KKU ENGINEERING JOURNAL April — June 2016;43(2):62-68 Research Article

KKU Engineering Journal

https://wwuw.tci-thaijo.org/index.php/easr/index

Published by the Faculty of Engineering, Khon Kaen University, Thailand

A comparison of genetic algorithm and artificial bee colony approaches in solving
blocking hybrid flowshop scheduling problems with sequence dependent
setup/changeover times

Pongpan Nakkaew*%, Nantachai Kantanantha® and Wuthichai Wongthatsanekorn 2

Dindustrial Engineering Department, Kasetsart University, Bangkok 10900, Thailand
AIndustrial Engineering Department, Thammasat University, Patumtani 12120, Thailand

Received June 2015
Accepted September 2015

Abstract

In manufacturing processes where efficiency is crucial to remain competitive, the flowshop is a common configuration in
which machines are arranged in series and products are produced individually in stages. In certain production processes,
machines are frequently configured in a way that each production stage may contain multiple processing units in parallel or a
hybrid configuration. Moreover, along with precedent conditions, sequence dependent setup times may exist. Finally, in the
case where there is no buffer, a machine is said to be blocked if the next stage is occupied. In NP-Hard problems, referred to
as Blocking Hybrid Flowshop Scheduling Problems with Sequence Dependent Setup/Changeover Times, it is usually not
possible to find an exact best solution to satisfy optimization objectives. Thus, it is usually solved by approximate algorithms
such as metaheuristics. In this paper, we comparatively investigate the effectiveness of two approaches: a genetic algorithm
(GA) and an artificial bee colony (ABC) algorithm. Additionally, we applied an algorithm to improve the GA and ABC
algorithms so that they can take advantage of parallel processing resources of modern multiple core processors, while
eliminating the need for advance screening of the algorithm optimal parameters. These techniques were applied to solve three
problems. In small-sized problems, GA outperformed ABC. For medium-sized problems, the two algorithms appeared to have
similar performance. For large-sized problem, ABC performed better than GA because GA is held back by crossover

operations. Furthermore, enhancements helped increase the performance of both GA and ABC algorithms.

Keywords: Genetic algorithm, Artificial bee colony, Sequence, Blocking, Flowshop

1. Introduction

Production planning, in general, may be described as
finding favorable procedures or schedules to manufacture
goods, given required quantities, available resources,
conditions, constraints, and objectives. In most cases,
scheduling problem may be categorized into four types
depending on machine environments: flowshop, openshop,
jobshop, and parallel-machine shop. In a flowshop, all jobs
follow the same machine sequence and each job has exactly
one operation on each machine. An openshop is similar to a
flowshop, with the exception that the operation of a job may
be performed in any order. In a jobshop, the process may
follow different machine sequences and may use the same
machine more than once. In parallel-machine shop, a shop
consists of a number of identical machines and a job can be
processed on any machine.

An n-job m-machine flowshop scheduling problem is an
example of combinatorial optimization problems, dealing
with locating an optimal object from a finite set of objects.
The scheduling problem is to specify the resources and the
times to process the jobs, depending to optimization

*Corresponding author. Tel.: +6684 098 8838
Email address: pongpan@gmail.com
doi: 10.14456/kkuenj.2016.10

objectives. The problem was originally brought to attentions
of the researchers when [1] developed a simple decision rule
to achieve the optimal scheduling of the items minimizing
the makespan for two-stage problems. For three-stage
problems, the solution can be obtained only for a restricted
case. For such problem, there are generally m(n!) alternative
sequences for the jobs. However, with the assumption that
all machines process the jobs in the same order with no
limitation of the buffers, the search space reduces to the n!.

When there are parallel machines allowing alternative
routes, the assumption that all machines process the jobs in
the same order is no longer valid. Consequently, the search
space becomes larger. Because of the large search space,
exhaustive search is usually not feasible. This type of
problems are often addressed by heuristic methods and
approximation algorithms. Despite the challenge, the
problem continues to attract researchers due to its diverse
applications and approches as reviewed by [2].

Other researchers, such as [3], [4], and [5] have
attempted MILP-based approaches while [6] has employed
an ant colony system approach. For TSP based approaches,
a review is provided by [7].

