
KKU Engineering Journal
http://www.en.kku.ac.th/enjournal/th/

Research Article

Design and evaluation of a NoSQL database for storing and querying RDF data
Kanda Runapongsa Saikaew*1), Chanuwas Asawamenakul1) and Marut Buranarach2)

1)Department of Computer Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, Thailand, 40002.
2)National Electronics and Computer Technology Center, Pathum Thani, Thailand,12120.

Received May 2014

Accepted September 2014

Abstract
Currently the amount of web data has increased excessively. Its metadata is widely used in order to fully exploit
web information resources.This causes the need for Semantic Web technology to quickly analyze such big data.
Resource Description Framework (RDF) is a standard for describing web resources. In this paper, we propose

a method to exploit a NoSQL database, specifically MongoDB, to store and query RDF data. We choose
MongoDB to represent a NoSQL database because it is one of the most popular high-performance NoSQL
databases. We evaluate the proposed design and implementation by using the Berlin SPARQL Benchmark,
which is one of the most widely accepted benchmarks for comparing the performance of RDF storage systems.
We compare three database systems, which are Apache Jena TDB (native RDF store), MySQL (relational
database), and our proposed system with MongoDB (NoSQL database). Based on the experimental results
analysis, our proposed system outperforms other database systems for most queries when the data set size is
small. However, for a larger data set, MongoDB performs well for queries with simple operators while
MySQL offers an efficient solution for complex queries. The result of this work can provide some guideline for
choosing an appropriate RDF database system and applying a NoSQL database in storing and querying RDF
data.
Keywords : Semantic web, RDF storage system, RDF database system, SPARQL query processing

1. Introduction

Currently the amount of web data has

increased excessively. Its metadata is widely used in

order to fully exploit web information resources. The

Semantic Web is a Web of data that the World Wide

Web Consortium has the vision to provide a common

framework that allows data to be shared and reused

across applications and enterprises. Thus, there is

the need for the definition of the relations among data

that allows a better and automatic interchange of data.

Resource Description Framework (RDF), which is one

of the fundamental building blocks of the Semantic

Web, gives a formation definition for the interchange

of data. It is a standard for describing web resources.

RDF data is in the form subject-predicate-

object which is called triples. The subject describes

the resource while the predicate is the relation or

property between the subject and the object.

For example, one way to represent the notion

KKU ENGINEERING JOURNAL October–December 2014;41(4):537-545

* Corresponding Tel.: +66-43-362-160; fax: +66-43-362-160

Email address: krunapon@kku.ac.th

538 KKU ENGINEERING JOURNAL October–December 2014;41(4)

“The woman has the sweets” in RDF is as the triple:

a subject denoting “the woman”, a predicate denoting

“has”, and an object denoting “the sweets.”

Many types of storage engines are designed

and evaluate for triples. One of those types is a

triple store which is a purpose-built database for the

storage and retrieval of triples. Queries on these

triples are in SPARQL, which is a language designed

specifically to query RDF databases. The efficiency

of RDF data analysis depends on the performance of

RDF storage and query engine.

Traditional RDF database systems query

data from native RDF stores or from relational

database systems. The motivation for such native

RDF-specific stores is that the relational model is not

particularly suitable towards storage and retrieval of

RDF data because RDF is a graph data model.

However, relational database systems are equipped

with mature optimization techniques for storing and

querying data.

NoSQL database is another type of database

that is not relational database and not use SQL to

query the data. NoSQL database has the data model

that can divide into four types which are document

database using JSON data format, key-value

database, column store database, and graph

database. NoSQL database has d i f ferent

characteristics from relational databases, such as

schema-free and replication support. The motivation

for this approach includes the simplicity of design

and the horizontal scaling for supporting big data.

Recently, NoSQL databases have been more

successful than traditional relational database

systems for the ability inprocessing big data on the

cloud effectively [1]. In NoSQL databases,to gain

performance, ACID (Atomic, Consistency, Isolation,

and Duration), which is a set of properties that

guarantee that database transactions are processed

reliably, is sacrificed [2]. However, the advocates of

NoSQL databases argue that they should rather enforce

the triple of requirements including consistency (C),

availability (A) and partitioning tolerance (P), shortly

CAP [1].

