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Abstract

In this paper, we survey the role of mathematics in electrical network connections. We discuss the behavior of current flows,
voltages and impedances, mainly for series-parallel networks. In both one-port and multiport electrical networks, currents are
governed by Maxwell’s power principle. The joint impedances of the networks, given in terms of series and parallel sums,
satisfy the series-parallel inequality. An abstract idea can be formulated in functional analysis in which any network connection
is viewed as a binary operation for positive operators satisfying certain algebraic, order and topological properties.
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1. Introduction

In electrical engineering, an electrical network is an
interconnection of physically electrical components (e.g.
batteries, resistors, capacitors, inductors, switches) or a
model of such an interconnection, consisting of electrical
elements (e.g. voltage/current sources, resistances,
inductances). This paper provides a discussion of the flows
of currents through an electrical network obeying Ohm’s law
and Kirchhoff’s voltage/current laws:

Ohm’s law: the current through an electrical device is
the ratio between the voltage (electrical potential difference)
dropped on this device and its impedance.

Kirchhoff's current law: the sum of currents meeting at
a node is zero.

Kirchhoff's voltage law: the sum of voltages in a closed
electrical circuit is zero.

The main concern here is the joint impedance of series-
parallel network. Various properties of series and parallel
additions and their physical interpretations are investigated.

For one-port network, the impedance of the network can
be described by the notion of parallel sum for scalars.
Algebraic properties of this operation were investigated in
[1]. The current flow in the network is governed by the so
called Maxwell’s power principle. Elementary algebra and
calculus shows that the joint impedance of the network
satisfies the series-parallel inequality [2].

The analysis will become more complicated in the case
of multiport electrical networks. Here, the joint impedance
of the network is represented in terms of matrix. Many
authors discussed the role of linear algebra and matrix theory
for network synthesis, focused on series-parallel connections
(see e.g. [3-5]). The main tool for analyzing multiport
electrical networks is the notion of parallel sum for positive
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definite matrices, introduced in a seminal paper [6]. It turns
out that the flows of electrical currents satisfy Maxwell’s
principle and series-parallel inequality as in one-port case
[6]. The theory of parallel sums was then discussed by many
authors (see e.g. [7-8]). This motivated the study of
mathematical operations derived from electrical networks,
such as parallel subtraction (see e.g. [9-10]), hybrid
connection (e.g. [11-12]), Wheatstone bridge connection
([13]), shorted operator ([14-17]).

To extend the idea of network connections, the
perspective of functional analysis is an appropriate
framework. The joint impedance of the network can be
viewed as a positive operator acting on a Hilbert space.
Currents and power dissipations are described by vectors and
inner products on that Hilbert space. The notion of parallel
sum for positive operators was considered in [15]. Algebraic,
order and topological properties of the parallel sum were
discussed in [15] and [18-20]. It turns out that the series-
parallel inequality and Maxwell’s principle also hold in this
setting [19]. Notice that the parallel sum was characterized
via a set of certain properties in [18]. Applications of parallel
sum also go to the area of matrix/operator inequalities and
equations (see e.g. [21-23]).

More abstractly, the idea of connection, introduced by
Kubo and Ando [24], is a suitable generalization of series
and parallel connections. A general connection is a binary
operation for positive operators satisfying certain algebraic,
order and topological properties. Series connection and
parallel connection are typical examples of this concept. This
beautiful theory was developed by many mathematicians;
see e.g. [24-28]. Every connection can be realized as a
weighted series connection of weighted parallel connections.

This paper is organized as follows. The next section is an
analysis of one-port electrical networks. The third section
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deals with the role of linear algebra in multiport network
connections. Analysis of electrical connections is presented
in the language of functional analysis in the fourth section. A
general setting for network connection is settled in the fifth
section. Finally, we summarize the role of mathematics for
electrical network connections.

2. One-port electrical networks

Consider a simple electrical circuit consisting of a battery
of fixed voltage E and a resistor of resistance R, as shown

in Figure 1.