KKU ENGINEERING JOURNAL April — June 2016;43(2)

In this paper, we address three-stage blocking hybrid
flowshop scheduling problem with sequence dependent
setup/changeover times. The objective is to minimize the
makespan, the time required to complete all the jobs. Since
makespan is a crucial factor contributing to the operation
cost, the ability to reduce makespan means a greater chance
to achieve operational profitability.

1.1. Hybrid flowshop scheduling problem

In certain manufacturing processes, for instance, make
and pack plants, the machines are usually configured in a
way that each production stage may contain multiple
processing units in parallel. Such configuration is known as
flexible or hybrid flowshop.

In similar fashion to the mathematical formulation of a
standard hybrid flowshop found in [8], with the objective to
minimize the makespan, a model may be formulated as
follows.

Let's first define the following parameters and indexes.

Number of jobs
Number of stages
Index for the jobs
Index for stages, {1, 2,..., m}
Index for machines in stage i
Index for the positions of the jobs in a particula
r stage
pji Processing time of job j at stage i
Cmax Makespan
M A large positive number

X~~~ 3 3

The following variables are defined.
X; i, Binary variable taking value 1 if job j
occupies position k at stage i, and 0
otherwise
Y;x, Binary variable taking value 1 if the job in posi
tion k of stage i is processed on machine I, and

0 otherwise

Six The starting time of the job in position k at stag
ei

F;; The starting time of job j at stage i

The model formulates the problem as follows.
Minimize

Cinax = max{lej =1,..,n})
where G =Fp+Djm @
Subject to:

Yk=1 Xk =1 V)i (3)
Z;lzl ij,i,k = 1 vl,k (4)
2t Xiga =1 Vi i (5)

Fjiv1 2 Fi +pji Vii<m (6)

Sig=F i —M(1—X;;) Vik,j ©)
Sig =Fi +M(1—X;1p) Vik,j (8)
Sik, Fji =0 9)
Xjik Yik: € {0,1} (10)

The constraints according to (3), (4), and (5) ensure that
that every job occupies each stage exactly once without

63

overlapping. (6) ensures that the operation of a job in the next
stage only occurs after it has been completed in previous
stage. (7) and (8) relate the jobs to the positions in the stages.
Lastly, (9) and (10) define decision variables.

The standard model assumes that the processing times
for each jobs are known in advance. The buffer capacities are
also assumed to be unlimited.

In reality, in many processes, overall processing times of
each stage are not known in advance. For example, in
addition to the fixed processing times, there might be
variable sequence dependent setup times. This increases the
problem complexity because the total processing times for
the jobs, in this case, cannot be determined in advance.
Finally, when there are no buffer, the problem is even more
difficult because the machines between succeeding stages
are no longer independent. A machine is said to be blocked
if the next stage to handle its output is being occupied. Such
problem is referred here as Blocking Hybrid Flowshop
Scheduling Problem with Sequence Dependent
Setup/Changeover Times.

Because of the difficulty of the problem as pointed out
by [9] and [10] and the lack of computational resources,
publications addressing this problem only started to appear
after the year 2000 when the advances in computer
technologies make it more practical to address this problem
heuristically without the need to formulate and solve a proper
mathematical model.

1.2. The example problem

For investigation of the performance and behavior of a
Genetic Algorithm and Artificial Bee Colony Algorithm, we
implement the method to solve a three stage blocking hybrid
flowshop problem. Each stage contains a number of identical
processing units (PU) or processors as shown in Figure 1.
These identical processors in the same stage perform the
same operation. The processing units belonging to different
stages, however, are usually different.

Stage 1 Stage 2 Stage 3
*PU1 *PU1 *PU1
*PU2 *PU2 *PU2

«PUn «PUn *PUn

Figure 1 A typical setup of a hybrid flowshop problem

For each job to produce a product, the raw materials first
enter stage 1 where they can be processed by any of the
processing units, as long as the unit is free.