In this paper, we aim to search for the answer

of the question how to process web data quickly.

Thus, we propose a method to exploit a NoSQL

database, specifically MongoDB, to store and query

RDF. MongoDB is chosen because it is one of widely

used NoSQL databases. The system first invokes

NoSQL API to retrieve MongoDB data in JSON format.

Then, the JSON parser module converts JSON

data to RDF data. We evaluate our design and

implementation by using the Berlin SPARQL

Benchmark, which is one of the most widely accepted

benchmarks for comparing the performance of three

RDF storage systems which include Apache Jena

TDB (native RDF store), MySQL (relational database),

and MongoDB (NoSQL database).

Benchmarking has been a core topic of RDF

data management research. Bizer and Schultz [3]

proposed the Berlin SPARQL Benchmark (BSBM) for

comparing the performance of native RDF stores

(Sesame, Virtuoso, Jena TDB, and Jena SDB),

SPARQL-to-SQL rewriters (D2R Server and Virtuoso

RDF Views), and relational database management

systems (MySQL and Virtuoso RDBMS). The rewriting

approach outperformed native RDF storage with the

increasing dataset. The other important result was

that relational database management systems were

faster than the SPARQL-to-SQL rewriters. The authors

of this related paper explained that RDF stores might

not have a mature optimization technique as SQL

query engines had. Our paper uses the BSBM

benchmark to evaluate RDF storage systems but we

also propose the approach to use and evaluate

NoSQL database as a RDF data query processing

system.

539KKU ENGINEERING JOURNAL October–December 2014;41(4)

There has been some work on querying RDF

data from NoSQL databases [4-6]. Cudre-Mauroux

et al. [4] made the first attempt at characterizing and

comparing NoSQL stores and native RDF stores for

RDF processing. They used the Berlin SPARQL

Benchmark and the DBpedia SPARQL Benchmark to

evaluate and compare a native RDF store (4store)

with four NoSQL databases which included Jena+H-

Base, Hive+HBase, CumulusRDF, and Counchbase.

All experiments were performed on the Amazon EC2

Elastic Compute Cloud infrastructure. Based on the

experimental results, NoSQL systems, such as

Jena+HBase, processed simple SPARQL queries

more efficiently than native RDF stores, such as 4store.

On the other hand, for more complex SPARQL queries

requiring several many joins and filters, NoSQL

systems took longer time than 4store. Although both

this related work and our work compare NoSQL

systems and native RDF systems, but our paper also

evaluates the performance of a relational base

database system as well.

Angles and Gtierrez studied the RDF model

from a database perspective and compared it with

other database models [5]. However, they did not

implement and evaluate a graph database for storying

and querying RDF data like we do. Lately, Bendar et

al. [6] performed the comparison of RDF databases,

NoSQL databases, and relational databases for the

Semantic Web applications with their own developed

benchmark. However, they did not provide the

analysis the types of queries for which each database

was suitable.

Sequeda and Miranker [7] chose to execute

SPARQL queries on RDF representation of the legacy

relational data by implementing the system called

Ultrawrap. Ultrawrap encoded a logical representation

of the database as an RDF graph using SQL views

and a translation of SPARQL queries to SQL queries.

To improve query execution time, detection of

unsatisfiable conditions and self-join elimination could

be applied to the SQL from the translations of

SPARQL queries.

Alexaki et al. [8] presented the ICS-FORTH

RDFSuite, a suite of tools for RDF validation, store,and

querying. They proposed the design of a persistent

RDF store (RSSDB) for loading resource descriptions

in an Object Relational Database Management

System (ORDBMS) by using RDF schema knowledge.

They also presented RQL as a declarative language

for querying both RDF descriptions and schemas.

However, they did not compare their proposed system

with other database systems and did not use a

standard benchmark like BSBM.

