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Abstract 

 

In manufacturing processes where efficiency is crucial to remain competitive, the flowshop is a common configuration in 

which machines are arranged in series and products are produced individually in stages. In certain production processes, 

machines are frequently configured in a way that each production stage may contain multiple processing units in parallel or a 

hybrid configuration. Moreover, along with precedent conditions, sequence dependent setup times may exist. Finally, in the 

case where there is no buffer, a machine is said to be blocked if the next stage is occupied. In NP-Hard problems, referred to 

as Blocking Hybrid Flowshop Scheduling Problems with Sequence Dependent Setup/Changeover Times, it is usually not 

possible to find an exact best solution to satisfy optimization objectives. Thus, it is usually solved by approximate algorithms 

such as metaheuristics. In this paper, we comparatively investigate the effectiveness of two approaches: a genetic algorithm 

(GA) and an artificial bee colony (ABC) algorithm. Additionally, we applied an algorithm to improve the GA and ABC 

algorithms so that they can take advantage of parallel processing resources of modern multiple core processors, while 

eliminating the need for advance screening of the algorithm optimal parameters. These techniques were applied to solve three 

problems.  In small-sized problems, GA outperformed ABC. For medium-sized problems, the two algorithms appeared to have 

similar performance. For large-sized problem, ABC performed better than GA because GA is held back by crossover 

operations. Furthermore, enhancements helped increase the performance of both GA and ABC algorithms. 

 

Keywords: Genetic algorithm, Artificial bee colony, Sequence, Blocking, Flowshop 

 

 

1. Introduction 

 

Production planning, in general, may be described as 

finding favorable procedures or schedules to manufacture 

goods, given required quantities, available resources, 

conditions, constraints, and objectives. In most cases, 

scheduling problem may be categorized into four types 

depending on machine environments: flowshop, openshop, 

jobshop, and parallel-machine shop. In a flowshop, all jobs 

follow the same machine sequence and each job has exactly 

one operation on each machine. An openshop is similar to a 

flowshop, with the exception that the operation of a job may 

be performed in any order. In a jobshop, the process may 

follow different machine sequences and may use the same 

machine more than once. In parallel-machine shop, a shop 

consists of a number of identical machines and a job can be 

processed on any machine.  

An n-job m-machine flowshop scheduling problem is an 

example of combinatorial optimization problems, dealing 

with locating an optimal object from a finite set of objects.  

The scheduling problem is to specify the resources and the 

times to process the jobs, depending to optimization 

objectives. The problem was originally brought to attentions 

of the researchers when [1] developed a simple decision rule 

to achieve the optimal scheduling of the items minimizing 

the makespan for two-stage problems. For three-stage 

problems, the solution can be obtained only for a restricted 

case. For such problem, there are generally m(n!) alternative 

sequences for the jobs. However, with  the assumption that 

all machines process the jobs in the same order with no 

limitation of the buffers, the search space reduces to the n!. 

When there are parallel machines allowing alternative 

routes, the assumption that all machines process the jobs in 

the same order is no longer valid. Consequently, the search 

space becomes larger. Because of the large search space, 

exhaustive search is usually not feasible. This type of 

problems are often addressed by heuristic methods and 

approximation algorithms. Despite the challenge, the 

problem continues to attract researchers due to its diverse 

applications and approches as reviewed by [2]. 

Other researchers, such as [3], [4], and [5] have 

attempted MILP-based approaches while [6] has employed 

an ant colony system approach. For TSP based approaches, 

a review is provided by [7]. 
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In this paper, we address three-stage blocking hybrid 

flowshop scheduling problem with sequence dependent 

setup/changeover times. The objective is to minimize the 

makespan, the time required to complete all the jobs. Since 

makespan is a crucial factor contributing to the operation 

cost, the ability to reduce makespan means a greater chance 

to achieve operational profitability. 

