
*Corresponding author. Tel.: +6684 098 8838

Email address: pongpan@gmail.com

doi: 10.14456/kkuenj.2016.10

KKU ENGINEERING JOURNAL April – June 2016;43(2):62-68 Research Article

 KKU Engineering Journal

 https://www.tci-thaijo.org/index.php/easr/index

 Published by the Faculty of Engineering, Khon Kaen University, Thailand

A comparison of genetic algorithm and artificial bee colony approaches in solving

blocking hybrid flowshop scheduling problems with sequence dependent

setup/changeover times

Pongpan Nakkaew*1), Nantachai Kantanantha1) and Wuthichai Wongthatsanekorn 2)

1)Industrial Engineering Department, Kasetsart University, Bangkok 10900, Thailand
2)Industrial Engineering Department, Thammasat University, Patumtani 12120, Thailand

Received June 2015

Accepted September 2015

Abstract

In manufacturing processes where efficiency is crucial to remain competitive, the flowshop is a common configuration in

which machines are arranged in series and products are produced individually in stages. In certain production processes,

machines are frequently configured in a way that each production stage may contain multiple processing units in parallel or a

hybrid configuration. Moreover, along with precedent conditions, sequence dependent setup times may exist. Finally, in the

case where there is no buffer, a machine is said to be blocked if the next stage is occupied. In NP-Hard problems, referred to

as Blocking Hybrid Flowshop Scheduling Problems with Sequence Dependent Setup/Changeover Times, it is usually not

possible to find an exact best solution to satisfy optimization objectives. Thus, it is usually solved by approximate algorithms

such as metaheuristics. In this paper, we comparatively investigate the effectiveness of two approaches: a genetic algorithm

(GA) and an artificial bee colony (ABC) algorithm. Additionally, we applied an algorithm to improve the GA and ABC

algorithms so that they can take advantage of parallel processing resources of modern multiple core processors, while

eliminating the need for advance screening of the algorithm optimal parameters. These techniques were applied to solve three

problems. In small-sized problems, GA outperformed ABC. For medium-sized problems, the two algorithms appeared to have

similar performance. For large-sized problem, ABC performed better than GA because GA is held back by crossover

operations. Furthermore, enhancements helped increase the performance of both GA and ABC algorithms.

Keywords: Genetic algorithm, Artificial bee colony, Sequence, Blocking, Flowshop

1. Introduction

Production planning, in general, may be described as

finding favorable procedures or schedules to manufacture

goods, given required quantities, available resources,

conditions, constraints, and objectives. In most cases,

scheduling problem may be categorized into four types

depending on machine environments: flowshop, openshop,

jobshop, and parallel-machine shop. In a flowshop, all jobs

follow the same machine sequence and each job has exactly

one operation on each machine. An openshop is similar to a

flowshop, with the exception that the operation of a job may

be performed in any order. In a jobshop, the process may

follow different machine sequences and may use the same

machine more than once. In parallel-machine shop, a shop

consists of a number of identical machines and a job can be

processed on any machine.

An n-job m-machine flowshop scheduling problem is an

example of combinatorial optimization problems, dealing

with locating an optimal object from a finite set of objects.

The scheduling problem is to specify the resources and the

times to process the jobs, depending to optimization

objectives. The problem was originally brought to attentions

of the researchers when [1] developed a simple decision rule

to achieve the optimal scheduling of the items minimizing

the makespan for two-stage problems. For three-stage

problems, the solution can be obtained only for a restricted

case. For such problem, there are generally m(n!) alternative

sequences for the jobs. However, with the assumption that

all machines process the jobs in the same order with no

limitation of the buffers, the search space reduces to the n!.

When there are parallel machines allowing alternative

routes, the assumption that all machines process the jobs in

the same order is no longer valid. Consequently, the search

space becomes larger. Because of the large search space,

exhaustive search is usually not feasible. This type of

problems are often addressed by heuristic methods and

approximation algorithms. Despite the challenge, the

problem continues to attract researchers due to its diverse

applications and approches as reviewed by [2].

Other researchers, such as [3], [4], and [5] have

attempted MILP-based approaches while [6] has employed

an ant colony system approach. For TSP based approaches,

a review is provided by [7].

KKU ENGINEERING JOURNAL April – June 2016;43(2) 63

In this paper, we address three-stage blocking hybrid

flowshop scheduling problem with sequence dependent

setup/changeover times. The objective is to minimize the

makespan, the time required to complete all the jobs. Since

makespan is a crucial factor contributing to the operation

cost, the ability to reduce makespan means a greater chance

to achieve operational profitability.