Several researchers have attempted to

design and develop RDF storage and query engine

using relational DBMSs [9-11]. Harris et al. [9]

proposed 3store as a RDF storage and query engine

and extended it to support SPARQL query interface

[10]. However, 3store had not been evaluated and

compared with other systems [9-10]. Jena1 [11] and

Jena2 [12] are popular Semantic Web programmers’

toolkits that have been downloaded for several

thousand times. Jena1 is an open-source project,

implemented in Java, and available for download for

free. Its core is the capability in manipulating RDF

graphs. Jena2 was extended to support multiple and

flexible presentations of RDF graphs and to provide

a simple minimal list view of the RDF graph to the

application programmers.

There are several works about scalable RDF

engines for storing, indexing, and querying [13-16].

The main focus of Jena2 was to improve the

performance and scalability due to these problems:

too many joins, single statement table, reification

storage bloat, and query optimization [13]. To address

these issues, the Jena2 schema design supported a

denormalized schema for storing resource URIs and

simple literal values directly in the statement table. In

540 KKU ENGINEERING JOURNAL October–December 2014;41(4)

addition, to improve performance through locality and

caching, Jena2 also supported the use of multiple

statement tables.

Sesame [14] was one of the first architectures

which its aim was for efficient storing and querying a

large amount of RDF data. However, there were some

unsupported operations, such as aggregates [15].

Also, implementing triple store directly in PostgresSQL

was faster than that of Sesame’s interfaces and

SeRQL [15]. Abadi et al. [15] proposed the approach

of vertically partitioning the RDF data. The results

showed that vertical partitioning achieved similar

performance to the property table technique

proposed to reduce the number of self-joins.

The RDF-3X (RDF Triple eXpress) [16],

designed and implemented from scratch specifically

for the management and querying of RDF data,

outperformed the previously best alternative [15] by

one or two orders of magnitude.

The contributions of this paper are as

following:1) applying MongoDB to store and query

RDF data; 2) using the standard Berlin SPARQL

benchmark to compare all three kinds of database

systems: native RDF store, relational database, and

NoSQL database. The analysis of the comparison can

be a guideline for choosing an appropriate database

system for different kinds of applications. For example,

relational databases are suitable for applications with

complex queries while NoSQL databases should be

used for applications with simple queries.

2. Research methodology

In this section, we describe dataset

description, query description, and experimental

settings.

2.1 Dataset description

The dataset was adapted from the Berlin

SPARQL Benchmark (BSBM) [1]. The BSBM consists

of dataset generators and queries mix that can be

used for comparing the performance of RDF storage

and querying engines. The benchmark was built

around an e-commerce use cases in which a set of

products was offered by different vendors, consumers,

and comments. The benchmark dataset consists of

the following classes: product, product type, product

feature, producer, vendor, review, and person.

The BSBM has been chosen because it can simulate

real-world enterprise application scenarios.

In addition, the BSBM dataset is provided in the RDF

data format, which simulates the Semantic Web data

setting. In our tests, five different sizes of the dataset

were generated and varied by the number of

products: 1360, 2785, and 5544 products.

The numbers of generated triples were 500K, 1M,

and 2M triples respectively.

2.2 Query description

The query was adapted from the BSBM[1].

The query set consists of query for testing join,

regular expression, comparison function, negation,

sort result, skip result, and limit the result.

The description and characteristics of twelve

BSBM queries are described as follows.

Query	 1	 :	 Find products for a given set of

generic features (characteristics: simple filters, LIMIT,

ORDER BY, and DISTINCT)

Query	 2	 :	 Retrieve basic information about

a specific product for display purposes (characteristics:

more than 9 patterns, and OPTIONAL)

Query	 3	 :	 Find products having some

specific features and not having one feature

(characteristics: simple filters, negation, OPTIONAL,

LIMIT, and ORDER BY).

Quer	 4		 Find products matching two

different sets of features (characteristics: simple filters,

more than 9 patterns, LIMIT, ORDER BY, and UNION).

