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Abstract 

 

Quality classification of durian fruits is based on the dry matter (DM) content of the pulp. According to Thai agricultural standards, 

durian fruit (Monthong variety) must contain at least 32% DM. This study aimed to develop a classification model for assessing durian 

quality based on DM content, categorizing fruits as either “rejected” (DM < 32%) or “accepted” (DM ≥ 32%). Near-infrared (NIR) 

spectra were collected as the durian fruits moved along a conveyor belt. The models were developed using two spectral ranges: short-

wavelength near-infrared (SWNIR; 4501000 nm) and long-wavelength near-infrared (LWNIR; 8601750 nm). Owing to the imbalance 

in the dataset between the two classes, the data were adjusted using the synthetic minority oversampling technique to create a balanced 

dataset. Prediction models were built using different spectral preprocessing methods and algorithms. For the LWNIR range, the models 

constructed using LDA, SVM, KNN, and SDA achieved accuracies of 95%, 90%, 93%, and 93%, respectively, for the test set. The 

SWNIR models, developed using the same algorithms, achieved accuracies of 90%, 88%, 90%, and 90%, respectively, for the test set. 

PLS-regression was used to predict the DM content from both LWNIR and SWNIR data. With the 2nd derivative preprocessing method, 

the models achieved R² values of 0.89 and 0.79, SEP values of 5% and 6.89%, and RPD values of 2.29 and 1.66, respectively. The 

wavelength range significantly influenced the model performance, whereas spectral pretreatment had a minor effect on the model's 

predictive ability. Overall, NIR spectroscopy demonstrated the potential for nondestructive quality grading of whole durian fruits. This 

work is the first to establish real-time, in-line models for durian grading based on DM content, advancing beyond the previous 

destructive method. The findings demonstrate the feasibility of automated, nondestructive, and objective quality assessment, supporting 

industrial automation, precision agriculture, and export quality assurance.   
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1. Introduction 

 

Durian (Durio zibethinus), often referred to as the “king of fruits”, is a significant economic fruit in Thailand, enjoying widespread 

popularity and showing continuous growth [1]. According to the Department of Agriculture, Ministry of Agriculture and Cooperatives, 

the eastern region of Thailand was expected to produce no less than 700,000 tons of durians for export in the 2024 fruit season [1]. 

This output was achieved through coordinated efforts between the public and private sectors to control the production process and 

maintain the quality of Thai durians [1]. In 2024, Thailand’s export of fresh durian products was projected to reach 800,000 tons [2]. 

Typically, durians are classified into two stages: mature and ripe. A ripe durian is considered ready to eat. Traditional techniques for 

determining ripeness are based on external appearance, such as the skin becoming darker and transitioning from green to light yellow 

or yellow when fully ripe. Additionally, a fully ripe durian may show cracks on the sides or spaces between the spikes, and the skin 

should feel slightly soft when gently pressed. The smell becomes more intense as the durian nears full ripeness [3]. 

For exports, only fully mature durians are shipped to ensure that they are perfectly ripe when they reach customers. According to 

the Ministry of Agriculture and Cooperatives Standard TAS 3-2013, “Monthong” durians are considered fully mature when their dry 

matter (DM) content is ≥32% [4, 5]. Therefore, the challenge in sorting lies in distinguishing fully mature durians from immature 

durians, which is typically more difficult than sorting ripe durians. Immature durians have a DM < 32%. The ripening period after 

harvest under natural conditions is approximately 6–9 days [5]. Classifying durians as having DM ≥ 32% or DM < 32% remains a 

challenge, and many researchers have explored this issue. The dry oven method has traditionally been used to determine the DM of 

fresh durian. However, this method is time-consuming and requires approximately 48 hours per sample. Durian fruits collected from 
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farmers are randomly inspected, with one to two fruits typically tested to confirm maturity. This method is not only labor-intensive and 

destructive to the samples, but also affects the quality and quantity of the produce, and it cannot guarantee 100% accuracy.  

The implementation of rapid quality screening methods may help maintain the quality of durians, reduce product losses, and 

enhance competitive pricing. Currently, near-infrared (NIR) spectroscopy is utilized for quality assessment of agricultural products [6]. 