 

1.1. Hybrid flowshop scheduling problem 

 

In certain manufacturing processes, for instance, make 

and pack plants, the machines are usually configured in a 

way that each production stage may contain multiple 

processing units in parallel.  Such configuration is known as 

flexible or hybrid flowshop.   

In similar fashion to the mathematical formulation of a 

standard hybrid flowshop found in [8], with the objective to 

minimize the makespan, a model may be formulated as 

follows.  

Let's first define the following parameters and indexes. 

  

𝑛 Number of jobs 

𝑚 Number of stages 

𝑗 Index for the jobs 

𝑖 Index for stages, {1, 2,..., m} 

𝑙 Index for machines in stage i 

𝑘 Index for the positions of the jobs in a particula

r stage 

𝑝𝑗,𝑖 Processing time of job j at stage i 

𝐶𝑚𝑎𝑥 Makespan 

𝑀 A large positive number 

 

 

The following variables are defined. 

 

𝑋𝑗,𝑖,𝑘 Binary variable taking value 1 if job j  

occupies position k at stage i, and 0  

otherwise 

𝑌𝑖,𝑘,𝑙 Binary variable taking value 1 if the job in posi

tion k of stage i is processed on machine l, and 

0 otherwise 

𝑆𝑖,𝑘 The starting time of the job in position k at stag

e i 

𝐹𝑗,𝑖 The starting time of job j at stage i 

 

The model formulates the problem as follows. 

Minimize 

 

𝐶𝑚𝑎𝑥 =  𝑚𝑎𝑥{𝐶𝑗|𝑗 = 1, … , 𝑛}                                           (1) 

 

where        𝐶𝑗 = 𝐹𝑗,𝑚 + 𝑝𝑗,𝑚                                                (2)                         

 

Subject to: 

 
∑ 𝑋𝑗,𝑖,𝑘

𝑛
𝑘=1 = 1          ∀𝑗, 𝑖                                                     (3) 

∑ 𝑋𝑗,𝑖,𝑘
𝑛
𝑗=1 = 1          ∀𝑖, 𝑘                                                     (4) 

∑ 𝑋𝑖,𝑘,𝑙
𝑛
𝑙=1 = 1          ∀𝑗, 𝑖                                                      (5) 

𝐹𝑗,𝑖+1 ≥ 𝐹𝑗,𝑖 + 𝑝𝑗,𝑖            ∀𝑗, 𝑖 ≤ 𝑚                                       (6) 

𝑆𝑖,𝑘 ≥ 𝐹𝑗,𝑖 − 𝑀(1 − 𝑋𝑗,𝑖,𝑘)       ∀𝑖, 𝑘, 𝑗                                      (7) 

𝑆𝑖,𝑘 ≥ 𝐹𝑗,𝑖 + 𝑀(1 − 𝑋𝑗,𝑖,𝑘)       ∀𝑖, 𝑘, 𝑗                                   (8) 

𝑆𝑖,𝑘 , 𝐹𝑗,𝑖 ≥ 0                                                                               (9) 

𝑋𝑗,𝑖,𝑘 , 𝑌𝑖,𝑘,𝑙 ∈ {0,1}                                                                   (10) 

 

The constraints according to (3), (4), and (5) ensure that 

that every job occupies each stage exactly once without 

overlapping. (6) ensures that the operation of a job in the next 

stage only occurs after it has been completed in previous 

stage. (7) and (8) relate the jobs to the positions in the stages. 

Lastly, (9) and (10) define decision variables. 

The standard model assumes that the processing times 

for each jobs are known in advance. The buffer capacities are 

also assumed to be unlimited. 

In reality, in many processes, overall processing times of 

each stage are not known in advance. For example, in 

addition to the fixed processing times, there might be 

variable sequence dependent setup times. This increases the 

problem complexity because the total processing times for 

the jobs, in this case, cannot be determined in advance. 