1.1. Hybrid flowshop scheduling problem

In certain manufacturing processes, for instance, make

and pack plants, the machines are usually configured in a

way that each production stage may contain multiple

processing units in parallel. Such configuration is known as

flexible or hybrid flowshop.

In similar fashion to the mathematical formulation of a

standard hybrid flowshop found in [8], with the objective to

minimize the makespan, a model may be formulated as

follows.

Let's first define the following parameters and indexes.

𝑛 Number of jobs

𝑚 Number of stages

𝑗 Index for the jobs

𝑖 Index for stages, {1, 2,..., m}

𝑙 Index for machines in stage i

𝑘 Index for the positions of the jobs in a particula

r stage

𝑝𝑗,𝑖 Processing time of job j at stage i

𝐶𝑚𝑎𝑥 Makespan

𝑀 A large positive number

The following variables are defined.

𝑋𝑗,𝑖,𝑘 Binary variable taking value 1 if job j

occupies position k at stage i, and 0

otherwise

𝑌𝑖,𝑘,𝑙 Binary variable taking value 1 if the job in posi

tion k of stage i is processed on machine l, and

0 otherwise

𝑆𝑖,𝑘 The starting time of the job in position k at stag

e i

𝐹𝑗,𝑖 The starting time of job j at stage i

The model formulates the problem as follows.

Minimize

𝐶𝑚𝑎𝑥 = 𝑚𝑎𝑥{𝐶𝑗|𝑗 = 1, … , 𝑛} (1)

where 𝐶𝑗 = 𝐹𝑗,𝑚 + 𝑝𝑗,𝑚 (2)

Subject to:

∑ 𝑋𝑗,𝑖,𝑘

𝑛
𝑘=1 = 1 ∀𝑗, 𝑖 (3)

∑ 𝑋𝑗,𝑖,𝑘
𝑛
𝑗=1 = 1 ∀𝑖, 𝑘 (4)

∑ 𝑋𝑖,𝑘,𝑙
𝑛
𝑙=1 = 1 ∀𝑗, 𝑖 (5)

𝐹𝑗,𝑖+1 ≥ 𝐹𝑗,𝑖 + 𝑝𝑗,𝑖 ∀𝑗, 𝑖 ≤ 𝑚 (6)

𝑆𝑖,𝑘 ≥ 𝐹𝑗,𝑖 − 𝑀(1 − 𝑋𝑗,𝑖,𝑘) ∀𝑖, 𝑘, 𝑗 (7)

𝑆𝑖,𝑘 ≥ 𝐹𝑗,𝑖 + 𝑀(1 − 𝑋𝑗,𝑖,𝑘) ∀𝑖, 𝑘, 𝑗 (8)

𝑆𝑖,𝑘 , 𝐹𝑗,𝑖 ≥ 0 (9)

𝑋𝑗,𝑖,𝑘 , 𝑌𝑖,𝑘,𝑙 ∈ {0,1} (10)

The constraints according to (3), (4), and (5) ensure that

that every job occupies each stage exactly once without

overlapping. (6) ensures that the operation of a job in the next

stage only occurs after it has been completed in previous

stage. (7) and (8) relate the jobs to the positions in the stages.

Lastly, (9) and (10) define decision variables.

The standard model assumes that the processing times

for each jobs are known in advance. The buffer capacities are

also assumed to be unlimited.

In reality, in many processes, overall processing times of

each stage are not known in advance. For example, in

addition to the fixed processing times, there might be

variable sequence dependent setup times. This increases the

problem complexity because the total processing times for

the jobs, in this case, cannot be determined in advance.

Finally, when there are no buffer, the problem is even more

difficult because the machines between succeeding stages

are no longer independent. A machine is said to be blocked

if the next stage to handle its output is being occupied. Such

problem is referred here as Blocking Hybrid Flowshop

Scheduling Problem with Sequence Dependent

Setup/Changeover Times.

 Because of the difficulty of the problem as pointed out

by [9] and [10] and the lack of computational resources,

publications addressing this problem only started to appear

after the year 2000 when the advances in computer

technologies make it more practical to address this problem

heuristically without the need to formulate and solve a proper

mathematical model.

