KKU ENGINEERING JOURNAL October-December 2014:41(4):537-545 Research Article

KKU Engineering Journal

http://www.en.kku.ac.th/enjournal/th/

Design and evaluation of a NoSQL database for storing and querying RDF data

Kanda Runapongsa Saikaew*"”, Chanuwas Asawamenakul” and Marut Buranarach”
1)Depar‘tment of Computer Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, Thailand, 40002.

“National Electronics and Computer Technology Center, Pathum Thani, Thailand,12120.
Received May 2014
Accepted September 2014

Abstract

Currently the amount of web data has increased excessively. Its metadata is widely used in order to fully exploit
web information resources.This causes the need for Semantic Web technology to quickly analyze such big data.
Resource Description Framework (RDF) is a standard for describing web resources. In this paper, we propose
a method to exploit a NoSQL database, specifically MongoDB, to store and query RDF data. We choose
MongoDB to represent a NoSQL database because it is one of the most popular high-performance NoSQL
databases. We evaluate the proposed design and implementation by using the Berlin SPARQL Benchmark,
which is one of the most widely accepted benchmarks for comparing the performance of RDF storage systems.
We compare three database systems, which are Apache Jena TDB (native RDF store), MySQL (relational
database), and our proposed system with MongoDB (NoSQL database). Based on the experimental results
analysis, our proposed system outperforms other database systems for most queries when the data set size is
small. However, for a larger data set, MongoDB performs well for queries with simple operators while
MySQL offers an efficient solution for complex queries. The result of this work can provide some guideline for
choosing an appropriate RDF database system and applying a NoSQL database in storing and querying RDF
data.

Keywords : Semantic web, RDF storage system, RDF database system, SPARQL query processing

1. Introduction that allows a better and automatic interchange of data.

Currently the amount of web data has Resource Description Framework (RDF), which is one

increased excessively. Its metadata is widely used in
order to fully exploit web information resources. The
Semantic Web is a Web of data that the World Wide
Web Consortium has the vision to provide a common
framework that allows data to be shared and reused
across applications and enterprises. Thus, there is

the need for the definition of the relations among data

* Corresponding Tel.: +66-43-362-160; fax: +66-43-362-160

Email address: krunapon@kku.ac.th

of the fundamental building blocks of the Semantic
Web, gives a formation definition for the interchange
of data. Itis a standard for describing web resources.

RDF data is in the form subject-predicate-
object which is called triples. The subject describes
the resource while the predicate is the relation or
property between the subject and the object.

For example, one way to represent the notion

538

“The woman has the sweets” in RDF is as the triple:
a subject denoting “the woman”, a predicate denoting
“has”, and an object denoting “the sweets.”

Many types of storage engines are designed
and evaluate for triples. One of those types is a
triple store which is a purpose-built database for the
storage and retrieval of triples. Queries on these
triples are in SPARQL, which is a language designed
specifically to query RDF databases. The efficiency
of RDF data analysis depends on the performance of
RDF storage and query engine.

Traditional RDF database systems query
data from native RDF stores or from relational
database systems. The motivation for such native
RDF-specific stores is that the relational model is not
particularly suitable towards storage and retrieval of
RDF data because RDF is a graph data model.
However, relational database systems are equipped
with mature optimization techniques for storing and
querying data.

NoSQL database is another type of database
that is not relational database and not use SQL to
query the data. NoSQL database has the data model
that can divide into four types which are document
database using JSON data format, key-value
database, column store database, and graph
database. NoSQL database has different
characteristics from relational databases, such as
schema-free and replication support. The motivation
for this approach includes the simplicity of design
and the horizontal scaling for supporting big data.

Recently, NoSQL databases have been more
successful than traditional relational database
systems for the ability inprocessing big data on the
cloud effectively [1]. In NoSQL databases,to gain
performance, ACID (Atomic, Consistency, Isolation,
and Duration), which is a set of properties that
guarantee that database transactions are processed

reliably, is sacrificed [2]. However, the advocates of

KKU ENGINEERING JOURNAL October-December 2014;41(4)

NoSQL databases argue that they should rather enforce
the triple of requirements including consistency (C),
availability (A) and partitioning tolerance (P), shortly
CAP [1].