541KKU ENGINEERING JOURNAL October–December 2014;41(4)

Query	 5	 :	 Find products that are similar to

a given product (characteristics: complex filters,

LIMIT, ORDER BY, and DISTINCT).

Query 6	 :	 Find products having a label that

contains a specific string (characteristics: complex

filters and REGEX).

Query 7	 :	 Retrieve in-depth information

about a product including offers and reviews

(characteristics: simple filters, more than 9patterns,

and OPTIONAL).

Query 8	 :	 Give me recent English language

reviews for a specific product (characteristics: simple

filters, more than 9 patterns, OPTIONAL, LIMIT, and

ORDER BY).

Query 9	 :	 Get information about a reviewer

(characteristics: simple filters, and DESCRIBE).

Query 10	:	 Get cheap offers which fulfill the

consumer’s delivery requirements (characteristics:

simple filters, LIMIT, ORDER BY, and DISTINCT).

Query 11	:	 Get all information about an offer

(characteristics: unbound predicates and UNION).

Query 12	:	 Export information about an offer

into another schema (characteristis: CONSTRUCT).

We translate the SPARQL query to MongoDB

query by using functions that have the same effect,

such as ORDER BY in SPARQL is translated to $sort

operation in MongoDB to sort the result set. However,

for functions that cannot be translated directly, we will

use the functions that have a similar logic to get the

same result, such as UNION in SPARQL is translated

to $or and DISTINCT translate to $group operation

instead to get the same result.

Table 1 and Table 2 give an overview of the

chracteristics of the MongoDB queries corresponding

to the BSBM benchmark queries.

Table 1 Characteristics of the Mongo DBQ1-Q6

Characteristics Q1 Q2 Q3 Q4 Q5 Q6

Result

manipulation

$sort / / / /

$limit / / / / /

$skip /

$unwind / /

$group / / /

Comparison

Condition

Math($gt,

$lt)

/ / / /

$or / /

$regex /

$all / / /

$in /

$ne /

$eq /

use _id / /

Join(DBRef) /

Table 2 Characteristics of MongoDBQ7-Q12

Characteristics Q7 Q8 Q9 Q10 Q11 Q12

Result

manipula-

tion

$sort / /

$limit / /

$skip

$unwind

$group / /

Comparison

Condition

Math($gt,

$lt)

/ /

$or

$regex

$all

$in

$ne

$eq / /

use _id / / / /

Join(DBRef) / / / /

542 KKU ENGINEERING JOURNAL October–December 2014;41(4)

2.3 Experimental settings

All tests were performed on a machine with

the following specifications: Intel(R) Xeon(R) CPU

E5-2680 0 @ 2.70GHz, and 4GB main memory size.

The machine was running on Ubuntu 12.04.5 LTS

(GNU/Linux 3.2.0-69-generic x86_64) and Java

Development Kit version 1.7 with maximum heap size

1GB. In each test, we measured the average system

response time. The following provides the version

numbers and configurations of the tested database

system.

1.	 Apache Jena TDB from Jena framework

version 2.11.0 using RDF datasets in Turtle format,

and SPARQL query language from the Berlin

benchmark.

2.	 MongoDB version 2.6.4 with RDF

datasets that are converted to json-ld format and

parsed to MongoDB by using MongoDB query API.

3.	 MySQL version 5.5.38-0ubuntu0.12.04.1,

with SQL datasets and queries of the Berlin

SPARQL benchmark.

The performance metric used in the study is

the number of queries executed per second which is

the number of queries that have been executed

successfully in one second.

3. Research results and discussion

The results of the performance evaluation of

these systems (Jena TDB, MongoDB, and MySQL)

are described in Table 3-5.