1.2. The example problem

For investigation of the performance and behavior of a

Genetic Algorithm and Artificial Bee Colony Algorithm, we

implement the method to solve a three stage blocking hybrid

flowshop problem. Each stage contains a number of identical

processing units (PU) or processors as shown in Figure 1.

These identical processors in the same stage perform the

same operation. The processing units belonging to different

stages, however, are usually different.

Figure 1 A typical setup of a hybrid flowshop problem

For each job to produce a product, the raw materials first

enter stage 1 where they can be processed by any of the

processing units, as long as the unit is free.

The minimum time the processing unit remains occupied

can be obtained as the sum of the fixed processing time and

the sequent dependent setup time. Upon completion after the

time has elapsed, the product will be transferred to the

subsequent stage as soon as there is an available free

processing unit downstream. In the case that none of the

processors in the subsequent stage is free, the product will

continue to keep the current processor occupied after the task

has finished. In other words, the current processing unit

will continue to be unavailable or blocked, waiting for an

Stage 1

• PU1

• PU2

• ...

• ...

• PUn

Stage 2

• PU1

• PU2

• ...

• ...

• PUn

Stage 3

• PU1

• PU2

• ...

• ...

• PUn

64 KKU ENGINEERING JOURNAL April – June 2016;43(2)

Table 1 The number of processors in each stage for each

case.

cases
Number of PU

1st stage 2nd stage 3rd stage

small 3 3 3

medium 5 5 5

large 25 25 25

available processing unit downstream because there is no

buffer between stages. Nevertheless, the buffers preceding

the first stage and following the last stage are assumed to be

unlimited.

The small, medium and large cases of the three-stage

problem used for the numerical analysis are generated. In

each case, the number of the processors in all stages are the

same. As shown in Table 1, the numbers processing units of

all stages are varied for the three case as 3, 5, and 25,

respectively.

All the three cases consist of 10 product types in various

quantities according to Table 2. To produce each product of

any type, exactly one job consisting to three tasks is required.

Consequently, the required quantities are equal to the

number of jobs. In total, there are 10, 100, 500 jobs to be

assigned for the small, medium, and large case, respectively.

The required quantity for each product type for each case

are as follows.

Table 2 Required quantities for each product type for each

case.

 product type small case medium case large case

1 1 12 60

2 1 11 55

3 1 7 35

4 1 14 70

5 1 5 25

6 1 8 40

7 1 12 60

8 1 13 65

9 1 10 50

10 1 8 40
Total

number of jobs
10 100 500

The processing times in hours for each product type at

each stage for the three cases are the same as shown in

Table 3.

Table 3 Production time in hours for each product type for

each stage.

Product Type Stage 1 Stage 2 Stage 3

1 0.1930 0.0915 0.6423

2 0.3416 0.6146 0.2213

3 0.9329 0.0110 0.8371

4 0.3907 0.5733 0.9711

5 0.2732 0.7897 0.8464

6 0.1519 0.2354 0.5060

7 0.3971 0.4480 0.2789

8 0.3747 0.5694 0.7466

9 0.1311 0.0614 0.2369

10 0.4350 0.4963 0.9573

The setup times in hours for switching product types at

stage 1, 2, and 3 are as follows.

𝑆1 =

0 0.5747 0.1170 0.5154 0.3242 0.9969 0.8266 0.5038 0.7202 0.3600
0.7167 0 0.8147 0.6575 0.3017 0.5535 0.3945 0.6128 0.3469 0.4542
0.2834 0.4564 0 0.9509 0.0117 0.5155 0.6135 0.8194 0.5170 0.3864
0.8962 0.7138 0.2462 0 0.5399 0.3307 0.8186 0.5319 0.5567 0.7756
0.8266 0.8844 0.3427 0.4001 0 0.4300 0.8862 0.2021 0.1565 0.7343
0.3900 0.7209 0.3757 0.8319 0.1465 0 0.9311 0.4539 0.5621 0.4303
0.4979 0.0186 0.5466 0.1343 0.6311 0.0710 0 0.4279 0.6948 0.6938
0.6948 0.6748 0.5619 0.0605 0.8593 0.8877 0.2586 0 0.4265 0.9452
0.8344 0.4385 0.3958 0.0842 0.9742 0.0646 0.8979 0.6201 0 0.7842
0.6096 0.4378 0.3981 0.1639 0.5708 0.4362 0.5934 0.6954 0.7314 0