The minimum time the processing unit remains occupied
can be obtained as the sum of the fixed processing time and
the sequent dependent setup time. Upon completion after the
time has elapsed, the product will be transferred to the
subsequent stage as soon as there is an available free
processing unit downstream. In the case that none of the
processors in the subsequent stage is free, the product will
continue to keep the current processor occupied after the task
has finished. In other words, the current processing unit
will continue to be unavailable or blocked, waiting for an

64

Table 1 The number of processors in each stage for each
case.

cases Number of PU
Iststage 2ndstage 3rd stage
small 3 3 3
medium 5 5 5
large 25 25 25

available processing unit downstream because there is no
buffer between stages. Nevertheless, the buffers preceding
the first stage and following the last stage are assumed to be
unlimited.

The small, medium and large cases of the three-stage
problem used for the numerical analysis are generated. In
each case, the number of the processors in all stages are the
same. As shown in Table 1, the numbers processing units of
all stages are varied for the three case as 3, 5, and 25,
respectively.

All the three cases consist of 10 product types in various
quantities according to Table 2. To produce each product of
any type, exactly one job consisting to three tasks is required.
Consequently, the required quantities are equal to the
number of jobs. In total, there are 10, 100, 500 jobs to be
assigned for the small, medium, and large case, respectively.
The required quantity for each product type for each case
are as follows.

Table 2 Required quantities for each product type for each
case.

product type small case medium case large case
1 1 12 60
2 1 11 55
3 1 7 35
4 1 14 70
5 1 5 25
6 1 8 40
7 1 12 60
8 1 13 65
9 1 10 50
10 1 8 40
Total 10 100 500

number of jobs

The processing times in hours for each product type at
each stage for the three cases are the same as shown in
Table 3.

Table 3 Production time in hours for each product type for
each stage.

Product Type Stage 1 Stage 2 Stage 3
1 0.1930 0.0915 0.6423
2 0.3416 0.6146 0.2213
3 0.9329 0.0110 0.8371
4 0.3907 0.5733 0.9711
5 0.2732 0.7897 0.8464
6 0.1519 0.2354 0.5060
7 0.3971 0.4480 0.2789
8 0.3747 0.5694 0.7466
9 0.1311 0.0614 0.2369
10 0.4350 0.4963 0.9573

KKU ENGINEERING JOURNAL April — June 2016;43(2)

The setup times in hours for switching product types at
stage 1, 2, and 3 are as follows.

0 0.5747 0.1170 0.5154 0.3242 0.9969 0.8266 0.5038 0.7202 0.3600
0.7167 0 0.8147 0.6575 0.3017 0.5535 0.3945 0.6128 0.3469 0.4542
0.2834 0.4564 0 0.9509 0.0117 0.5155 0.6135 0.8194 0.5170 0.3864
0.8962 0.7138 0.2462 0 0.5399 0.3307 0.8186 0.5319 0.5567 0.7756
0.8266 0.8844 0.3427 0.4001 0 0.4300 0.8862 0.2021 0.1565 0.7343
7 0.3900 0.7209 03757 0.8319 0.1465 0 0.9311 0.4539 0.5621 0.4303

0.4979 0.0186 0.5466 0.1343 0.6311 0.0710 0 0.4279 0.6948 0.6938

0.6948 0.6748 0.5619 0.0605 0.8593 0.8877 0.2586 0 0.4265 0.9452

0.8344 0.4385 0.3958 0.0842 09742 0.0646 0.8979 0.6201 0 0.7842
0.6096 0.4378 0.3981 0.1639 0.5708 0.4362 0.5934 0.6954 0.7314 0

0 0.6690 0.0196 0.1432 0.5078 0.9419 0.8669 0.1403 0.2436 0.1749
0.3899 0 0.4352 0.5594 0.5856 0.6559 0.4068 0.2601 0.7851 0.1386
0.5909 0.2180 0 0.0046 0.7629 0.4519 0.1126 0.0868 0.0741 0.5989
0.4594 0.5716 0.6174 0 0.0830 0.8397 0.4438 0.4294 0.3939 0.9011
0.0503 0.1222 0.5201 0.8487 0 0.5326 0.3002 0.2573 0.0034 0.9394
0.2287 0.6712 0.8639 0.9168 0.5170 0 0.4014 0.2976 0.2207 0.2212
0.8342 0.5996 0.0977 0.9870 0.1710 0.6801 0 0.4249 0.0013 0.4827
0.0156 0.0560 0.9081 0.5051 0.9386 0.3672 0.4036 0 0.1892 0.3760
0.8637 0.0563 0.1080 0.2714 0.5905 0.2393 0.3902 0.4951 0 0.5238
0.0781 0.1525 0.5170 0.1008 0.4406 0.5789 0.3604 0.7064 0.2681 0