Finally, when there are no buffer, the problem is even more 

difficult because the machines between succeeding stages 

are no longer independent. A machine is said to be blocked 

if the next stage to handle its output is being occupied. Such 

problem is referred here as Blocking Hybrid Flowshop 

Scheduling Problem with Sequence Dependent 

Setup/Changeover Times. 

 Because of the difficulty of the problem as pointed out 

by [9] and [10] and the lack of computational resources, 

publications addressing this problem only started to appear 

after the year 2000 when the advances in computer 

technologies make it more practical to address this problem 

heuristically without the need to formulate and solve a proper 

mathematical model. 

 

1.2. The example problem 

 

For investigation of the performance and behavior of a 

Genetic Algorithm and Artificial Bee Colony Algorithm, we 

implement the method to solve a three stage blocking hybrid 

flowshop problem. Each stage contains a number of identical 

processing units (PU) or processors as shown in Figure 1. 

These identical processors in the same stage perform the 

same operation. The processing units belonging to different 

stages, however, are usually different. 
 

 

 
 

Figure 1 A typical setup of a hybrid flowshop problem 

 

For each job to produce a product, the raw materials first 

enter stage 1 where they can be processed by any of the 

processing units, as long as the unit is free.  

The minimum time the processing unit remains occupied 

can be obtained as the sum of the fixed processing time and 

the sequent dependent setup time. Upon completion after the 

time has elapsed, the product will be transferred to the 

subsequent stage as soon as there is an available free 

processing unit downstream. In the case that none of the 

processors in the subsequent stage is free, the product will 

continue to keep the current processor occupied after the task 

has finished. In other words, the current processing unit     

will  continue to  be  unavailable  or blocked, waiting  for an 

Stage 1

• PU1

• PU2

• ...

• ...

• PUn

Stage 2

• PU1

• PU2

• ...

• ...

• PUn

Stage 3

• PU1

• PU2

• ...

• ...

• PUn
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Table 1 The number of processors in each stage for each 

case. 

 

cases 
Number of PU 

1st stage 2nd stage 3rd stage 

small 3 3 3 

medium 5 5 5 

large 25 25 25 

 

available processing unit downstream because there is no 

buffer between stages. Nevertheless, the buffers preceding 

the first stage and following the last stage are assumed to be 

unlimited.  

The small, medium and large cases of the three-stage 

problem used for the numerical analysis are generated. In 

each case, the number of the processors in all stages are the 

same. As shown in Table 1, the numbers processing units of 

all stages are varied for the three case as 3, 5, and 25, 

respectively. 

All the three cases consist of 10 product types in various 

quantities according to Table 2. To produce each product of 

any type, exactly one job consisting to three tasks is required.  

Consequently, the required quantities are equal to the 

number of jobs. In total, there are 10, 100, 500 jobs to be 

assigned for the small, medium, and large case, respectively.  

The required quantity for each product type for each case 

are as follows. 

 

Table 2 Required quantities for each product type for each 

case. 

 

    product type small case medium case  large case 

1 1 12 60 

2 1 11 55 

3 1 7 35 

4 1 14 70 

5 1 5 25 

6 1 8 40 

7 1 12 60 

8 1 13 65 

9 1 10 50 

10 1 8 40 
Total 

number of jobs 
10 100 500 

 

The processing times in hours for each product type at 

each stage for the three cases are the same as shown in    

Table 3. 

 

Table 3 Production time in hours for each product type for 

each stage. 

 

Product Type Stage 1 Stage 2 Stage 3 

1 0.1930 0.0915 0.6423 

2 0.3416 0.6146 0.2213 

3 0.9329 0.0110 0.8371 

4 0.3907 0.5733 0.9711 

5 0.2732 0.7897 0.8464 

6 0.1519 0.2354 0.5060 

7 0.3971 0.4480 0.2789 

8 0.3747 0.5694 0.7466 

9 0.1311 0.0614 0.2369 

10 0.4350 0.4963 0.9573 

The setup times in hours for switching product types at 

stage 1, 2, and 3 are as follows. 