𝑆2 =

0 0.6690 0.0196 0.1432 0.5078 0.9419 0.8669 0.1403 0.2436 0.1749
0.3899 0 0.4352 0.5594 0.5856 0.6559 0.4068 0.2601 0.7851 0.1386
0.5909 0.2180 0 0.0046 0.7629 0.4519 0.1126 0.0868 0.0741 0.5989
0.4594 0.5716 0.6174 0 0.0830 0.8397 0.4438 0.4294 0.3939 0.9011
0.0503 0.1222 0.5201 0.8487 0 0.5326 0.3002 0.2573 0.0034 0.9394
0.2287 0.6712 0.8639 0.9168 0.5170 0 0.4014 0.2976 0.2207 0.2212
0.8342 0.5996 0.0977 0.9870 0.1710 0.6801 0 0.4249 0.0013 0.4827
0.0156 0.0560 0.9081 0.5051 0.9386 0.3672 0.4036 0 0.1892 0.3760
0.8637 0.0563 0.1080 0.2714 0.5905 0.2393 0.3902 0.4951 0 0.5238
0.0781 0.1525 0.5170 0.1008 0.4406 0.5789 0.3604 0.7064 0.2681 0

𝑆3 =

0 0.7060 0.3180 0.5324 0.2748 0.1888 0.7624 0.6723 0.0249 0.7269
0.4363 0 0.6086 0.7165 0.2415 0.0012 0.5761 0.4315 0.6714 0.3738
0.1739 0.5523 0 0.1793 0.2431 0.3164 0.7477 0.6944 0.8372 0.5816
0.0261 0.2181 0.9091 0 0.1542 0.6996 0.6455 0.2568 0.9715 0.1161
0.9547 0.7724 0.5916 0.1877 0 0.6253 0.1232 0.0098 0.0569 0.0577
0.4306 0.2280 0.3326 0.3219 0.9357 0 0.5044 0.5323 0.4503 0.9798
0.9616 0.3709 0.8531 0.4039 0.8187 0.4390 0 0.2794 0.5825 0.2848
0.7624 0.8909 0.4424 0.5486 0.7283 0.2874 0.0921 0 0.6866 0.5950
0.0073 0.8564 0.9044 0.0487 0.1758 0.5017 0.1478 0.9064 0 0.9622
0.6800 0.4024 0.0332 0.5527 0.3604 0.7615 0.1982 0.3927 0.6500 0

The S1, S2, and S3 are for the stage 1, 2, and 3,

respectively. The row position represents the product that has

been or are currently produced. The column position

represents the next product to produce. As an example, if you

want to know the setup time for switching from product type

3 to product type 2 for stage 1, you look at S1(3, 2), which is

0.4564 hours.

2. Methodology

Evolutionary computation is a subfield of artificial

intelligence that involves continuous optimization and

combinatorial optimization problems. Two examples of

evolutionary computation presented in this paper are Genetic

Algorithm (GA) and Artificial Bee Colony (ABC).

2.1 Genetic algorithm

GA is a search heuristic that mimics the process of

natural selection according to Darwinian principles. The use

of survival of the fittest principles for automated problem

solving originated in the 1950s. The examples of the GA-

based approaches and applications include [11], [12], and

[13].

Typically, a GA proceeds as follows.

1. Generate the initial population of chromosomes.

2. Randomly select a chromosome or chromosomes

from population to induce either mutation and/or

crossover to create a number of offspring.

3. Compare the offspring. The one with the best result

is selected to replace a chromosome among the

population.

4. Keep repeating step 2 and step 3 until a stopping

criterion is met.

2.2 Artificial bee colony algorithm

Let’s consider the behavior of honey bees in locating

food sources. [14] found that the colony routinely foraged

several kilometers from its nest, frequently adjusted its

distribution of foragers on its patches, and worked relatively

few patches each day. This foraging pattern hints that the

foraging strategy of a honey bee colony involves surveying

the food source patches within a vast area around its nest,

KKU ENGINEERING JOURNAL April – June 2016;43(2) 65

pooling the exploration results of its many foragers, and

using this information to focus the forager labors more on a

few promising patches within its foraging area.

Such behavior had inspired researchers into developing

the Artificial Bee Colony Optimization (ABC) algorithm.

[15], for instance, had conducted empirical study of such

approach while [16] developed a novel discrete artificial bee

colony algorithm for the hybrid flowshop scheduling

problem with makespan criterion. [17] is another example

where a modified ABC algorithm was used for parameter

optimization.