Figure 1 A simple electrical circuit

By Ohm’s law, the current | flowing in the circuit is given
by | = E/R. For the case of alternative current circuits,
the voltage source generates sinusoidal waves and electrical
components in the circuit may be not pure resistors (e.g.
capacitors, inductors). In this case, resistances are replaced
by impedances, which are complex numbers, and the Ohm’s
law still holds.

A one-port network is a “black box” with a single pair of
input/output terminals. Consider two resistors connected in
series as in Figure 2:

1

2
Figure 2 A series connection of two resistors
By Kirchhoff’s voltage law and Ohm’s law, the joint
resistance R between terminals 1 and 2 is determined by
R = A+B . Circuit equivalently (using Figure 1), two
resistors together act as if they were a single resistor whose
resistance is given by the series sum R .

Next, consider the parallel connection shown in Figure 3.
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Figure 3 A parallel connection of two resistors
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Using Kirchhoff’s current law and Ohm’s law, the joint
resistance R between terminals 1 and 2 satisfies the relation

+

or R= (A’l + B*l)fl = AA+BB . @)

|-
p
W

More precisely, the resistors together act as if they were a
single resistor whose resistance is given by the parallel sum
R, denotedby A: B (see [1]). The algebraic operation : is
termed the parallel addition. The network model shows that
the parallel addition is commutative and associative.
Moreover, multiplication is distributive over this operation.

Consider a series-parallel connection as in Figure 4:

2
Figure 4 A series-parallel network

The joint resistance of this network is given in terms of series
addition and parallel addition as follows:

R=A+[B:(C+(D:E))]. @)

Every series-parallel connection network can be
interpreted in terms of series addition and parallel addition.
However, not every network is a series-parallel connection,
for example, the Wheatstone bridge connection in Figure 5.

2

Figure 5 A Wheatstone bridge connection

In fact, a network is a series-parallel connection if and only
if there is no embedded network having the Wheatstone
bridge connection, see [5]. There is also a simple
characterization of series-parallel connection given by [4].

Recall that the flow of currents through electrical circuits
is governed by Maxwell’s power principle: the current will
take flow paths in such the way that the power dissipation is
minimized. This principle, also known as Rayleigh’s
principle, is equivalent to a variational description of the
parallel sum A: B as follows:

A:B= min Ax2+By2. 3)
X+y=1
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The extremal characterization (3) can be derived using
optimization technique in multivariable calculus. This serves
an easy proof of Lehman’s series-parallel inequality (see [3])
as follows.

Consider an electrical network as shown in Figure 6.

1

2

Figure 6 An electrical network for proving the series-parallel
inequality

When the switch S is open, the joint resistance is given by
R, =(A+C):(B+D). 4)
On the other hand, when S is closed, the joint resistance
becomes

R, =(A:C)+(B:D). (5)

Since the current takes the path of least resistance (that is,
least power) and there is less constraint with the switch close,
we arrive at the Lehman’s series-parallel inequality:

(A:C)+(B:D)<(A+B):(C+D). ©)

Alternatively, the series-parallel inequality can be expressed
as

AC BD _(A+B)(C+D)

+ < : (7
A+C B+D A+B+C+D

It is worth nothing that the connection in Figure 6
corresponds to replacing the resistor E in the Wheatstone
bridge connection in Figure 5 with a switch. Let R, be the

joint resistance of Wheatstone bridge. By Rayleigh’s
principle, we obtain

R. <Ry <Ry. (8)
3. Multiport electrical networks

A multiport network consists of several pairs of
input/output terminals. In this section, we analyze multiport
electrical networks using linear algebra.

Consider an electrical network with two pairs of terminals as
in Figure 7:

:Ez

Figure 7 A two-port electrical network
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The first pair of terminals is in circuit 1 and the second
one is in circuit 2. Then the currents and voltages in these
circuits are related by the following system of linear
equations:

Er =Rili +Real

: )
Bz =Rnli + Rzl
Rewrite these equations in vector/matrix form as
E=RI (10)

where

E R R |
E, Ro1 Rop I

If the resistor box R contains interconnected resistors, then
Ri, =Ry, that is R is a symmetric matrix. Moreover, the

conservation law of energy implies that R is a positive

semidefinite matrix, more precisely x' Rx >0 for all x € R2.
In what follows, a positive semidefinite symmetric matrix
will be called a resistance matrix.

