hansen F.  Means and concave products of positive 

semi-definite matrices.  Math Ann. 1983;264:119-    

28. 

[34]   Bhatia R. Positive definite matrices. New Jersey: 

Princeton University Press; 2007. 

[35]   Chansangiam P. Integral representations and 

decomposition of operator monotone functions on the 

nonnegative reals [Internet]. Available from: 

http://arxiv.org/abs/1304.7936v1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[36] Chansangiam P.  Characterizations of operator 

monotonicity via operator means and applications to 

operator inequalities [Internet]. Available from: 

http://arxiv.org/abs/1506.06922 

[37] Chansangiam P. Positivity, betweenness, and strictness 

of operator means. Abst Appl Anal. 2015;2015:1-5. 

doi: http://dx.doi.org/10.1155/2015/851568. 

[38] Chansangiam P. Cancellability and regularity of 

operator connections with applications to nonlinear 

operator equations involving means. J Ineq Appl 

2015;2015:1-13.  http://dx.doi.org/10.1186/s13660-01 

5-0934-7. 

[39] Chansangiam P, Lewkeeratiyutkul W.  The normed 

ordered cone of operator connections. Charmjuri J 

Math. 2013;5:45-55. 

[40] Chansangiam P, Lewkeeratiyutkul W.  Operator 

connections and Borel measures on the unit interval. 

Sci Asia. 2015;41:273-9. 