In ABC algorithm, the actual position of a food source

corresponds to a possible solution to the optimization

problem and the amount of nectar found in a food source

represents the quality of the associated solution.

According to the model, the colony consists of three

groups of bees: scout bees, employed bees, and onlooker

bees. It is assumed that there is only one artificial employed

bee tending to each food source. In other words, the number

of employed bees in the colony is the same as the number of

food sources being explored. The number of employed bees

can be chosen freely and will dictate the number of registered

food sources. The number of scout and onlooker bee can be

chosen without restrictions.

First the scout bees will explore and register the potential

food sources. Once scout bees have been successful in

identifying food sources, the employed bees will take over

and proceed to evaluate the quality of the sources.

The employed bees usually stray from their memorized

positions and discover new neighbor food source locations.

Provided that the nectar amount of the new one is higher than

that of the previous source, the bees memorize the new

source positions and forget the old ones. Otherwise, they will

keep the positions of the one in their memories. Back in the

hive, the employed bees that complete the search will share

the position information of the sources with the onlookers

that are observing the employed bees.

Based on the behaviors of the employed bees, the

onlooker bees will decide which food sources they will

explore. The onlooker bees, however, will explore the target

that is slightly different than the area previously visited. That

is finding a feasible solution in the vicinity of an existing

solution.

Each onlooker evaluates the nectar information taken

from all employed bees and then chooses a food source

depending on the nectar amounts of sources. In similar

manner to the case of the employed bee, it produces a

modification on the original source position and checks its

nectar amount. Given that its nectar is higher than that of the

previous one, the bee registered the new position.

In deciding which food sources to explore, these

onlooker bees will take into account of the information from

the scout bees. The realization of this behavior in a

scheduling problem with the objective is to minimize

makespan is as follows. Naturally, given that m is the

makespan, we define q, the food quality as 1/m. pi, the

probability that the area i is selected, is then defined as:

𝑝𝑖 =
𝑞𝑖

Σ𝑖=1
𝑛 𝑞𝑖

 (11)

where 𝑞𝑖 =
1

𝑚𝑖
 (12)

After the flight, if the quality of the source is better than

the quality of previously found sources, the new one will be

registered and one of the existing food sources is dismissed.

Meanwhile, the employed bee whose source is abandoned

will be relocated to work on a new source. Figure 2 illustrates

such behavior of the bees which is realized as an artificial

bee colony optimization routine.

2.3 Solution representation

For flexible flowshop, we must first consider the order of

the jobs. Then, additionally we must consider which of the

processer in each stage will handle a particular job. Thus for

3 stage flowshop, each job will compose of three tasks, each

of which for one of the processing unit for a particular stage.

Let’s consider the following solution to produce just three

products.

Figure 2 Artificial bee colony algorithm routine

C =

1 2 1 4 3

2 1 2 3 2

3 3 2 2 2

In this example, the row order represents the order in

which the jobs enter the machines. The first column represent

job indexes. The second column represents the product types

or formulas. Third, forth, and fifth column represents the

machine assignments for a given job for stage 1, stage 2, and

stage 3, in that order.

Given this solution C, product 2 will be processed first

by CU# 1, CU# 4, and CU# 3 of the stage 1, stage 2, and

stage 3, respectively. Product 1 and 3 are then processed

sequentially in similar manner.

Once, the processing steps are defined, what left to be

determined are timings in order to obtain a solution to the

scheduling problem. This can be constructed heuristically

following a prescribed procedure as follows. The job being

processed, once completed, will be transferred downstream

as soon as the designated resource in the next stage becomes

available. In the case of the job waiting in the queue,

however, they must enter the first stage in accordance with

the order specified by the solution.

2.4 The algorithm enhancements

Typically, prior to performing optimization process

using algorithms such as the Genetic Algorithm or Artificial

Bee Colony optimization, suitable parameters must be

evaluated. Without the assumption that these parameters are

independent, the process of finding the optimal parameters,

by itself, is an combinational optimization problem. To

eliminated the need for optimization of the parameters, the

following procedure, inspired by League Championship

Algorithm (LCA), inspired by [18], is introduced.

Determine whether to

update a location

Random a bee

Select a

Scout

Select an

employ

Select an

onlooker

Determine the

source’s quality

66 KKU ENGINEERING JOURNAL April – June 2016;43(2)

 1. A number of optimization routines are executed in

parallel with different sets of random parameters and

population pools for a certain period. In this paper, the

number of parallel jobs chosen is four to fully utilize a quad

core CPU.