Resistor boxes can be added in series as is show in Figure 8.

]1 11 11
——o o ) o>—
I 4 /4 B z
—>—10 0 0 o>—

Figure 8 A series connection of two-port networks

Here, we assume that the current |, in the first circuit of box

A is the same as the current in the first circuit of the box B
- Itis similar for the current |, . This can be achieved via use

of isolation transformers.

If A and B are the resistance matrices of these
networks, then the joint resistance matrix R is given by
R = A+B. In other words, series connection of resistance
boxes corresponds to addition of their resistance matrices.
Figure 9 gives a symbolic meaning of the series addition of
resistor boxes.

Figure 9 A symbolic meaning of the series addition

From the relation (10), any current vector | can be an
input of a resistor box. However, not every voltage vector E
can be an input if the resistance matrix R is not invertible.
In any cases, the following fact relates the range spaces of
the series connection of the networks.

Range( A+ B) = Range( A)+Range(B) (11)

Now, consider the case when we connect the resistor boxes
in parallel as in Figures 10 and 11.
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Figure 10 A parallel connection of two-port networks

Figure 11 A symbolic form of a parallel connection

Suppose that both A and B are represented by invertible
positive semidefinite matrices (that is, positive definite
matrices). Then the joint resistance matrix R of the parallel
connection and the resistance matrices A, B are related by

RI=A?1+B1. 12)

We obtain that R = A(A+B) ' B. For simplicity, we write

A:B for R and call it the parallel addition of A and B,
that is

A:B=A(A+B)'B. (13)

Note that the relation (11) shows that Range (A + B) 2
Range(B). This means that A+ B is invertible on its range.
Hence, (A + B) ' Bis a well-defined matrix. Thus, the
parallel addition is a well-defined operation for any pair of
positive semidefinite matrices. Various algebraic, order and
analytic properties of this operation were investigated in [10-
13]. We will discuss some of these properties.

By virtue of the network model, the parallel addition is
expected to be commutative and associative. Here, we give a
direct proof of commutativity:

A:B=(A+B-B)(A+B)'B=B-B(A+B)'B

(14)
B:A=B(A+B)'(A+B-B)=B-B(A+B)'B
This implies that
A:B=B(A+B) A (15)

From the definition (13) of parallel sum, we clearly have
Range (A + B) < Range (A). Similarly, the relation (15)
shows that Range (A + B) € Range (B). Further analysis
gives
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Range( A+ B) = Range( A) "Range(B). (16)

The relations (11) and (16) reveal a remarkable duality
between series addition and parallel addition.

To give an application of the above duality principle, we will
analyze the networks in Figures 12 and 13.

o

A B C
R:

B C A
o |

Figure 12 A series-parallel network 1

o
| |
A B
— |
R2 C C
| —
A B
o |

Figure 13 A series-parallel network 2

Clearly the joint resistance matrix of the first network is
given by

Ry =(A+B):(B+C):(C+A) 17

Let X,Y,Z be the range spaces of A, B,C respectively.
From (11) and (17), we have

Range(Ry)=(X+Y)N (Y +Z)N(Z+X) (18)

On the other hand, the joint resistance matrix of the second
network is

R, =[ A:(B+C)]+[B:(A+C)]. (19)
Hence, the range of R, is
Range(Ry)=(X (Y +2))+[YN(Z+X)]. (20

Now, recall that the collection of subspaces of a vector space
form a modular lattice. From modular identity, we have
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(X+Y)N(Y+Z)n(Z+X)

(21)
=(X(Y+2Z))+[Yn(Z+X)]

This means that
Range(R; ) = Range(R;) - (22)

Thus, various analogous procedures for constructing
networks with the same range can be obtained by the duality
principle.

The network connection used by Lehman [3] to obtain
the series-parallel inequality for positive reals can be
extended to resistor boxes. More precisely, for positive
semidefinite matrices A, B,C, D of the same size, we have

(A:C)+(B:D)<(A+B):(C+D). (23)

Here, the partial order X <Y means that B— A is positive
semidefinite whenever X and Y are Hermitian or real
symmetric matrices.