 

𝑆1 =  

0 0.5747 0.1170 0.5154 0.3242 0.9969 0.8266 0.5038 0.7202 0.3600
0.7167 0 0.8147 0.6575 0.3017 0.5535 0.3945 0.6128 0.3469 0.4542
0.2834 0.4564 0 0.9509 0.0117 0.5155 0.6135 0.8194 0.5170 0.3864
0.8962 0.7138 0.2462 0 0.5399 0.3307 0.8186 0.5319 0.5567 0.7756
0.8266 0.8844 0.3427 0.4001 0 0.4300 0.8862 0.2021 0.1565 0.7343
0.3900 0.7209 0.3757 0.8319 0.1465 0 0.9311 0.4539 0.5621 0.4303
0.4979 0.0186 0.5466 0.1343 0.6311 0.0710 0 0.4279 0.6948 0.6938
0.6948 0.6748 0.5619 0.0605 0.8593 0.8877 0.2586 0 0.4265 0.9452
0.8344 0.4385 0.3958 0.0842 0.9742 0.0646 0.8979 0.6201 0 0.7842
0.6096 0.4378 0.3981 0.1639 0.5708 0.4362 0.5934 0.6954 0.7314 0

 

 

𝑆2 =  

0 0.6690 0.0196 0.1432 0.5078 0.9419 0.8669 0.1403 0.2436 0.1749
0.3899 0 0.4352 0.5594 0.5856 0.6559 0.4068 0.2601 0.7851 0.1386
0.5909 0.2180 0 0.0046 0.7629 0.4519 0.1126 0.0868 0.0741 0.5989
0.4594 0.5716 0.6174 0 0.0830 0.8397 0.4438 0.4294 0.3939 0.9011
0.0503 0.1222 0.5201 0.8487 0 0.5326 0.3002 0.2573 0.0034 0.9394
0.2287 0.6712 0.8639 0.9168 0.5170 0 0.4014 0.2976 0.2207 0.2212
0.8342 0.5996 0.0977 0.9870 0.1710 0.6801 0 0.4249 0.0013 0.4827
0.0156 0.0560 0.9081 0.5051 0.9386 0.3672 0.4036 0 0.1892 0.3760
0.8637 0.0563 0.1080 0.2714 0.5905 0.2393 0.3902 0.4951 0 0.5238
0.0781 0.1525 0.5170 0.1008 0.4406 0.5789 0.3604 0.7064 0.2681 0

 

 

𝑆3 =  

0 0.7060 0.3180 0.5324 0.2748 0.1888 0.7624 0.6723 0.0249 0.7269
0.4363 0 0.6086 0.7165 0.2415 0.0012 0.5761 0.4315 0.6714 0.3738
0.1739 0.5523 0 0.1793 0.2431 0.3164 0.7477 0.6944 0.8372 0.5816
0.0261 0.2181 0.9091 0 0.1542 0.6996 0.6455 0.2568 0.9715 0.1161
0.9547 0.7724 0.5916 0.1877 0 0.6253 0.1232 0.0098 0.0569 0.0577
0.4306 0.2280 0.3326 0.3219 0.9357 0 0.5044 0.5323 0.4503 0.9798
0.9616 0.3709 0.8531 0.4039 0.8187 0.4390 0 0.2794 0.5825 0.2848
0.7624 0.8909 0.4424 0.5486 0.7283 0.2874 0.0921 0 0.6866 0.5950
0.0073 0.8564 0.9044 0.0487 0.1758 0.5017 0.1478 0.9064 0 0.9622
0.6800 0.4024 0.0332 0.5527 0.3604 0.7615 0.1982 0.3927 0.6500 0

 

 

The S1, S2, and S3 are for the stage 1, 2, and 3, 

respectively. The row position represents the product that has 

been or are currently produced. The column position 

represents the next product to produce. As an example, if you 

want to know the setup time for switching from product type 

3 to product type 2 for stage 1, you look at S1(3, 2), which is 

0.4564 hours.    