Nondestructive NIR methods have been used for predicting the quality of agricultural product such as soluble solid content (SSC) of 

Marian plum fruit [6]; soluble solids content in Nam Dok Mai mangoes [7], starch content, firmness, and acidity of Fuji apples [8],  

SSC of Rocha pears [9], and starch and DM content of fresh cassava tubers [10-13] Previous research confirmed that the assessment 

could be more accurate and reliable if the measurements were conducted using an appropriate methodology and if a suitable prediction 

model is developed. 

Applying benchtop spectrometer NIR to measure the quality of durian pulp, Onsawai et al. [14] evaluated the DM of durian by 

scanning pulp and fruit, providing rough screening ability, with r2 and RMSEP of 0.89 and 3.27%, respectively, using pulp spectra. 

The DM of the pulp could be reasonably predicted by scanning the intact durian fruit at the largest locule, with r2 and RMSEP of 0.79 

and 5.23%, respectively. Sharma et al. [15] applied NIR hyperspectral imaging coupled with various machine learning techniques, 

including partial least squares regression (PLSR), support vector machine (SVM), random forest (RF), and convolutional neural 

network (models: Custom, U-Net, VGG19), and variable selection methods, including genetic algorithm (GA) and successive 

projection algorithm (SPA), to evaluate the quality of durian pulp. GA and SPA achieved good results for DM (r² = 0.97) and FC (r² = 

0.86). The GA-PLSR model was the best for predicting TSS, with an r² equal to 0.90, whereas the SPA-PLSR model provided poor 

performance, with an r² of 0.79. Ali et al. [16] applied a thermal imaging technique combined with multivariate analysis to predict the 

ripeness of durian fruit. PLSR results successfully developed quantitative prediction models with R² values exceeding 0.94. The SVM 

model achieved a classification accuracy of 97%, making it the most effective method for discriminating durian ripeness. This method 

requires temperature control of the sample and the testing room. Saechua et al. [17], studied the application of a Vis-SWNIR 

spectrometer integrated into a conveyor belt system in the production line to measure the DM of durian pulp, and the model was 

developed using PLSR, which was recommended to preprocess the spectra using a standard normal variate (SNV) to achieve R2
P and 

RMSEP of 0.83, and 4.32%, respectively.   

Measuring durian fruit remains challenging, and many researchers continue to investigate this topic. Phuangsombut et al. [18] 

predicted the DM of durian fruit with decreasing influence of spikes. Before scanning, the spikes were removed, and part of the rind 

of the most fertile locule of each fruit (approximately 2–3 mm thick) was sliced off to present a flat area. The prediction accuracy 

provided a coefficient of correlation of calibration (R2
c) = 0.67 and root mean square error of cross-validation (RMSECV) = 2.68% 

[18]. However, this approach is not a completely nondestructive measurement. Ditcharoen et al. [19] developed a nondestructive model 

to classify the maturity stages (day after blooming [DAB]) of durian fruits by using long-wave NIR (LWNIR) and short-wave NIR 

(SWNIR), which was investigated by Ditcharoen et al. [19], and the spectra of durian fruit were collected while the fruit moved along 

a conveyor belt. Three algorithms—LDA, SVM, and KNN—were employed to estimate the three maturity stages. LWNIR achieved 

an accuracy of 83.15% to 88.04%, while SWNIR yielded an accuracy of 64.73% to 93.77%. This method could be used to screen the 

maturity stage of durian fruit using DAB. In the prediction models, the proportion of samples in each class directly influenced the 

classification accuracy. Issues such as class overlap and small sample sizes can hinder classifier learning [20]. Model accuracy was 

improved by generating synthetic samples using the synthetic minority oversampling technique (SMOTE) to balance the sample 

distribution. The SMOTE-based method not only addresses the issue of imbalanced sample distribution but also enhances the 

recognition accuracy of the classification model. Additionally, SMOTE was chosen to increase the sample size as it helps save time 

and reduces costs associated with oversampling [21]. Previous studies on durian DM prediction relied mainly on offline or DAB-based 

approaches, which are unsuitable for industrial use and are not directly linked to the export requirement of DM ≥ 32%. Such methods 

have limited robustness across orchards and seasons, and cannot support real-time quality control. Therefore, this study developed a 

nondestructive, online classification method for intact durians that directly targets the export threshold, providing a practical solution 

for implementation in production lines. 