In this paper, we aim to search for the answer
of the question how to process web data quickly.
Thus, we propose a method to exploit a NoSQL
database, specifically MongoDB, to store and query
RDF. MongoDB is chosen because it is one of widely
used NoSQL databases. The system first invokes
NoSQL API to retrieve MongoDB data in JSON format.
Then, the JSON parser module converts JSON
data to RDF data. We evaluate our design and
implementation by using the Berlin SPARQL
Benchmark, which is one of the most widely accepted
benchmarks for comparing the performance of three
RDF storage systems which include Apache Jena
TDB (native RDF store), MySQL (relational database),
and MongoDB (NoSQL database).

Benchmarking has been a core topic of RDF
data management research. Bizer and Schultz [3]
proposed the Berlin SPARQL Benchmark (BSBM) for
comparing the performance of native RDF stores
(Sesame, Virtuoso, Jena TDB, and Jena SDB),
SPARQL-to-SQL rewriters (D2R Server and Virtuoso
RDF Views), and relational database management
systems (MySQL and Virtuoso RDBMS). The rewriting
approach outperformed native RDF storage with the
increasing dataset. The other important result was
that relational database management systems were
faster than the SPARQL-to-SQL rewriters. The authors
of this related paper explained that RDF stores might
not have a mature optimization technique as SQL
query engines had. Our paper uses the BSBM
benchmark to evaluate RDF storage systems but we
also propose the approach to use and evaluate
NoSQL database as a RDF data query processing

system.

KKU ENGINEERING JOURNAL October-December 2014;41(4)

There has been some work on querying RDF
data from NoSQL databases [4-6]. Cudre-Mauroux
et al. [4] made the first attempt at characterizing and
comparing NoSQL stores and native RDF stores for
RDF processing. They used the Berlin SPARQL
Benchmark and the DBpedia SPARQL Benchmark to
evaluate and compare a native RDF store (4store)
with four NoSQL databases which included Jena+H-
Base, Hive+HBase, CumulusRDF, and Counchbase.
All experiments were performed on the Amazon EC2
Elastic Compute Cloud infrastructure. Based on the
experimental results, NoSQL systems, such as
Jena+HBase, processed simple SPARQL queries
more efficiently than native RDF stores, such as 4store.
On the other hand, for more complex SPARQL queries
requiring several many joins and filters, NoSQL
systems took longer time than 4store. Although both
this related work and our work compare NoSQL
systems and native RDF systems, but our paper also
evaluates the performance of a relational base
database system as well.

Angles and Gtierrez studied the RDF model
from a database perspective and compared it with
other database models [5]. However, they did not
implement and evaluate a graph database for storying
and querying RDF data like we do. Lately, Bendar et
al. [6] performed the comparison of RDF databases,
NoSQL databases, and relational databases for the
Semantic Web applications with their own developed
benchmark. However, they did not provide the
analysis the types of queries for which each database
was suitable.

Sequeda and Miranker [7] chose to execute
SPARQL queries on RDF representation of the legacy
relational data by implementing the system called
Ultrawrap. Ultrawrap encoded a logical representation
of the database as an RDF graph using SQL views
and a translation of SPARQL queries to SQL queries.

To improve query execution time, detection of

539

unsatisfiable conditions and self-join elimination could
be applied to the SQL from the translations of
SPARQL queries.

Alexaki et al. [8] presented the ICS-FORTH
RDFSuite, a suite of tools for RDF validation, store,and
querying. They proposed the design of a persistent
RDF store (RSSDB) for loading resource descriptions
in an Object Relational Database Management
System (ORDBMS) by using RDF schema knowledge.
They also presented RQL as a declarative language
for querying both RDF descriptions and schemas.
However, they did not compare their proposed system
with other database systems and did not use a
standard benchmark like BSBM.