 

2. Methodology 

 

Evolutionary computation is a subfield of artificial 

intelligence that involves continuous optimization and 

combinatorial optimization problems. Two examples of 

evolutionary computation presented in this paper are Genetic 

Algorithm (GA) and Artificial Bee Colony (ABC). 

  

2.1 Genetic algorithm 

 

GA is a search heuristic that mimics the process of 

natural selection according to Darwinian principles. The use 

of survival of the fittest principles for automated problem 

solving originated in the 1950s. The examples of the GA-

based approaches and applications include [11], [12], and 

[13]. 

Typically, a GA proceeds as follows. 

1. Generate the initial population of chromosomes. 

2. Randomly select a chromosome or chromosomes 

from population to induce either mutation and/or 

crossover to create a number of offspring. 

3. Compare the offspring. The one with the best result 

is selected to replace a chromosome among the 

population. 

4. Keep repeating step 2 and step 3 until a stopping 

criterion is met.  

 

2.2 Artificial bee colony algorithm 

 

Let’s consider the behavior of honey bees in locating 

food sources. [14] found that the colony routinely foraged 

several kilometers from its nest, frequently adjusted its 

distribution of foragers on its patches, and worked relatively 

few patches each day. This foraging pattern hints that the 

foraging strategy of a honey bee colony involves surveying 

the food source patches within a vast area around its nest, 
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pooling the exploration results of its many foragers, and 

using this information to focus the forager labors more on a 

few promising patches within its foraging area. 

Such behavior had inspired researchers into developing 

the Artificial Bee Colony Optimization (ABC) algorithm. 

[15], for instance, had conducted empirical study of such 

approach while [16] developed a novel discrete artificial bee 

colony algorithm for the hybrid flowshop scheduling 

problem with makespan criterion. [17] is another example 

where a modified ABC algorithm was used for parameter 

optimization. 

In ABC algorithm, the actual position of a food source 

corresponds to a possible solution to the optimization 

problem and the amount of nectar found in a food source 

represents the quality of the associated solution.  

According to the model, the colony consists of three 

groups of bees: scout bees, employed bees, and onlooker 

bees. It is assumed that there is only one artificial employed 

bee tending to each food source. In other words, the number 

of employed bees in the colony is the same as the number of 

food sources being explored. The number of employed bees 

can be chosen freely and will dictate the number of registered 

food sources. The number of scout and onlooker bee can be 

chosen without restrictions. 

First the scout bees will explore and register the potential 

food sources. Once scout bees have been successful in 

identifying food sources, the employed bees will take over 

and proceed to evaluate the quality of the sources. 

The employed bees usually stray from their memorized 

positions and discover new neighbor food source locations. 

Provided that the nectar amount of the new one is higher than 

that of the previous source, the bees memorize the new 

source positions and forget the old ones. Otherwise, they will 

keep the positions of the one in their memories. Back in the 

hive, the employed bees that complete the search will share 

the position information of the sources with the onlookers 

that are observing the employed bees. 

Based on the behaviors of the employed bees, the 

onlooker bees will decide which food sources they will 

explore. The onlooker bees, however, will explore the target 

that is slightly different than the area previously visited. That 

is finding a feasible solution in the vicinity of an existing 

solution. 

Each onlooker evaluates the nectar information taken 

from all employed bees and then chooses a food source 

depending on the nectar amounts of sources. In similar 

manner to the case of the employed bee, it produces a 

modification on the original source position and checks its 

nectar amount. Given that its nectar is higher than that of the 

previous one, the bee registered the new position. 