S, =

0 0.7060 0.3180 0.5324 0.2748 0.1888 0.7624 0.6723 0.0249 0.7269
0.4363 0 0.6086 0.7165 0.2415 0.0012 0.5761 0.4315 0.6714 0.3738
0.1739 0.5523 0 0.1793 0.2431 0.3164 0.7477 0.6944 0.8372 0.5816
0.0261 0.2181 0.9091 0 0.1542 0.6996 0.6455 0.2568 0.9715 0.1161
0.9547 0.7724 0.5916 0.1877 0 0.6253 0.1232 0.0098 0.0569 0.0577
0.4306 0.2280 0.3326 0.3219 0.9357 0 0.5044 0.5323 0.4503 0.9798
0.9616 0.3709 0.8531 0.4039 0.8187 0.4390 0 0.2794 0.5825 0.2848
0.7624 0.8909 0.4424 0.5486 0.7283 0.2874 0.0921 0 0.6866 0.5950
0.0073 0.8564 0.9044 0.0487 0.1758 0.5017 0.1478 0.9064 0 0.9622
0.6800 0.4024 0.0332 0.5527 0.3604 0.7615 0.1982 0.3927 0.6500 0

8=

The Si1, Sz, and Sz are for the stage 1, 2, and 3,
respectively. The row position represents the product that has
been or are currently produced. The column position
represents the next product to produce. As an example, if you
want to know the setup time for switching from product type
3 to product type 2 for stage 1, you look at S1(3, 2), which is
0.4564 hours.

2. Methodology

Evolutionary computation is a subfield of artificial
intelligence that involves continuous optimization and
combinatorial optimization problems. Two examples of
evolutionary computation presented in this paper are Genetic
Algorithm (GA) and Artificial Bee Colony (ABC).

2.1 Genetic algorithm

GA is a search heuristic that mimics the process of
natural selection according to Darwinian principles. The use
of survival of the fittest principles for automated problem
solving originated in the 1950s. The examples of the GA-
based approaches and applications include [11], [12], and
[13].

Typically, a GA proceeds as follows.

1. Generate the initial population of chromosomes.

2. Randomly select a chromosome or chromosomes
from population to induce either mutation and/or
crossover to create a number of offspring.

3. Compare the offspring. The one with the best result
is selected to replace a chromosome among the
population.

4. Keep repeating step 2 and step 3 until a stopping
criterion is met.

2.2 Artificial bee colony algorithm

Let’s consider the behavior of honey bees in locating
food sources. [14] found that the colony routinely foraged
several kilometers from its nest, frequently adjusted its
distribution of foragers on its patches, and worked relatively
few patches each day. This foraging pattern hints that the
foraging strategy of a honey bee colony involves surveying
the food source patches within a vast area around its nest,

KKU ENGINEERING JOURNAL April — June 2016;43(2)

pooling the exploration results of its many foragers, and
using this information to focus the forager labors more on a
few promising patches within its foraging area.

Such behavior had inspired researchers into developing
the Artificial Bee Colony Optimization (ABC) algorithm.
[15], for instance, had conducted empirical study of such
approach while [16] developed a novel discrete artificial bee
colony algorithm for the hybrid flowshop scheduling
problem with makespan criterion. [17] is another example
where a modified ABC algorithm was used for parameter
optimization.

In ABC algorithm, the actual position of a food source
corresponds to a possible solution to the optimization
problem and the amount of nectar found in a food source
represents the quality of the associated solution.

According to the model, the colony consists of three
groups of bees: scout bees, employed bees, and onlooker
bees. It is assumed that there is only one artificial employed
bee tending to each food source. In other words, the number
of employed bees in the colony is the same as the number of
food sources being explored. The number of employed bees
can be chosen freely and will dictate the number of registered
food sources. The number of scout and onlooker bee can be
chosen without restrictions.