 2. At the end of the period, the performance of different

pools are evaluated. The population and the parameters of the

best performer are kept the same. The parameters of the

weaker performers are adjusted stochastically in such a way

that they are closer to the parameters of the best performer.

This is inspired by the Firefly algorithm. Some population

from the best performance group are also introduced into the

weaker groups.

 3. Repeat step 1 and 2 until a stopping criterion such as

time limit is met.

3. Numerical results and discussion

The results presented in this literature are obtained using

an AMD Phenom II X4 965 3.4 GHz Processor based PC

with 8 GB 1333MHz DDR3 SDRAM. The script is

implemented using Matlab.

Given that the control parameters are the population size,

number of offspring produced through mutation, and the

number of children produced by crossover processes, we first

determine the suitable ranges of these parameters.

 The suitable value of a parameter is determined by

varying its value while keeping other parameters constant to

identify the value that yield best result. For example, the

population size is determined by varying the population size

while keeping the number of offspring from mutation, the

number of children from crossover processes, and other

parameters the same. An example this approach is shown as

Figure 3.

Figure 3 Illustrate the process to determine a parameter

In the end, we obtain the suitable parameters for Genetic

algorithm as follows. Population size, the number children

from the crossover process, and the number of offspring

resulting from mutation are 10, 10, and 100, respectively.

The parameters for the Artificial Bee Colony Algorithm

are also obtained in the same manner. With such procedure,

the three parameters are obtained as follows. The number of

employed bees, scout bees, and onlooker bees are 10, 25, and

50, respectively.

 To evaluate the performance of a Genetic algorithm and

an Artificial Bee Colony Algorithm for comparison, we

conducted a number of experiments with different time

settings. The runtimes are varied between 10 to 1000

seconds. For each case, 30 trials were conducted. The result

are summarized in Table 4, 5, and 6. In addition to the means,

standard deviations (SD) are also provided as an information

concerning the distribution and the consistency of the data.

 For discussion, the results are shown in Figure 4 - 6.

 In all cases, the results are relatively consistent as the SD

values are within a few percent of the results.

 For the small case, ABC appeared to be trapped by local

optimums. GA, however, seemed to be able to escape local

optimums thanks to the crossover operations. The benefit of

enhancements is obvious, especially in the case of GA.

 For the medium case, even though the ABC seems to

outperform at the beginning, in the end similar results are

achieved by GA and ABC. Both Enh. GA and Enh. ABC

perform considerably better.

 For the large case, the ABC algorithm outperform the

GA approach due to the fact that ABC demands less

computing resources. Again, the benefit of the enhancements

are obvious.

Figure 4 Comparison of the results between the different

approaches for the small case

Figure 5 Comparison of the results between the different

approaches for the medium case

Figure 6 Comparison of the results between the different

approaches for the large case

42

40

38

36

34

32

30

28

26

 0 50 100 150 200 250 300

Time (s)

M
a

k
e
sp

a
n

 (
n

u
m

b
e
r
 o

f
c
h

il
d

 =
 2

5
)