Several researchers have attempted to
design and develop RDF storage and query engine
using relational DBMSs [9-11]. Harris et al. [9]
proposed 3store as a RDF storage and query engine
and extended it to support SPARQL query interface
[10]. However, 3store had not been evaluated and
compared with other systems [9-10]. Jena1 [11] and
Jena2 [12] are popular Semantic Web programmers’
toolkits that have been downloaded for several
thousand times. Jenal is an open-source project,
implemented in Java, and available for download for
free. Its core is the capability in manipulating RDF
graphs. Jena2 was extended to support multiple and
flexible presentations of RDF graphs and to provide
a simple minimal list view of the RDF graph to the
application programmers.

There are several works about scalable RDF
engines for storing, indexing, and querying [13-16].
The main focus of Jena2 was to improve the
performance and scalability due to these problems:
too many joins, single statement table, reification
storage bloat, and query optimization [13]. To address
these issues, the Jena2 schema design supported a
denormalized schema for storing resource URIs and

simple literal values directly in the statement table. In

540

addition, to improve performance through locality and
caching, Jena2 also supported the use of multiple
statement tables.

Sesame [14] was one of the first architectures
which its aim was for efficient storing and querying a
large amount of RDF data. However, there were some
unsupported operations, such as aggregates [15].
Also, implementing triple store directly in PostgresSQL
was faster than that of Sesame’s interfaces and
SeRQL [15]. Abadi et al. [15] proposed the approach
of vertically partitioning the RDF data. The results
showed that vertical partitioning achieved similar
performance to the property table technique
proposed to reduce the number of self-joins.

The RDF-3X (RDF Triple eXpress) [16],
designed and implemented from scratch specifically
for the management and querying of RDF data,
outperformed the previously best alternative [15] by
one or two orders of magnitude.

The contributions of this paper are as
following:1) applying MongoDB to store and query
RDF data; 2) using the standard Berlin SPARQL
benchmark to compare all three kinds of database
systems: native RDF store, relational database, and
NoSQL database. The analysis of the comparison can
be a guideline for choosing an appropriate database
system for different kinds of applications. For example,
relational databases are suitable for applications with
complex queries while NoSQL databases should be

used for applications with simple queries.
2. Research methodology

In this section, we describe dataset
description, query description, and experimental

settings.
2.1 Dataset description

The dataset was adapted from the Berlin
SPARQL Benchmark (BSBM) [1]. The BSBM consists

of dataset generators and queries mix that can be

KKU ENGINEERING JOURNAL October-December 2014;41(4)

used for comparing the performance of RDF storage
and querying engines. The benchmark was built
around an e-commerce use cases in which a set of
products was offered by different vendors, consumers,
and comments. The benchmark dataset consists of
the following classes: product, product type, product
feature, producer, vendor, review, and person.
The BSBM has been chosen because it can simulate
real-world enterprise application scenarios.
In addition, the BSBM dataset is provided in the RDF
data format, which simulates the Semantic Web data
setting. In our tests, five different sizes of the dataset
were generated and varied by the number of
products: 1360, 2785, and 5544 products.
The numbers of generated triples were 500K, 1M,

and 2M triples respectively.
2.2 Query description

The query was adapted from the BSBM[1].
The query set consists of query for testing join,
regular expression, comparison function, negation,
sort result, skip result, and limit the result.

The description and characteristics of twelve

BSBM queries are described as follows.

Query 1 : Find products for a given set of
generic features (characteristics: simple filters, LIMIT,
ORDER BY, and DISTINCT)

Query 2 : Retrieve basic information about
a specific product for display purposes (characteristics:
more than 9 patterns, and OPTIONAL)

Query 3 : Find products having some
specific features and not having one feature
(characteristics: simple filters, negation, OPTIONAL,
LIMIT, and ORDER BY).

Quer 4
different sets of features (characteristics: simple filters,
more than 9 patterns, LIMIT, ORDER BY, and UNION).

Find products matching two

KKU ENGINEERING JOURNAL October-December 2014;41(4)

Query 5 : Find products that are similar to
a given product (characteristics: complex filters,
LIMIT, ORDER BY, and DISTINCT).