First the scout bees will explore and register the potential
food sources. Once scout bees have been successful in
identifying food sources, the employed bees will take over
and proceed to evaluate the quality of the sources.

The employed bees usually stray from their memorized
positions and discover new neighbor food source locations.
Provided that the nectar amount of the new one is higher than
that of the previous source, the bees memorize the new
source positions and forget the old ones. Otherwise, they will
keep the positions of the one in their memories. Back in the
hive, the employed bees that complete the search will share
the position information of the sources with the onlookers
that are observing the employed bees.

Based on the behaviors of the employed bees, the
onlooker bees will decide which food sources they will
explore. The onlooker bees, however, will explore the target
that is slightly different than the area previously visited. That
is finding a feasible solution in the vicinity of an existing
solution.

Each onlooker evaluates the nectar information taken
from all employed bees and then chooses a food source
depending on the nectar amounts of sources. In similar
manner to the case of the employed bee, it produces a
modification on the original source position and checks its
nectar amount. Given that its nectar is higher than that of the
previous one, the bee registered the new position.

In deciding which food sources to explore, these
onlooker bees will take into account of the information from
the scout bees. The realization of this behavior in a
scheduling problem with the objective is to minimize
makespan is as follows. Naturally, given that m is the
makespan, we define g, the food quality as 1/m. pi, the
probability that the area i is selected, is then defined as:

qi
Ezlzlqi

bi = (11)

1
where @q; = oo (12)
i

After the flight, if the quality of the source is better than
the quality of previously found sources, the new one will be
registered and one of the existing food sources is dismissed.

65

Meanwhile, the employed bee whose source is abandoned
will be relocated to work on a new source. Figure 2 illustrates
such behavior of the bees which is realized as an artificial
bee colony optimization routine.

2.3 Solution representation

For flexible flowshop, we must first consider the order of
the jobs. Then, additionally we must consider which of the
processer in each stage will handle a particular job. Thus for
3 stage flowshop, each job will compose of three tasks, each
of which for one of the processing unit for a particular stage.
Let’s consider the following solution to produce just three
products.

Random a bee

Select an
emplov

Select a
Determine the
source’s quality

Determine whether to Select an

onlooker

update a location Scout

Figure 2 Artificial bee colony algorithm routine

O
1
w N
w RN
NN
N w b
NN W

In this example, the row order represents the order in
which the jobs enter the machines. The first column represent
job indexes. The second column represents the product types
or formulas. Third, forth, and fifth column represents the
machine assignments for a given job for stage 1, stage 2, and
stage 3, in that order.

Given this solution C, product 2 will be processed first
by CU# 1, CU# 4, and CU# 3 of the stage 1, stage 2, and
stage 3, respectively. Product 1 and 3 are then processed
sequentially in similar manner.

Once, the processing steps are defined, what left to be
determined are timings in order to obtain a solution to the
scheduling problem. This can be constructed heuristically
following a prescribed procedure as follows. The job being
processed, once completed, will be transferred downstream
as soon as the designated resource in the next stage becomes
available. In the case of the job waiting in the queue,
however, they must enter the first stage in accordance with
the order specified by the solution.

2.4 The algorithm enhancements

Typically, prior to performing optimization process
using algorithms such as the Genetic Algorithm or Artificial
Bee Colony optimization, suitable parameters must be
evaluated. Without the assumption that these parameters are
independent, the process of finding the optimal parameters,
by itself, is an combinational optimization problem. To
eliminated the need for optimization of the parameters, the
following procedure, inspired by League Championship
Algorithm (LCA), inspired by [18], is introduced.

66

1. A number of optimization routines are executed in
parallel with different sets of random parameters and
population pools for a certain period. In this paper, the
number of parallel jobs chosen is four to fully utilize a quad
core CPU.

2. At the end of the period, the performance of different
pools are evaluated. The population and the parameters of the
best performer are kept the same. The parameters of the
weaker performers are adjusted stochastically in such a way
that they are closer to the parameters of the best performer.
This is inspired by the Firefly algorithm. Some population
from the best performance group are also introduced into the
weaker groups.

3. Repeat step 1 and 2 until a stopping criterion such as
time limit is met.

3. Numerical results and discussion

The results presented in this literature are obtained using
an AMD Phenom Il X4 965 3.4 GHz Processor based PC
with 8 GB 1333MHz DDR3 SDRAM. The script is
implemented using Matlab.