Pop = 10

Pop = 25

Pop = 50

Pop = 100

Pop = 250

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

 0 200 400 600 800 1000 1200

0 200 400 600 800 1000 1200

38

36

34

32

30

28

26

24

22

20

0 200 400 600 800 1000 1200

70

65

60

55

50

45

40

ABC

GA

Enh. ABC

Enh. GA

ABC

GA

Enh. ABC

Enh. GA

ABC

GA

Enh. ABC

Enh. GA

KKU ENGINEERING JOURNAL April – June 2016;43(2) 67

Table 4 The numerical results of 30 trials for the small case

Algorithms ABC GA Enh. ABC Enh. GA

time (sec) mean SD mean SD mean SD mean SD

10 4.14389 0.163403 4.08601 0.222627 3.906367 0.13157 3.129203 0.315978

50 3.849547 0.151429 3.53205 0.234919 3.85119 0.154398 2.45707 0.515802

100 3.838013 0.16156 3.350547 0.322659 3.802787 0.135232 1.464347 0.33819

150 3.827827 0.166299 3.263283 0.377353 3.7907 0.118028 1.218723 0.212358

200 3.823367 0.17445 3.2118 0.369527 3.766677 0.121614 1.15751 0.060316

250 3.823367 0.17445 3.169167 0.385666 3.738207 0.127581 1.15751 0.060316

300 3.823367 0.17445 3.140503 0.383236 3.71711 0.133639 1.15751 0.060316

400 3.822187 0.174585 3.06159 0.361665 3.692243 0.138983 1.15751 0.060316

500 3.822187 0.174585 2.98824 0.384473 3.679937 0.136181 1.15751 0.060316

750 3.822187 0.174585 2.805243 0.395647 3.649587 0.125987 1.155893 0.060103

1000 3.822187 0.174585 2.661827 0.367806 3.622253 0.127456 1.155893 0.060103

Table 5 The numerical results of 30 trials for the medium case

Algorithms ABC GA Enh. ABC Enh. GA

time (sec) mean SD mean SD mean SD mean SD

10 34.57868 1.024731 35.66021 1.51599 32.5194 0.885741 33.129 0.801592

50 31.4616 1.015471 32.34472 1.261498 30.38272 0.763346 31.33969 0.749133

100 29.91343 0.99702 30.68524 1.041599 28.40118 0.857697 29.54316 0.854553

150 28.84818 0.913967 29.54219 0.986282 27.40336 0.933412 28.55985 0.828626

200 28.2207 0.932094 28.64059 0.889142 26.78798 0.906867 27.84742 0.858498

250 27.81355 0.930573 28.00692 0.770565 26.39883 0.836791 27.44687 0.819769

300 27.41356 0.859827 27.46584 0.87944 25.84964 0.755968 27.03758 0.763417

400 26.66976 0.910056 26.78215 0.855234 25.21382 0.814836 26.38419 0.821173

500 26.23299 0.807977 26.21324 0.904327 24.68466 0.733921 25.63889 0.947584

750 25.35632 0.695284 25.13215 0.954793 23.81293 0.655 24.38433 0.896579

1000 24.74278 0.819755 24.36496 0.950001 23.12639 0.643166 23.39898 0.845096

Table 6 The numerical results of 30 trials for the large case

Algorithms ABC GA Enh. ABC Enh. GA

time (sec) mean SD mean SD mean SD mean SD

10 61.65559 1.231111 64.15371 2.231368 59.24596 1.042457 57.96896 0.362942

50 60.81363 1.154548 62.62462 1.862528 58.97562 0.954264 57.52176 0.541232

100 59.16124 1.313446 61.54429 2.141688 57.24986 1.13295 56.33678 0.718034

150 58.13117 1.315264 60.37343 1.999046 55.73572 1.39643 55.41366 1.143131

200 57.36039 1.44558 59.20591 2.239597 54.49624 1.549506 54.86504 1.129507

250 56.65401 1.464554 58.24348 2.087927 53.5444 1.498294 54.19965 1.228245

300 55.89002 1.565818 57.70891 2.032492 52.49514 1.525258 53.79082 1.321017

400 54.90753 1.533614 56.72622 1.780611 51.20406 1.776619 52.97451 1.475872

500 53.93014 1.617016 55.68696 1.543101 50.25305 1.748974 52.14233 1.617723

750 52.22034 1.331117 53.84463 1.639141 48.43515 1.565003 50.59592 1.586276

1000 51.03764 1.466034 52.69946 1.493084 47.3278 1.544683 49.45846 1.547568

68 KKU ENGINEERING JOURNAL April – June 2016;43(2)

4. Conclusion

Recent evolutionary computations, including GA and

ABC, are mostly swam-based. While GA introduces the

concept of population, ABC uses the number of employed

bees dictating the number of food sources.

ABC employs scout bee perform random search. In the

same manner, random search can be adopted for GA through

insertion of random population.

The differences between GA and ABC largely come

down to the behaviors the algorithms treat the population.

GA treats data equally by randomly select data. ABC, on the

other hand, may prioritize certain data with the introduction

of onlooker bees. In short term, this give the ABC algorithm

the advantage. However, once most data are optimized, the

quality gaps of the data are expected to be reduced.

Eventually, this advantage yield diminishing return.

The GA algorithm, on the other hand, uniquely

introduces crossover operations that help to locate new

solution while escaping local optimum. But for certain

problems, such operations can be more resource intensive as

the problem grows.

Thus, for small problem, GA may be more suitable. For

medium size problem, the two algorithms appear to yield

similar performances as long as proper parameters are used.