Table 3 The number of queries executed per second

for 500K data set

500K TDB MongoDB MySQL

Q1 44.016 167.102 132.610

Q2 78.177 71.642 266.249

Q3 123.360 379.534 240.884

Q4 104.439 397.888 303.361

Q5 84.024 229.700 314.595

Q6 44.601 220.212 330.874

Q7 134.284 212.973 341.772

Q8 153.232 456.150 320.177

Q9 145.424 438.912 389.298

Q10 162.509 480.830 406.432

Q11 176.823 700.641 395.720

Q12 144.956 517.715 395.796

In Table 3,MySQL outperforms MongoDB for

queries Q2, and Q5-Q7 because Q2 has many

operations such as join (DBRef), $eq to compare two

values in the same document of MongoDB, and

$unwind to separate the array object in MongoDB. As

a result, MongoDB has to execute many steps and

finish fewer queries in one second. For Q5 and Q7, in

MongoDB, these queries require many sub-queries;

thus, MongoDB is slower than MySQL. For Q6, MySQL

performs very well since it has a sophisticated

543KKU ENGINEERING JOURNAL October–December 2014;41(4)

optimizer for handling a regular expression.

For queries Q2, and Q5-Q7, these queries require

many joins, which a relational database system has

an advantage because of its mature optimization

techniques. MySQL also performs better than other

systems for queries with complex filters and join.

Jena TDB performs poorly for all queries

probably because it has not yet successfully

implemented effective optimization techniques

as relational databases have.

MongoDB performs better than other two

kinds of database systems for most queries,

especially queries with simple operators.

Table 4 The number of queries executed per second

for 1M data set

1M TDB MongoDB MySQL

Q1 43.536 164.128 131.352

Q2 77.010 68.040 260.600

Q3 116.258 367.184 235.679

Q4 101.687 353.265 300.617

Q5 52.305 168.181 314.335

Q6 28.533 137.625 327.403

Q7 122.143 209.694 341.415

Q8 152.318 434.222 314.225

Q9 132.400 401.634 377.606

Q10 131.775 337.155 392.301

Q11 173.851 673.549 392.568

Q12 118.884 498.579 393.642

In Table 4, The experimental results of all

three database systems when the dataset is 1M are

similar to those when the dataset is 500K except that

for Q10, MySQL has higher throughput than

MongoDB. It is likely that MySQL performs better for

larger data sets due to the efficiency of indexing. On

the other hand, for Q10, MongoDB uses $eq and join

operation which require a larger amount of time for a

larger result set.

Table 5 The number of queries executed per second

for 2M data set

2M TDB MongoDB MySQL

Q1 40.377 158.492 129.957

Q2 62.858 67.625 260.721

Q3 94.764 290.004 235.086

Q4 97.984 264.681 301.325

Q5 36.108 123.581 312.722

Q6 12.246 80.014 320.887

Q7 96.904 112.829 337.532

Q8 106.941 423.473 310.835

Q9 94.691 397.862 376.822

Q10 105.837 274.942 385.128

Q11 121.693 633.726 387.576

Q12 90.216 496.011 386.086

In Table 5, The experimental results when

the dataset is 2M are similar to those when the

dataset is 1M. However, for Q4, MySQL has higher

throughput than MongoDB due to more efficient

indexes to handle the queries with the high number

of patterns of a larger volume of data. MySQL can

handle most queries with more than 9 patterns (Q2,

Q4, and Q7). On the other hand, MongoDB is suitable

for queries with negation (Q3), unbound predicates

(Q11), or some operators (Q9 and Q12).

MongoDB scales worst for queries with $eq

operator. For all queries with $eq, which are Q2, Q7,

and Q10, MongoDB does not perform well with a data

size that is at least 1 MB. In addition, MongoDB is not

suitable for queries with other kind of comparisons,

such as Q5 and Q7 which use math($gt, $lt) and use

_id. For queries with $regex operator, such as Q6,

MongoDB also performs and scales poorly.

4. Conclusion

In this paper, we design the framework that

uses MongoDB, a document based NoSQL database

544 KKU ENGINEERING JOURNAL October–December 2014;41(4)

to store and query RDF data. In addition, we compare

the triple store (Jena TDB), NoSQL (MongoDB), and

the relational database system(MySQL) by using the

Ber l in SPARQL Benchmark. Based on the

experimental results, it has been found that Jena TDB

performs poorly on most queries due to the

ongoing optimization techniques. For most queries in

a small data set, MongoDB finishes more number of

queries than other database system. However, for a

larger data set, MongoDB performs well for queries

with negation, unbound predicates, or some simple

operators. On the other hand, MySQL performs well

for queries with many patterns and complex filters.