Given that the control parameters are the population size,
number of offspring produced through mutation, and the
number of children produced by crossover processes, we first
determine the suitable ranges of these parameters.

The suitable value of a parameter is determined by
varying its value while keeping other parameters constant to
identify the value that yield best result. For example, the
population size is determined by varying the population size
while keeping the number of offspring from mutation, the
number of children from crossover processes, and other
parameters the same. An example this approach is shown as
Figure 3.

42 . . : . :

Pop =10

40

25)

38

36 |

KZN

32+

30

Makespan (number of child

28

26 ! ! L ! L
0 50 100 150 200 250 300
Time (s)

Figure 3 Illustrate the process to determine a parameter

In the end, we obtain the suitable parameters for Genetic
algorithm as follows. Population size, the number children
from the crossover process, and the number of offspring
resulting from mutation are 10, 10, and 100, respectively.

The parameters for the Artificial Bee Colony Algorithm
are also obtained in the same manner. With such procedure,
the three parameters are obtained as follows. The number of
employed bees, scout bees, and onlooker bees are 10, 25, and
50, respectively.

To evaluate the performance of a Genetic algorithm and
an Artificial Bee Colony Algorithm for comparison, we
conducted a number of experiments with different time
settings. The runtimes are varied between 10 to 1000
seconds. For each case, 30 trials were conducted. The result

KKU ENGINEERING JOURNAL April — June 2016;43(2)

are summarized in Table 4, 5, and 6. In addition to the means,
standard deviations (SD) are also provided as an information
concerning the distribution and the consistency of the data.

For discussion, the results are shown in Figure 4 - 6.

In all cases, the results are relatively consistent as the SD
values are within a few percent of the results.

For the small case, ABC appeared to be trapped by local
optimums. GA, however, seemed to be able to escape local
optimums thanks to the crossover operations. The benefit of
enhancements is obvious, especially in the case of GA.

For the medium case, even though the ABC seems to
outperform at the beginning, in the end similar results are
achieved by GA and ABC. Both Enh. GA and Enh. ABC
perform considerably better.

For the large case, the ABC algorithm outperform the
GA approach due to the fact that ABC demands less
computing resources. Again, the benefit of the enhancements
are obvious.

45 -
4\
3.5 1 \
81 —— ABC
251 — GA
21 Enh. ABC
151 == Enh. GA
11
0.5 1
0

0 200 400 600 800 1000 1200

Figure 4 Comparison of the results between the different
approaches for the small case

38 -

36 -

34 1

32

20 | —— ABC
— GA

28 1 Enh. ABC

26 - —— Enh.GA

2 |

22

20

200 400 600 800 1000 1200

o

Figure 5 Comparison of the results between the different
approaches for the medium case

70
65 -
60 -
—— ABC

55 - — GA

Enh. ABC
50 - —— Enh.GA
45
40 . :

0 200 400 600 800 1000 1200

Figure 6 Comparison of the results between the different
approaches for the large case

KKU ENGINEERING JOURNAL April — June 2016;43(2)