In deciding which food sources to explore, these 

onlooker bees will take into account of the information from 

the scout bees. The realization of this behavior in a 

scheduling problem with the objective is to minimize 

makespan is as follows. Naturally, given that m is the 

makespan, we define q, the food quality  as 1/m. pi, the 

probability that the area i is selected, is then defined as: 

 

𝑝𝑖 =
𝑞𝑖

Σ𝑖=1
𝑛 𝑞𝑖

                                                                      (11) 

 

where    𝑞𝑖 =
1

𝑚𝑖
                                                             (12) 

 

After the flight, if the quality of the source is better than 

the quality of previously found sources, the new one will be 

registered and one of the existing food sources is dismissed. 

Meanwhile, the employed bee whose source is abandoned 

will be relocated to work on a new source. Figure 2 illustrates 

such behavior of the bees which is realized as an artificial 

bee colony optimization routine. 

 

2.3 Solution representation 

 

For flexible flowshop, we must first consider the order of 

the jobs. Then, additionally we must consider which of the 

processer in each stage will handle a particular job. Thus for 

3 stage flowshop, each job will compose of three tasks, each 

of which for one of the processing unit for a particular stage. 

Let’s consider the following solution to produce just three 

products. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 2  Artificial bee colony algorithm routine 
 

 
 

C  = 

1 2 1 4 3 

2 1 2 3 2 

3 3 2 2 2 

 
 

In this example, the row order represents the order in 

which the jobs enter the machines. The first column represent 

job indexes. The second column represents the product types 

or formulas. Third, forth, and fifth column represents the 

machine assignments for a given job for stage 1, stage 2, and 

stage 3, in that order. 

Given this solution C, product 2 will be processed first 

by CU# 1, CU# 4, and CU# 3 of the stage 1, stage 2, and 

stage 3, respectively. Product 1 and 3 are then processed 

sequentially in similar manner. 

Once, the processing steps are defined, what left to be 

determined are timings in order to obtain a solution to the 

scheduling problem. This can be constructed heuristically 

following a prescribed procedure as follows.  The job being 

processed, once completed, will be transferred downstream 

as soon as the designated resource in the next stage becomes 

available. In the case of the job waiting in the queue, 

however, they must enter the first stage in accordance with 

the order specified by the solution. 

 

2.4 The algorithm enhancements 

 

Typically, prior to performing optimization process 

using algorithms such as the Genetic Algorithm or Artificial 

Bee Colony optimization, suitable parameters must be 

evaluated. Without the assumption that these parameters are 

independent, the process of finding the optimal parameters, 

by itself, is an combinational optimization problem. To 

eliminated the need for optimization of the parameters, the 

following procedure, inspired by League Championship 

Algorithm (LCA), inspired by [18], is introduced. 

Determine whether to 

update a location 

Random a bee 

Select a  

Scout 

Select an 

employ 

Select an 

onlooker 

Determine the 

source’s quality 
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 1. A number of optimization routines are executed in 

parallel with different sets of random parameters and 

population pools for a certain period. In this paper, the 

number of parallel jobs chosen is four to fully utilize a quad 

core CPU. 

 2. At the end of the period, the performance  of different 

pools are evaluated. The population and the parameters of the 

best performer are kept the same. The parameters of the 

weaker performers are adjusted stochastically in such a way 

that they are closer to the parameters of the best performer. 

This is inspired by the Firefly algorithm. Some population 

from the best performance group are also introduced  into the 

weaker groups. 

 3. Repeat step 1 and 2 until a stopping criterion such as 

time limit is met. 

 

3. Numerical results and discussion 

 

The results presented in this literature are obtained using 

an AMD Phenom II X4 965 3.4 GHz Processor based PC 

with 8 GB 1333MHz DDR3 SDRAM. The script is 

implemented using Matlab. 

Given that the control parameters are the population size, 

number of offspring produced through mutation, and the 

number of children produced by crossover processes, we first 

determine the suitable ranges of these parameters.    

 The suitable value of a parameter is determined by 

varying its value while keeping other parameters constant to 

identify the value that yield best result. For example, the 

population size is determined by varying the population size 

while keeping the number of offspring from mutation, the 

number of children from crossover processes, and other 

parameters the same. An example this approach is shown as 

Figure 3. 