A B

Figure 14 The joint impedance of the network with parallel
first and series last

Figure 15 The joint impedance of the network with series
first and parallel last

The series-parallel inequality means that the joint impedance
of the network in Figure 14 is not greater than that in Figure
15.

Consider the network connections in which some circuits
are put in series and some circuits are put in parallel. Such a
connection is called the hybrid connection as shown in
Figure 16.

6 o i
A |
o 0 i

Figure 16 A hybrid connection
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An elegant network synthesis of the hybrid connection
can be found in [6]. The joint resistance of the hybrid
connection is called the hybrid sum. In this type of
connections, the series-hybrid inequality is valid.

4. Perspective of functional analysis in electrical network
connections

Let us formulate the theory of electrical networks in the
viewpoint of functional analysis. An abstract idea is to
consider arbitrary networks, including infinite networks [29].
See [26, 28, 30-31] for surveys.

Let (H,(,)) be a Hilbert space, which may be of
infinite-dimensional. Each current in the network considered
here is given by a vector in. The impedance of this network
can be represent by a positive operator which transforms any
input current vector in H to an output current vector in the
same space H . The voltage vector when the current x flows
through the impedance operator A is given by AX
according to Ohm’s law. The power dissipation of the
network with impedance operator A and current vector X
is given by the inner product (Ax, x). Note that the term
(Ax, x) is always nonnegative due to the positivity of the
operator A.

Let A and B be invertible positive operators acting on
H . Each of them describes the impedance of each
subnetwork. The ordinary sum A+ B simply expresses of
the total impedance of the series connection of these
networks. The parallel sum

A:B= (A‘1 +Bt )_l (24)

indicates the total impedance of the parallel connection of
these two networks.

The normal situation is that the impedance operators A
and B are strictly positive. However, the case A =0 or
B =0, that is a short circuit, can be handled by letting
A: B = 0. This motivates us to define the parallel sum for
arbitrary positive operators A and B by perturbing A and B
with & and taking limit as € tends to O in the strong-
operator topology:

A:B=Ii£g(A+gl):(B+gl). (25)

Here, I denotes the identity operator. It is clear that the
parallel sum is commutative, associative and the
multiplication is distributive over this operation.

In this setting, the flow of currents through the electrical
network is governed by Maxwell’s power principle as
follows:

<(A: B)x, x> =inf {(Ay, y)+(Bz,z):y,zeHandy+z= X}. (26)
That is the current flows to each subnetwork in such a way
that the total power dissipation is minimized. From this

principle, one can easily derive the following properties of
parallel sum:

(1) monotonicity: A <Ay, Bi<B, = A B <A B,
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(2) transformer inequality: S*(A:B)SS(S*AS):(S*BS)

for all operators S on H

(3) continuity from above: if A, { A and B, 4B, then
A,:B,{ A:B.

Here, the notation X, | X means that (X,)p=; is a
decreasing sequence of positive operators (with respect to the
positive semidefinite ordering for Hermitian operators)
converging to X in the strong-operator topology.

The transformer inequality has a physical interpretation
as follows. The positive operator S* AS represents the
impedance of a network connected to a transformer. The
transformer inequality states that the impedance of parallel
connection with transformer first is greater than that with
transformer last.

The Maxwell’s principle (26) also leads to the series-
parallel inequality as follows:

(A:B)+(C:D)<(A+C):(B+D) (27)
for all positive operators A,B,C,D .

5. General network connections

The notion of parallel sum is generalized to the concept
of connection by Kubo and Ando in [24]. See [28, 30-31] for
surveys of the theory and [27, 32-33] for variants of the
theory.

A connection is a binary operation o assigned to each
pair of positive operators such that the following conditions
are fulfilled for all positive operators 4, B, C,D

(C1) monotonicity: A<B,C<D = AcC <BoD

(C2) transformer inequality:
C(AO'B)C < (CAC)O‘(CBC)

(C3) continuity from above: if A, J Aand B, 4 B, then
A,cB, 1 AcB.

The property (C2) shows how network connection behaves
when connected to a transformer. Typical examples of a
connection are the sum (the series connection) and the
parallel sum (the parallel connection).