Table 4 The numerical results of 30 trials for the small case

67

Algorithms ABC GA Enh. ABC Enh. GA
time (sec) mean SD mean SD mean SD mean SD
10 4.14389 0.163403 4.08601 0.222627 3.906367 0.13157 3.129203 0.315978
50 3.849547 0.151429 3.53205 0.234919 3.85119 0.154398 2.45707 0.515802
100 3.838013 0.16156 3.350547 0.322659 3.802787 0.135232 1.464347 0.33819
150 3.827827 0.166299 3.263283 0.377353 3.7907 0.118028 1.218723 0.212358
200 3.823367 0.17445 3.2118 0.369527 3.766677 0.121614 1.15751 0.060316
250 3.823367 0.17445 3.169167 0.385666 3.738207 0.127581 1.15751 0.060316
300 3.823367 0.17445 3.140503 0.383236 3.71711 0.133639 1.15751 0.060316
400 3.822187 0.174585 3.06159 0.361665 3.692243 0.138983 1.15751 0.060316
500 3.822187 0.174585 2.98824 0.384473 3.679937 0.136181 1.15751 0.060316
750 3.822187 0.174585 2.805243 0.395647 3.649587 0.125987 1.155893 0.060103
1000 3.822187 0.174585 2.661827 0.367806 3.622253 0.127456 1.155893 0.060103
Table 5 The numerical results of 30 trials for the medium case
Algorithms ABC GA Enh. ABC Enh. GA
time (sec) mean SD mean SD mean SD mean SD
10 3457868 1.024731 35.66021 151599 32.5194 0.885741 33.129 0.801592
50 314616 1.015471 32.34472 1.261498 30.38272 0.763346 31.33969 0.749133
100 29.91343 0.99702 30.68524 1.041599 28.40118 0.857697 29.54316 0.854553
150 28.84818 0.913967 29.54219 0.986282 27.40336 0.933412 28.55985 0.828626
200 28.2207 0.932094 28.64059 0.889142 26.78798 0.906867 27.84742 0.858498
250 27.81355 0.930573 28.00692 0.770565 26.39883 0.836791 27.44687 0.819769
300 27.41356 0.859827 27.46584 0.87944 25.84964 0.755968 27.03758 0.763417
400 26.66976 0.910056 26.78215 0.855234 25.21382 0.814836 26.38419 0.821173
500 26.23299 0.807977 26.21324 0.904327 24.68466 0.733921 25.63889 0.947584
750 25.35632 0.695284 25.13215 0.954793 23.81293 0.655 24.38433 0.896579
1000 24.74278 0.819755 24.36496 0.950001 23.12639 0.643166 23.39898 0.845096
Table 6 The numerical results of 30 trials for the large case
Algorithms ABC GA Enh. ABC Enh. GA
time (sec) mean SD mean SD mean SD mean SD
10 61.65559 1.231111 64.15371 2.231368 59.24596 1.042457 57.96896 0.362942
50 60.81363 1.154548 62.62462 1.862528 58.97562 0.954264 57.52176 0.541232
100 59.16124 1.313446 61.54429 2.141688 57.24986 1.13295 56.33678 0.718034
150 58.13117 1.315264 60.37343 1.999046 55.73572 1.39643 55.41366 1.143131
200 57.36039 1.44558 59.20591 2.239597 54.49624 1549506 54.86504 1.129507
250 56.65401 1.464554 58.24348 2.087927 53.5444 1498294 54.19965 1.228245
300 55.89002 1.565818 57.70891 2.032492 52.49514 1525258 53.79082 1.321017
400 54.90753 1.533614 56.72622 1.780611 51.20406 1.776619 52.97451 1.475872
500 53.93014 1.617016 55.68696 1.543101 50.25305 1.748974 52.14233 1.617723
750 52.22034 1.331117 53.84463 1.639141 48.43515 1565003 50.59592 1.586276
1000 51.03764 1.466034 52.69946 1.493084 47.3278 1544683 49.45846 1.547568

68

4. Conclusion

Recent evolutionary computations, including GA and
ABC, are mostly swam-based. While GA introduces the
concept of population, ABC uses the number of employed
bees dictating the number of food sources.

ABC employs scout bee perform random search. In the
same manner, random search can be adopted for GA through
insertion of random population.

The differences between GA and ABC largely come
down to the behaviors the algorithms treat the population.
GA treats data equally by randomly select data. ABC, on the
other hand, may prioritize certain data with the introduction
of onlooker bees. In short term, this give the ABC algorithm
the advantage. However, once most data are optimized, the
quality gaps of the data are expected to be reduced.
Eventually, this advantage yield diminishing return.

The GA algorithm, on the other hand, uniquely
introduces crossover operations that help to locate new
solution while escaping local optimum. But for certain
problems, such operations can be more resource intensive as
the problem grows.

Thus, for small problem, GA may be more suitable. For
medium size problem, the two algorithms appear to yield
similar performances as long as proper parameters are used.
For large problem, the GA algorithm is holding back by the
crossover operations. Consequently, in such case, ABC
algorithm generally performs better.