As noted in previous research, studies have focused on grading durian fruits by grouping them according to the number of DAB. 

However, research on classification based on DM content is limited. A key research gap is that predicting DAB can lead to errors, as 

durians of the same age (in DAB) may have different DM levels, which can result in grouping inaccuracies. Therefore, the objective 

of this study was to develop an NIR model to predict the quality of durian fruit as it moves along a conveyor belt. The sub-objectives 

of this study are twofold. First, it aims to evaluate the potential of online NIR spectroscopy for assessing durian fruit quality based on 

DM content, categorizing the fruit into two groups: rejected (DM < 32%) and accepted (DM ≥ 32%). Additionally, we investigated the 

performance of models developed with both imbalanced and balanced datasets using SMOTE to generate a balanced sample size, thus 

reducing the cost and effort associated with data collection for modeling. Second, it aims to predict the DM content of durian fruit by 

using PLSR. The outcomes of this study will help identify the most effective wavelengths (from both LWNIR and SWNIR), spectral 

preprocessing methods, and algorithms. 

 

2. Materials and methods 

 

2.1 Sample  

 

This study used fresh durian (Monthong variety) samples collected from the Duang Kaen durian orchard in Nam Nao District, 

Phetchabun Province. A total of 130 samples were collected on five different DABs: 80–90 DAB (40 fruits, DM≈5.6–18.0%), 90–100 

DAB (40 fruits, ≈ 18.1–29.6%), 100–110 DAB (20 fruits, ≈ 29.7–33.5%), 110–120 DAB (10 fruits, ≈ 33.6–38.0%), and 120–130 DAB 

(20 fruits, ≈ 38.1–43.5%). Sample collection was conducted by tracking the blooming date of each tree. The fruits were harvested once 

they reached the designated DAB range and were carefully transported to the laboratory. The room temperature was maintained at 25 

°C.  

A portion of the fruits at the premature stage were allowed to ripen at room temperature for 7 days prior to spectral scanning. These 

fruits were assigned to the ripe-stage group. Durian is a climacteric fruit that ripens after harvest and is regulated by ethylene production 

[22]. The imbalance in sample sizes occurred in DAB stages, with more samples collected at 80–100 DAB and fewer at 101–130 DAB 

owing to seasonal variation in flowering and fruit set. This imbalance affects model performance, particularly for DM classification. 
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This issue was addressed by using SMOTE to balance the minority class in the calibration set, whereas the test set remained unaltered 

to avoid overfitting. 

 

2.2 Scanning 

 

The online measurement system is illustrated in Figure 1. It included a conveyor, a measurement chamber, two NIR spectrometers, 

and a computer. Four 50 W halogen lamps were installed in the measurement chamber at each corner at 45° from the plane to serve as 

a light source. The halogen lamps were placed 50 cm from the conveyor belt, and the NIR spectrometers were positioned 15 cm away 

from the durian. The measurement chamber was a black box with dimensions of 60 × 60 × 60 cm. Each durian fruit was scanned on a 

conveyor while moving at a speed of 20 cm/s. An LWNIR spectrometer (AvaSpec-ULS2048-USB2-VA-50, AVANTES, the 

Netherlands) with a wavelength range of 860–1750 nm and an SWNIR spectrometer (AvaSpec-NIR256-1.7-EVO, AVANTES, 

Netherlands) with a wavelength range of 450– 1000 nm were used. The sample holder was fabricated from black material with a matte 

surface and rigid structure, providing stable support for the durian fruit during NIR measurements on the conveyor and minimizing 

light reflection and vibration interference. 