These axiomatic properties (C1)-(C3)
following properties:

imply the

e positive homogeneity, i.e. kA o kB = k(AcB) for
any k >0.

o transformer inequality (general form):
X" (AsB)X g(x*Ax)U(x*Bx) for any operator X.

e congruent invariance, i.e. for any invertible operator X,
(X"AX) o(X"BX) = X" (AcB)X. (28)

e concavity, i.e. forany t €[0,1],
[tA+(1-1)B] o [tA'+(1—t)B"] >

(29)
t(AcA) + (1-t) (BoB')
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The series-parallel inequality for parallel sum is now a
special case of the following inequality:

(AcB)+(CoD)<(A+C)o(B+D). (30)

Every connection o is associated to an operator monotone
function f :[0,00) —[0,0) via the formula

AcB = AY2 f (AVZBAVZ) AV2 (31)

where A and B are strictly positive, and the formula can
be extended to positive operators by a continuity argument
using (C1) and (C3). See [21, 30, 34-36] for more
information about the role of operator monotone functions in
the theory of connections.

A connection with the property that AcA = A for any

positive operator A is known as a mean. It turns out that
every mean arises as a scalar multiple of a nonzero
connection. For example, the harmonic mean is the twice
parallel sum. For example, the harmonic mean is the twice
parallel sum.

There are four ways of operations to produce new
connections from the existing ones. First, an action, called
the scalar multiplication, of a connection &  with a scalar
a >0 is defined by

aoc: (A B) > a(AcsB).

The second way is to use a binary operation, called the sum.
The sum of two connections 0 and 7 is

o+n: (A B)— (AoB)+(AyB).

The third way is to use a ternary operation, called the
composition. Given three connections o,7 and 7, the

composition of them is defined by
o(0)n: (A B) — (AcB)r(AnB).

The fourth way to produce new connections is to take a unary
operation. We respectively define the transpose, the adjoint
and the dual of a nonzero connection & to be the following
operator connections

o (AB)>BoA, AB>0
o:(AB)~(A'eB™")", AB>0
o' :(AB)—~(B'cA™")*, AB>0.

Here, recall that if o is a nonzero connection, then AgB > 0

forany A, B > 0 (see [37]). The connections ¢~ and o are
defined for arbitrary positive operators via a continuity
argument using the monotonicity and the upper-continuity of
connections. Physically, the transpose of a connection can be
described as the interchange of two resistances. The dual of
a connection is to “dualize” the way resistors connected, e.g.
transform the series connection to the parallel connection.
Every nontrivial connection satisfies the following
algebraic/order properties:  positivity, strictness and
cancellability (see [37-38]). The structure of the set of
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connections was investigated in [39]; it is a normed ordered
cone.

A fundamental theorem of Kubo-Ando [24] asserts that
there is a one-to-one correspondence between connections
and finite positive Borel measures x on the extended half-

line [0,00] such that

[ 224488} du(2)

[0,00]

AocB = (32)

for any positive operators A and B. Here, the Banach
space integral is taken in the sense of Bochner; the Banach
space considered here is the algebra of bounded linear
operators on H. This integral can be transformed to a
symmetric form as follows (see [40]):

1

AcB = j(—A : %Bjdﬁ(t). (33)
[01]

For the case of series connection, the associated measure ji
is given by &, +9;, here o, denotes the Dirac measure on
[0,1] concentrated at t . Recall that &, is defined for each
Borel set E in [0,1] by

LteE

34
O0,teE G4

5t(E)={

The associated measure of the parallel connection is the
measure (1/2)5,,, .

The integral representation (33) means that a general
connection represents a formation of making a new
impedance from two given impedances. Such a formation
can be realized as a weighted series connection of weighted
parallel connections. Thus, the theory of connections can be
regarded as a mathematical theory of electrical network.

6. Conclusion

The treatment of calculus, linear algebra and functional
analysis, applied to electrical network connections, results in
the interpretations of Maxwell’s power principle, the series-
parallel inequality and many physical phenomena. An
abstract network connection can be viewed as a binary
operation for positive operators satisfying certain order,
algebraic and topological properties
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