For large problem, the GA algorithm is holding back by the

crossover operations. Consequently, in such case, ABC

algorithm generally performs better.

For regular GA and ABC Algorithm, the optimal

parameters are usually screened in advance. In this paper,

along with the comparison of GA and ABC Algorithm, we

also present an approach to allow automatic adaptation of the

key parameters. Consequently, the need to determine

optimization parameter in advance is no longer crucial.

Furthermore, the enhancement takes advantage to the

multiple processing cores of the CPU. As the results, Enh.

GA and Enh. ABC are introduced. The numerical results

clearly demonstrate the benefit of such enhancement in

comparison with the typical GA and ABC Algorithm.

5. Acknowledgements

This research was supported by Thailand Research Fund,

and National Research University Project of Thailand, Office

of the Higher Education Commission.

6. References

[1] Johnson SM. Optimal two- and three-stage production

schedules with setup times included. Santa Monica:

The RAND Corporation; 1953.

[2] Hejazi SR, Saghafian S. Flowshop-scheduling

problems with makespan criterion: a review. Int J Prod

Res. 2005;43(14):2895-929.
[3] Baumann P, Trautmann N. An MILP approach to

short-term scheduling of an industrial make-and-pack

production facility with batch splitting and quality

release times. 2010 IEEE International Conference on

 Industrial Engineering and Engineering Management;

2010 Dec 7-10; Macao, China. USA: IEEE; 2010.

p. 1230-4.

[4] Baumann P, Trautmann N. A continuous-time MILP to

compute schedules with minimum changeover times

for a make-and-pack production. 21st European

Symposium on Computer Aided Process Engineering

– ESCAPE 21; 2011 May 29-1 June; Chalkidiki,

Greece. Amsterdam: Elsevier Publishing; 2011. p.

1060-4.

[5] Mendez CA, Cerda J. An MILP-based approach to the

short-term scheduling of make-and-pack continuous

production plants. OR Spectrum. 2002;24:403-29.

[6] Ying KC, Lin SW. Multiprocessor task scheduling in

multistage hybrid flow-shops: an ant colony system

approach. Int J Prod Res. 2006;44(16):3161-77.

[7] Bagchi TP, Gupta JND, Sriskandarajah C. A review of

TSP based approaches for flowshop scheduling. Eur J

Oper Res. 2006;169(3):816-54.

[8] Najafi E, Naderi B, Sadeghi H, Yazdani M. A

mathematical model and a solution method for hybrid

flow shop scheduling. J Optim Ind Eng. 2012;10:65-

72.

[9] Xie J, Wang X. Complexity and algorithms for two-

stage flexible flow shop scheduling with availability

constraints. Comput Math Appl. 2005;50(10-

12):1629-38.

[10] Honkomp SJ, Lombardo S, Rosen O, Pekny JF. The

curse of reality - why process scheduling optimization

problems are difficult in practice. Comput Chem Eng.

2000;24(2-7):323-8.

[11] Larranaga P, Kuijpers CMH, Murga RH, Inza I,

Dizdarevic S. Genetic algorithms for the traveling

salesman problem: a review of representations and

operators. Artif Intell Rev. 1999;13:129-70.

 [12] Mirabi M. A hybrid genetic algorithm for the sequence

dependent flow-shop scheduling problem. World Acad

Sci Eng Tech. 2011;5(7):1364-70.

[13] Zandieh M, Rashidi E. An effective hybrid genetic

algorithm for hybrid flow shops with sequence

dependent setup times and processor blocking. J Ind

Eng. 2009;4:51-8.

[14] Visscher PK, Seeley TD. Foraging strategy of honey

bee colonies in a temperate deciduous forest. Ecol.

1982;63(6):1790-801.

[15] Nikolic´ M, Teodorovic D. Empirical study of the Bee

Colony Optimization (BCO) algorithm. Expert Syst

Appl. 2013;40(11):4609-20.

[16] Pan QK, Wang L, Li JQ, Duan JH. A novel discrete

artificial bee colony algorithm for the hybrid flowshop

scheduling problem with makespan minimization.

Omega. 2014;45:42-56.

[17] Akay B, Karaboga D. A modified Artificial bee colony

algorithm for real-parameter optimization. Inform Sci.

2012;192:120-42.

[18] Kashan AH. An efficient algorithm for constrained

global optimization and application to mechanical

engineering design: League championship algorithm

(LCA). Comput Aided Des. 2011;43(12):1769-92.