Query 6 : Find products having a label that
contains a specific string (characteristics: complex
filters and REGEX).

Query 7 : Retrieve in-depth information
about a product including offers and reviews
(characteristics: simple fiters, more than 9patterns,
and OPTIONAL).

Query 8 : Give merecent English language
reviews for a specific product (characteristics: simple
filters, more than 9 patterns, OPTIONAL, LIMIT, and
ORDER BY).

Query 9 : Getinformation about a reviewer

(characteristics: simple filters, and DESCRIBE).

Query 10 : Get cheap offers which fulfill the
consumer’s delivery requirements (characteristics:

simple fiters, LIMIT, ORDER BY, and DISTINCT).

Query 11: Getall information about an offer

(characteristics: unbound predicates and UNION).

Query 12 : Export information about an offer
into another schema (characteristis: CONSTRUCT).

We translate the SPARQL query to MongoDB
query by using functions that have the same effect,
such as ORDER BY in SPARQL is translated to $sort
operation in MongoDB to sort the result set. However,
for functions that cannot be translated directly, we will
use the functions that have a similar logic to get the
same result, such as UNION in SPARQL is translated
to $or and DISTINCT translate to $group operation
instead to get the same result.

Table 1 and Table 2 give an overview of the
chracteristics of the MongoDB queries corresponding

to the BSBM benchmark queries.

Table 1 Characteristics of the Mongo DBQ1-Q6

541

Characteristics Q1 Q2 Q3 Q4 Q5 Q6
Result $sort / / / /
manipulation Slimit / / / / /
$skip /
$unwind / /
$group / /o
Comparison Math($gt, / / / /
Condition $lt)
$or /o
$Sregex /
$all / / /
$in /
$ne /
$eq /
use _id / /

Join(DBRef)

Table 2 Characteristics of MongoDBQ7-Q12

Characteristics

Q7 Q@8 Q9 Q10 QM

Q12

Result $sort

manipula- $limit
tion
$skip
Sunwind
$group

Comparison Math($gt,

Condition $lt)
Sor
$regex
$all
$in
$ne
$eq
use _id

Join(DBRef)

/ /

542

2.3 Experimental settings

All tests were performed on a machine with
the following specifications: Intel(R) Xeon(R) CPU
E5-2680 0 @ 2.70GHz, and 4GB main memory size.
The machine was running on Ubuntu 12.04.5 LTS
(GNU/Linux 3.2.0-69-generic x86_64) and Java
Development Kit version 1.7 with maximum heap size
1GB. In each test, we measured the average system
response time. The following provides the version
numbers and configurations of the tested database
system.

1. Apache Jena TDB from Jena framework
version 2.11.0 using RDF datasets in Turtle format,
and SPARQL query language from the Berlin
benchmark.

2. MongoDB version 2.6.4 with RDF
datasets that are converted to json-Id format and
parsed to MongoDB by using MongoDB query API.

3. MySQL version 5.5.38-0ubuntu0.12.04.1,
with SQL datasets and queries of the Berlin
SPARQL benchmark.

The performance metric used in the study is
the number of queries executed per second which is
the number of queries that have been executed

successfully in one second.

3. Research results and discussion

The results of the performance evaluation of
these systems (Jena TDB, MongoDB, and MySQL)

are described in Table 3-5.

KKU ENGINEERING JOURNAL October-December 2014;41(4)

Table 3 The number of queries executed per second
for 500K data set

500K TDB [MongoDB| MySQL
Q1 44.016 | 167.102 | 132.610
Q2 78177 | 71.642 | 266.249
Q3 123.360 | 379.534 | 240.884
Q4 104.439 | 397.888 | 303.361
Q5 84.024 | 229.700 | 314.595
Q6 44.601 | 220.212 | 330.874
Q7 134.284 | 212.973 | 341.772
Q8 163.232 | 456.150 | 320.177
Q9 145.424 | 438.912 | 389.298
Q10 162.509 | 480.830 | 406.432
Q11 176.823 | 700.641 | 395.720
Q12 144.956 | 517.715 | 395.796