 

 
 

Figure 1  Scanning durian on a conveyor belt: a) durian fruit, b) light source, c) experimental equipment of online scanning (LWNIR 

and SWNIR), d) black box, and e) conveyor belt. (LWNIR: long-wavelengths near infrared; SWNIR: short-wavelengths near infrared)  

 

Spectrum acquisition consisted of 3 steps: 1 ) The light source was switched on and allowed to stabilize for 10 min to ensure 

consistent light intensity. 2) Before the sample was scanned, a dark reference—an opaque black object—was used as a reference for 

background light reflection. We then set up a white reference, which serves as a reference for light reflection from a white opaque 

object. A material called spectralon reference was used, and the values were scanned to reduce other interfering factors, such as light 

or the use of a new machine. Scanning of the sample will yield a reflectance value between the dark (black) and white reference spectra. 

3) The samples were scanned using two spectrometers with an integration time of 200 ms. Each fruit was scanned on the side 

corresponding to the main pulp (fertile lobe) as it passed beneath the light window, and the results were averaged [23]. The absolute 

reflection value was then obtained, and the relative reflectance was calculated as  R =
Rs−Rd

Rw−Rd
 , where Rs is the intensity of the reflected 

light of the sample (absolute reflectance), Rd is the dark reference, and Rw is the white reference. The spectral data were recorded as 

absorbance (A) = log(1/R), where R is the relative reflectance [24]. 

 

2.3 Uncertainty test of NIR spectra 

 

This study investigated the accuracy and consistency of scanning durian pulp, focusing on factors such as measurement reliability, 

potential errors, and the effectiveness of the scanning method in capturing the physical and compositional characteristics of the pulp. 

The NIR spectra data of three durian fruits (sample nos. 5, 80, and 120) were used to calculate the uncertainty test of the NIR spectra. 

Three spectra were collected, as shown in Figure 2. Calculations were performed to verify the extent to which the spectrum values 

would differ if the same sample was scanned at three different positions, which served as a test for the uncertainty of future predictions. 

The root mean square (RMS) was reported as an indicator of the sample scanning precision and was calculated using the following 

formula: 

 

𝑅𝑀𝑆𝑗 = √
∑ (𝑋𝑎𝑏−𝑋̅𝑎)2𝑛

𝑎=1

𝑛
                                                                                       (1) 

 

where Xab represents the absorption value of sample “a” at wavelength “b,” 𝑋̅  is the mean absorption value at wavelength “a” across 

all samples, and n is the total number of data points corresponding to the number of wavelengths. RMSj denotes the RMS value for 

spectrum j. The RMS values were determined for the raw spectra, SNV, 1st derivative spectra, and 2nd derivative spectra. A low mean 

RMS value signifies high precision in the NIR data, indicating that the spectral measurements were highly consistent and exhibited 

minimal variation across repeated scans. This finding suggests that the NIR system is reliable for capturing the characteristics of durian 

pulp with little deviation. Conversely, a high mean RMS value suggests substantial differences between the individual spectra, even 

when scanning the same durian fruit. This implies low precision, as the variability in the spectral data may stem from inconsistencies 

in the scanning process, instrument sensitivity, or external factors that affect measurement stability. 
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Figure 2 Flow diagrams for prediction model development of durian DM content for classifying quality (DAB: the durian at 5 different 

age stages after the flowers bloom)  

 

2.4 Dry matter 

 

After scanning, the fruit samples were peeled off. The durian pulp was used to determine the DM content. The pulp sample was 

divided into three parts: the head, middle, and tail. Each part was cut, weighed to 10 g, and placed in a hot-air oven at 60 °C for 48 h 

until a constant weight was achieved. DM was calculated using the following formula:  

 

Dry matter (%) =   
𝑊2

𝑊1
× 100                                                                                                       (2) 

 

where W2 represents the final weight of the dried sample (g), and W1 denotes the initial weight (g). Three replicates were averaged to 

obtain one, which was assigned as a representative DM [17, 19, 25]. Outliers in the measured DM were determined using the criterion 

(𝑦𝑖 − 𝑦̅)/𝑆𝐷 ≥ ±3, where yi represents the DM value obtained from the reference method, 𝑦̅ is the mean of the reference values, and 

SD is the standard deviation of the reference values. Any sample with a reference value that met this condition was excluded from the 

dataset. 