Future work should consider functions of the

framework to automatically parse and import RDF data

to MongoDB. There is also a need for a systematic

system for the translation from SPARQL query to

MongoDB query.

5. Acknowledgements

The financial support from Young Scientist

and Technologist Programme, NSTDA (YSTP:

SP-56-NT03) is gratefully acknowledged.

6. References

[1] 	 Pokorny J. NoSQL databases: a step to

database scalability in web environment.

International Journal of Web Information

Systems. 2013;9(1):69-82.

[2] 	 Stonebraker M. SQL databases v. NoSQL

databases. Communications of the ACM, 2010;

53(4):10-1.

[3] 	 Bizer C, Schultz A. The berl in sparql

benchmark. International Journal on Semantic

Web and Information Systems (IJSWIS). 2009;

5(2):1-24.

[4] 	 Cudré-Mauroux P, Enchev I, Fundatureanu S,

Groth P, Haque A, Harth A, Wylot M. Nosql

databases for rdf: An empirical evaluation. In

:The Semantic Web–ISWC 2013:Springer

Berlin Heidelberg; 2013. p. 310-25.

[5] 	 Angles R, Gutierrez C. Querying RDF data from

a graph database perspective. The Semantic

Web: Research and Applications. Springer

Berlin Heidelberg. 2005;346-60.

[6] 	 Bednar P, Sarnovsky M, Demko V. RDF vs.

NoSQL databases for the semantic web

applications. In: Applied Machine Intelligence

and Informatics (SAMI), IEEE 12th International

Symposium; 2014. p. 361-4.

[7] 	 Sequeda JF, Miranker DP. Ultrawrap: Sparql

execution on relational data. Web Semantics:

Science, Services and Agents on the World

Wide Web. 2013;22:19-39.

[8] 	 Alexaki S, Christophides V, Karvounarakis G,

Plexousakis D, Tolle K. The ICS-FORTH RDFSuite:

Managing Voluminous RDF Description Bases.

In SemWeb; 2001. p. 310-25.

[9] 	 Harris S, Gibbins N. 3store: Efficient bulk

RDF storage. In: Proceedings of the1st

InternationalWorkshop on Practical and

Scalable Semantic Systems (PSSS’03); 2003.

p. 1-20.

[10] 	 Harri S, Shadbolt N. SPARQL query processing

with conventional relat ional database

systems. In: Web Information Systems

Engineering–WISE 2005 Workshops: Springer

Berlin Heidelberg; 2005. p. 23-44.

[11]	 McBride B. Jena. IEEE Internet Computing.

July/August, 2002.

545KKU ENGINEERING JOURNAL October–December 2014;41(4)

[12] 	 Carroll JJ, Dickinson I, Dollin C, Reynolds D,

Seaborne A, Wilkinson K. Jena: implementing

the semantic web recommendations. In:

Proceedings of the 13th international World

Wide Web conference on Alternate track

papers & posters: ACM; 2004. p. 74-83.

[13] 	 Wilkinson K, Sayers C, Kuno HA, Reynolds D.

Efficient RDF Storage and Retrieval in Jena2.

In:SWDB; 2003. p. 131-50.

[14] 	 Broekstra J, Kampman A, Van Harmelen F.

Sesame: A generic architecture for storing and

querying rdf and rdf schema. In:The Semantic

Web—ISWC 2002, Springer Berlin Heidelberg;

2002. p. 54-68.

[15] 	 Abadi DJ, Marcus A, Madden S, Hollenbach

KJ. Scalablesemantic web data management

using vertical partitioning. In: VLDB; 2007.

p. 411–22.

[16] 	 Neumann T, Weikum G. The RDF-3X engine for

scalable management of RDF data. The VLDB

Journal. 2010;19(1):91-113.