 

 
 
 

Figure 3 Illustrate the process to determine a parameter 

 

In the end, we obtain the suitable parameters for Genetic 

algorithm as follows. Population size, the number children 

from the crossover process, and the number of offspring 

resulting from mutation are 10, 10, and 100, respectively. 

The parameters for the Artificial Bee Colony Algorithm 

are also obtained in the same manner. With such procedure, 

the three parameters are obtained as follows. The number of 

employed bees, scout bees, and onlooker bees are 10, 25, and 

50, respectively. 

 To evaluate the performance of a Genetic algorithm and 

an Artificial Bee Colony Algorithm for comparison, we 

conducted a number of experiments with different time 

settings. The runtimes are varied between 10 to 1000 

seconds. For each case, 30 trials were conducted. The result 

are summarized in Table 4, 5, and 6. In addition to the means, 

standard deviations (SD) are also provided as an information 

concerning the distribution and the consistency of the data. 

 For  discussion,  the  results  are  shown  in  Figure 4 - 6. 

 In all cases, the results are relatively consistent as the SD 

values are within a few percent of the results.  

 For the small case, ABC appeared to be trapped by local 

optimums. GA, however, seemed to be able to escape local 

optimums thanks to the crossover operations. The benefit of 

enhancements is obvious, especially in the case of GA. 

 For the medium case, even though the ABC seems to 

outperform at the beginning, in the end similar results are 

achieved by GA and ABC. Both Enh. GA and Enh. ABC 

perform considerably better. 

 For the large case, the ABC algorithm outperform the 

GA approach due to the fact that ABC demands less 

computing resources. Again, the benefit of the enhancements 

are obvious. 
 

 
 

Figure 4 Comparison of the results between the different 

approaches for the small case 
  

 
 

Figure 5 Comparison of the results between the different 

approaches for the medium case 
 

 
 

Figure 6 Comparison of the results between the different 

approaches for the large case 
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Table 4 The numerical results of 30 trials for the small case 

 

Algorithms ABC GA Enh. ABC Enh. GA 

time (sec) mean SD mean SD mean SD mean SD 

10 4.14389 0.163403 4.08601 0.222627 3.906367 0.13157 3.129203 0.315978 

50 3.849547 0.151429 3.53205 0.234919 3.85119 0.154398 2.45707 0.515802 

100 3.838013 0.16156 3.350547 0.322659 3.802787 0.135232 1.464347 0.33819 

150 3.827827 0.166299 3.263283 0.377353 3.7907 0.118028 1.218723 0.212358 

200 3.823367 0.17445 3.2118 0.369527 3.766677 0.121614 1.15751 0.060316 

250 3.823367 0.17445 3.169167 0.385666 3.738207 0.127581 1.15751 0.060316 

300 3.823367 0.17445 3.140503 0.383236 3.71711 0.133639 1.15751 0.060316 

400 3.822187 0.174585 3.06159 0.361665 3.692243 0.138983 1.15751 0.060316 

500 3.822187 0.174585 2.98824 0.384473 3.679937 0.136181 1.15751 0.060316 

750 3.822187 0.174585 2.805243 0.395647 3.649587 0.125987 1.155893 0.060103 

1000 3.822187 0.174585 2.661827 0.367806 3.622253 0.127456 1.155893 0.060103 

 

 

 

Table 5 The numerical results of 30 trials for the medium case 

 