In Table 3,MySQL outperforms MongoDB for
queries Q2, and Q5-Q7 because Q2 has many
operations such as join (DBRef), $eq to compare two
values in the same document of MongoDB, and
Sunwind to separate the array object in MongoDB. As
a result, MongoDB has to execute many steps and
finish fewer queries in one second. For Q5 and Q7, in
MongoDB, these queries require many sub-queries;
thus, MongoDB is slower than MySQL. For Q6, MySQL

performs very well since it has a sophisticated

KKU ENGINEERING JOURNAL October-December 2014;41(4)

optimizer for handling a regular expression.
For queries Q2, and Q5-Q7, these queries require
many joins, which a relational database system has
an advantage because of its mature optimization
techniques. MySQL also performs better than other
systems for queries with complex filters and join.

Jena TDB performs poorly for all queries
probably because it has not yet successfully
implemented effective optimization techniques
as relational databases have.

MongoDB performs better than other two
kinds of database systems for most queries,

especially queries with simple operators.

Table 4 The number of queries executed per second
for 1M data set

™ TDB |MongoDB| MySQL
Q1 43.536 | 164.128 | 131.352
Q2 77.010 [68.040 | 260.600
Q3 116.258 | 367.184 | 235.679
Q4 101.687 | 353.265 | 300.617
Q5 52.305 | 168.181 | 314.335
Q6 28.533 | 137.625 | 327.403
Q7 122.143 | 209.694 | 341.415
Q8 152.318 | 434.222 | 314.225
Q9 132.400 | 401.634 | 377.606
Q10 131.775 | 337.155 | 392.301
Q11 173.851 | 673.549 | 392.568
Q12 118.884 | 498.579 | 393.642

In Table 4, The experimental results of all
three database systems when the dataset is 1M are
similar to those when the dataset is 500K except that
for Q10, MySQL has higher throughput than
MongoDB. It is likely that MySQL performs better for
larger data sets due to the efficiency of indexing. On
the other hand, for Q10, MongoDB uses $eq and join
operation which require a larger amount of time for a

larger result set.

543

Table 5 The number of queries executed per second

for 2M data set

2M TDB |MongoDB| MySQL
Q1 40.377 | 158.492 | 129.957
Q2 62.858 67.625 260.721
Q3 94.764 | 290.004 | 235.086
Q4 97.984 | 264.681 | 301.325
Q5 36.108 | 123.581 | 312.722
Q6 12.246 80.014 320.887
Q7 96.904 | 112.829 | 337.532
Q8 106.941 | 423.473 | 310.835
Q9 94.691 | 397.862 | 376.822
Q10 105.837 | 274.942 | 385.128
Q11 121.693 | 633.726 | 387.576
Q12 90.216 | 496.011 | 386.086

In Table 5, The experimental results when
the dataset is 2M are similar to those when the
dataset is 1M. However, for Q4, MySQL has higher
throughput than MongoDB due to more efficient
indexes to handle the queries with the high number
of patterns of a larger volume of data. MySQL can
handle most queries with more than 9 patterns (Q2,
Q4, and Q7). On the other hand, MongoDB is suitable
for queries with negation (Q3), unbound predicates
(Q11), or some operators (Q9 and Q12).

MongoDB scales worst for queries with $eq
operator. For all queries with $eq, which are Q2, Q7,
and Q10, MongoDB does not perform well with a data
size that is at least 1 MB. In addition, MongoDB is not
suitable for queries with other kind of comparisons,
such as Q5 and Q7 which use math($gt, $It) and use
_id. For queries with $regex operator, such as Q6,

MongoDB also performs and scales poorly.

4. Conclusion

In this paper, we design the framework that

uses MongoDB, a document based NoSQL database

544

to store and query RDF data. In addition, we compare
the triple store (Jena TDB), NoSQL (MongoDB), and
the relational database system(MySQL) by using the
Berlin SPARQL Benchmark. Based on the
experimental results, it has been found that Jena TDB
performs poorly on most queries due to the
ongoing optimization techniques. For most queries in
a small data set, MongoDB finishes more number of
queries than other database system. However, for a
larger data set, MongoDB performs well for queries
with negation, unbound predicates, or some simple
operators. On the other hand, MySQL performs well
for queries with many patterns and complex filters.