For regular GA and ABC Algorithm, the optimal
parameters are usually screened in advance. In this paper,
along with the comparison of GA and ABC Algorithm, we
also present an approach to allow automatic adaptation of the
key parameters. Consequently, the need to determine
optimization parameter in advance is no longer crucial.
Furthermore, the enhancement takes advantage to the
multiple processing cores of the CPU. As the results, Enh.
GA and Enh. ABC are introduced. The numerical results
clearly demonstrate the benefit of such enhancement in
comparison with the typical GA and ABC Algorithm.

5. Acknowledgements

This research was supported by Thailand Research Fund,
and National Research University Project of Thailand, Office
of the Higher Education Commission.

6. References

[1] Johnson SM. Optimal two- and three-stage production
schedules with setup times included. Santa Monica:
The RAND Corporation; 1953.

[2] Hejazi SR, Saghafian S. Flowshop-scheduling
problems with makespan criterion: a review. Int J Prod
Res. 2005;43(14):2895-929.

[3] Baumann P, Trautmann N. An MILP approach to
short-term scheduling of an industrial make-and-pack
production facility with batch splitting and quality
release times. 2010 IEEE International Conference on

(4]

(5]

(6]

(7]

(8l

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

KKU ENGINEERING JOURNAL April — June 2016;43(2)

Industrial Engineering and Engineering Management;
2010 Dec 7-10; Macao, China. USA: IEEE; 2010.
p. 1230-4.

Baumann P, Trautmann N. A continuous-time MILP to
compute schedules with minimum changeover times
for a make-and-pack production. 21st European
Symposium on Computer Aided Process Engineering
— ESCAPE 21; 2011 May 29-1 June; Chalkidiki,
Greece. Amsterdam: Elsevier Publishing; 2011. p.
1060-4.

Mendez CA, Cerda J. An MILP-based approach to the
short-term scheduling of make-and-pack continuous
production plants. OR Spectrum. 2002;24:403-29.
Ying KC, Lin SW. Multiprocessor task scheduling in
multistage hybrid flow-shops: an ant colony system
approach. Int J Prod Res. 2006;44(16):3161-77.
Bagchi TP, Gupta JND, Sriskandarajah C. A review of
TSP based approaches for flowshop scheduling. Eur J
Oper Res. 2006;169(3):816-54.

Najafi E, Naderi B, Sadeghi H, Yazdani M. A
mathematical model and a solution method for hybrid
flow shop scheduling. J Optim Ind Eng. 2012;10:65-
72.

Xie J, Wang X. Complexity and algorithms for two-
stage flexible flow shop scheduling with availability
constraints. Comput Math Appl. 2005;50(10-
12):1629-38.

Honkomp SJ, Lombardo S, Rosen O, Pekny JF. The
curse of reality - why process scheduling optimization
problems are difficult in practice. Comput Chem Eng.
2000;24(2-7):323-8.

Larranaga P, Kuijpers CMH, Murga RH, Inza I,
Dizdarevic S. Genetic algorithms for the traveling
salesman problem: a review of representations and
operators. Artif Intell Rev. 1999;13:129-70.

Mirabi M. A hybrid genetic algorithm for the sequence
dependent flow-shop scheduling problem. World Acad
Sci Eng Tech. 2011;5(7):1364-70.

Zandieh M, Rashidi E. An effective hybrid genetic
algorithm for hybrid flow shops with sequence
dependent setup times and processor blocking. J Ind
Eng. 2009;4:51-8.

Visscher PK, Seeley TD. Foraging strategy of honey
bee colonies in a temperate deciduous forest. Ecol.
1982;63(6):1790-801.

Nikolic” M, Teodorovic D. Empirical study of the Bee
Colony Optimization (BCO) algorithm. Expert Syst
Appl. 2013;40(11):4609-20.

Pan QK, Wang L, Li JQ, Duan JH. A novel discrete
artificial bee colony algorithm for the hybrid flowshop
scheduling problem with makespan minimization.
Omega. 2014;45:42-56.

Akay B, Karaboga D. A modified Artificial bee colony
algorithm for real-parameter optimization. Inform Sci.
2012;192:120-42.

Kashan AH. An efficient algorithm for constrained
global optimization and application to mechanical
engineering design: League championship algorithm
(LCA). Comput Aided Des. 2011;43(12):1769-92.