 

2.5 Classification model 

 

Durian fruit quality was categorized into two groups based on DM: accepted (DM ≥ 32%) and rejected (DM < 32%). Principal 

component analysis was performed on the raw spectral data to detect outliers. The process of developing the classification model is 

illustrated in Figure 2. 

The classification model was developed based on three factors: 1) factors of different wavelength ranges: LWNIR and SWNIR; 2) 

factors of different algorithms: LDA, SVM, KNN, and ensemble SDA; and 3) factors of different spectral preprocessing: raw spectra, 

1st derivative (segments = 5, gaps = 5), 2nd derivative (segments = 5, gaps = 5), and SNV. Therefore, 32 models or 32 treatments (2 

wavelength ranges × 4 supervised algorithms × 4 spectral preprocessing) were derived. The dataset was split into 70% calibration set 

and 30% test set. SMOTE was applied only to the calibration set to avoid data leakage, while the model training used leave-one-out 

cross-validation (LOOCV). An independent test set containing only real samples was reserved for the final performance evaluation. 

The models were developed and evaluated using the test set method, maintaining a 3:1 ratio between calibration and validation sets. 

The robustness of the model was improved by using the SMOTE algorithm to increase the number of samples in the underrepresented 

group, making the sample size equal to that of the other group or ensuring that the sample groups were balanced. Subsequently, the 

model was constructed using the method described above. SMOTE is used to address class imbalance in datasets, particularly in 

machine learning. It generates synthetic samples for the minority class to balance the number of samples between the minority and 

majority classes [26]. 

The 1st derivative method helped alleviate the problem of increasing the spectral values across the wavelength (Y-axis), which 

caused the spectra to shift closer together. This adjustment ensured that the data were more accurate. The 2nd derivative separates the 

overlapping peak points in the spectrum and reduces the impact that causes the spectrum to increase in size throughout the range. The 

second derivative aligns the peak points with the original spectrum peaks even if they are inverted. SNV adjusts for the effects caused 

by light scattering, which often results in a multiplicative effect on absorbance values. Reducing the variability that leads to movement 

along the vertical axis of the spectrum helps correct for these effects [27].  

LDA is a widely used technique for dimensionality reduction and classification. In this study, LDA is utilized to transform high-

dimensional data into (n-1) components, where n is the total number of classes, by utilizing eigenvector decomposition. Additionally, 

LDA components are employed in conjunction with SVM, an algorithm that constructs hyperplanes or a set of hyperplanes in high-
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dimensional or infinite-dimensional space. All points belonging to class A are designated as +1, whereas all points in class B are 

designated as -1 [28]. KNN utilizes a database in which data points are divided into several distinct classes to predict the classification 

of new sample points. This is considered one of the best-case scenarios demonstrated by the example [29]. This method utilizes an 

analysis technique from the k-nearest data points to the data that need to be classified by categorizing according to the majority class 

of the k-nearest training data points [16]. Ensembles are used to improve the predictive performance of modeling problems by 

combining multiple models instead of relying on a single model. This enhancement occurs because the ensemble approach reduces the 

variance component of the prediction error, albeit by introducing some bias [30]. The selection of SVM and RF as classification 

algorithms was supported by Wu et al. [31], who demonstrated that SVM achieved the highest accuracy and stability in spectral 

classification, whereas RF effectively reduced overfitting and provided insights into feature importance.  