Future work should consider functions of the
framework to automatically parse and import RDF data
to MongoDB. There is also a need for a systematic
system for the translation from SPARQL query to
MongoDB query.

5. Acknowledgements

The financial support from Young Scientist
and Technologist Programme, NSTDA (YSTP:
SP-56-NT03) is gratefully acknowledged.

6. References

[1] Pokorny J. NoSQL databases: a step to
database scalability in web environment.
International Journal of Web Information
Systems. 2013;9(1):69-82.

[2] Stonebraker M. SQL databases v. NoSQL
databases. Communications of the ACM, 2010;
53(4):10-1.

[3] Bizer C, Schultz A. The berlin spargl
benchmark. International Journal on Semantic
Web and Information Systems (IJSWIS). 2009;
5(2):1-24.

KKU ENGINEERING JOURNAL October-December 2014;41(4)

(4]

(5]

(6]

(7]

(8]

(9]

(101

(111

Cudré-Mauroux P, Enchev |, Fundatureanu S,
Groth P, Haque A, Harth A, Wylot M. Nosgl
databases for rdf: An empirical evaluation. In
:The Semantic Web-ISWC 2013:Springer
Berlin Heidelberg; 2013. p. 310-25.

Angles R, Gutierrez C. Querying RDF data from
a graph database perspective. The Semantic
Web: Research and Applications. Springer
Berlin Heidelberg. 2005;346-60.

Bednar P, Sarnovsky M, Demko V. RDF vs.
NoSQL databases for the semantic web
applications. In: Applied Machine Intelligence
and Informatics (SAMI), IEEE 12th International
Symposium; 2014. p. 361-4.

Sequeda JF, Miranker DP. Ultrawrap: Sparqgl
execution on relational data. Web Semantics:
Science, Services and Agents on the World
Wide Web. 2013;22:19-39.

Alexaki S, Christophides V, Karvounarakis G,
Plexousakis D, Tolle K. The ICS-FORTH RDF Suite:
Managing Voluminous RDF Description Bases.
In SemWeb; 2001. p. 310-25.

Harris S, Gibbins N. 3store: Efficient bulk
RDF storage. In: Proceedings of thelst
InternationalWorkshop on Practical and
Scalable Semantic Systems (PSSS’03); 2003.
p. 1-20.

Harri S, Shadbolt N. SPARQL query processing
with conventional relational database
systems. In: Web Information Systems
Engineering—-WISE 2005 Workshops: Springer
Berlin Heidelberg; 2005. p. 23-44.

McBride B. Jena. IEEE Internet Computing.
July/August, 2002.

KKU ENGINEERING JOURNAL October-December 2014;41(4)

[12] Carroll JJ, Dickinson I, Dollin C, Reynolds D,
Seaborne A, Wilkinson K. Jena: implementing
the semantic web recommendations. In:
Proceedings of the 13th international World
Wide Web conference on Alternate track
papers & posters: ACM; 2004. p. 74-83.

[13] Wilkinson K, Sayers C, Kuno HA, Reynolds D.
Efficient RDF Storage and Retrieval in JenaZ2.
In:SWDB; 2003. p. 131-50.

[14] Broekstra J, Kampman A, Van Harmelen F.
Sesame: A generic architecture for storing and
querying rdf and rdf schema. In:The Semantic
Web—ISWC 2002, Springer Berlin Heidelberg;
2002. p. 54-68.

(18]

[16]

545

Abadi DJ, Marcus A, Madden S, Hollenbach
KJ. Scalablesemantic web data management
using vertical partitioning. In: VLDB; 2007.
p. 411-22.

Neumann T, Weikum G. The RDF-3X engine for
scalable management of RDF data. The VLDB
Journal. 2010;19(1):91-113.