Algorithms ABC GA Enh. ABC Enh. GA 

time (sec) mean SD mean SD mean SD mean SD 

10 34.57868 1.024731 35.66021 1.51599 32.5194 0.885741 33.129 0.801592 

50 31.4616 1.015471 32.34472 1.261498 30.38272 0.763346 31.33969 0.749133 

100 29.91343 0.99702 30.68524 1.041599 28.40118 0.857697 29.54316 0.854553 

150 28.84818 0.913967 29.54219 0.986282 27.40336 0.933412 28.55985 0.828626 

200 28.2207 0.932094 28.64059 0.889142 26.78798 0.906867 27.84742 0.858498 

250 27.81355 0.930573 28.00692 0.770565 26.39883 0.836791 27.44687 0.819769 

300 27.41356 0.859827 27.46584 0.87944 25.84964 0.755968 27.03758 0.763417 

400 26.66976 0.910056 26.78215 0.855234 25.21382 0.814836 26.38419 0.821173 

500 26.23299 0.807977 26.21324 0.904327 24.68466 0.733921 25.63889 0.947584 

750 25.35632 0.695284 25.13215 0.954793 23.81293 0.655 24.38433 0.896579 

1000 24.74278 0.819755 24.36496 0.950001 23.12639 0.643166 23.39898 0.845096 

 

 

 

Table 6 The numerical results of 30 trials for the large case 

 

Algorithms ABC GA Enh. ABC Enh. GA 

time (sec) mean SD mean SD mean SD mean SD 

10 61.65559 1.231111 64.15371 2.231368 59.24596 1.042457 57.96896 0.362942 

50 60.81363 1.154548 62.62462 1.862528 58.97562 0.954264 57.52176 0.541232 

100 59.16124 1.313446 61.54429 2.141688 57.24986 1.13295 56.33678 0.718034 

150 58.13117 1.315264 60.37343 1.999046 55.73572 1.39643 55.41366 1.143131 

200 57.36039 1.44558 59.20591 2.239597 54.49624 1.549506 54.86504 1.129507 

250 56.65401 1.464554 58.24348 2.087927 53.5444 1.498294 54.19965 1.228245 

300 55.89002 1.565818 57.70891 2.032492 52.49514 1.525258 53.79082 1.321017 

400 54.90753 1.533614 56.72622 1.780611 51.20406 1.776619 52.97451 1.475872 

500 53.93014 1.617016 55.68696 1.543101 50.25305 1.748974 52.14233 1.617723 

750 52.22034 1.331117 53.84463 1.639141 48.43515 1.565003 50.59592 1.586276 

1000 51.03764 1.466034 52.69946 1.493084 47.3278 1.544683 49.45846 1.547568 
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4. Conclusion 

 

Recent evolutionary computations, including GA and 

ABC, are mostly swam-based. While GA introduces the 

concept of population, ABC uses the number of employed 

bees dictating the number of food sources. 

ABC employs scout bee perform random search. In the 

same manner, random search can be adopted for GA through 

insertion of random population.   

The differences between GA and ABC largely come 

down to the behaviors the algorithms treat the population. 

GA treats data equally by randomly select data. ABC, on the 

other hand, may prioritize certain data with the introduction 

of onlooker bees. In short term, this give the ABC algorithm 

the advantage. However, once most data are optimized, the 

quality gaps of the data are expected to be reduced. 

Eventually, this advantage yield diminishing return. 

The GA algorithm, on the other hand, uniquely 

introduces crossover operations that help to locate new 

solution while escaping local optimum. But for certain 

problems, such operations can be more resource intensive as 

the problem grows.  

Thus, for small problem, GA may be more suitable. For 

medium size problem, the two algorithms appear to yield 

similar performances as long as proper parameters are used. 

For large problem, the GA algorithm is holding back by the 

crossover operations. Consequently, in such case, ABC 

algorithm generally performs better. 

For regular GA and ABC Algorithm, the optimal 

parameters are usually screened in advance. In this paper, 

along with the comparison of GA and ABC Algorithm, we 

also present an approach to allow automatic adaptation of the 

key parameters. Consequently, the need to determine 

optimization parameter in advance is no longer crucial.  

Furthermore, the enhancement takes advantage to the 

multiple processing cores of the CPU. As the results, Enh. 

GA and Enh. ABC are introduced. The numerical results 

clearly demonstrate the benefit of such enhancement in 

comparison with the typical GA and ABC Algorithm. 
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