The performance of the model was evaluated using several metrics, including accuracy (Eq. 3), precision (Eq. 4), recall (Eq. 5), 

specificity (Eq. 6), and F1-score (Eq. 7). These equations are based on four key variables: true positives (TP), true negatives (TN), 

false positives (FP), and false negatives (FN). It is calculated using the following formula: 

 

Overall accuracy = 
TP+TN

TP+TN+FP+FN
 × 100                                                                                                                    (3) 

 

Precision = 
TP

TP+FP
× 100                                                                                                       (4) 

 

Recall = 
TP

TP + FN
×  100                                                                                                       (5) 

 

Specificity =  
TN

TN+FP
× 100                                                                                                       (6) 

 

F1-Score= 2×
Precision×Recall

Precision+Recall
                                                                                                      (7) 

 

The overall accuracy indicates the model’s performance when immature durians are predicted to be mature and mature durians are 

predicted as another group. Precision indicates the performance of the model when the prediction result is FP, where immature durians 

are predicted to be mature. Recall indicates the performance of the model when the prediction result is FN, where mature durians are 

predicted as another group. Specificity indicates the model’s performance when the prediction result is TP, where mature durians are 

predicted as another group [32]. 

 

2.6 Predictive regression model 

 

A flowchart illustrating the model development for durian fruit at various stages of maturity using an online NIR spectroscopy 

system is shown in Figure 2. The DM model was developed through PLSR considering different factors, such as the use of various 

spectral pretreatment methods (four treatments: raw, first derivative, second derivative, and SNV), and factors of different wavelength 

ranges (two treatments: LWNIR and SWNIR). A total of 12 treatments (2 × 8 = 12) were analyzed. Each treatment was applied to the 

calibration and validation sets with a separation ratio of 3:1 between the two sets. For regression models, SMOTE was not applied 

because regression requires continuous target values, and no class imbalance adjustment is necessary. In both cases, the calibration and 

test sets were independent, non-overlapping, and randomly selected to avoid bias and ensure a fair model evaluation. Model evaluation 

was performed using LOOCV. In this approach, a single sample is set aside as the test set in each iteration, whereas all the remaining 

samples are used to train the model. This process was repeated until every sample was used exactly once for validation. This method 

is particularly suitable for datasets with limited sample sizes because it maximizes data utilization and provides a reliable estimate of 

model performance. 

Once the models were created, they were validated using a prediction set. Model performance was evaluated based on several 

statistical parameters, including the coefficient of determination (R²), standard error of calibration (SEC), standard error of prediction 

(SEP), ratio of prediction to standard deviation (RPD), and bias. According to commonly accepted criteria, good model performance 

was indicated by R² > 0.90 and RPD > 3 [33]. 

 

3. Results and discussion 

 

3.1 NIR spectra 

 

The durian spectra collected by scanning on conveyor belts at different wavelength ranges, namely, LWNIR (860–1750 nm) and 

SWNIR (450–1000 nm), are illustrated in Figures 3 and 4. Figure 3 illustrates the spectra of whole durian fruit versus the black conveyor 

belt for LWNIR and SWNIR, where the absorption of the conveyor is higher than that of durian fruit. The advantage is that it makes it 

easier to distinguish between the spectra of durian and non-durian objects, which helps the online measurement system easily identify 

durian fruit. Figure 4 shows the NIR spectra collected from the LWNIR and SWNIR spectrometers, which were either raw spectra or 

preprocessed by SNV, 1st derivative and 2nd derivative, respectively. Figure 4 also shows the spectra based on two groups: rejected 

group (DM < 32%: red line) and accepted group (DM ≥ 32%: blue line). In the raw spectra, the distinction between the two sample 

groups was not very clear compared with the spectra that were processed. An obvious absorption peak was found at wavelengths of 

681 and 1450, corresponding to the absorption bands of anthocyanins and chlorophylls [34], vibration of the third overtone of O-H 

stretches [35], and water content, which is the vibrational band of H2O [35]. The spectral variation observed in the peel reflects 

compositional changes associated with fruit maturation, particularly an increase in pulp DM and a corresponding decrease in peel 

moisture. This chemical relationship between the peel and pulp enables the use of peel spectra as an indirect indicator for predicting 

internal pulp quality [36, 37]. Distinct differences in the absorbance values at each maturity stage were observed. The absorbance 

values varied across different DM. As mentioned earlier, these distinct differences in absorbance values across different maturity stages 

make the model efficient for accurately classifying groups [38].  



66                                                                                                                                                    Engineering and Applied Science Research 2026;53(1) 

  
 

Figure 3 Spectra of durian fruit vs. conveyor belt, a) LWNIR and b) SWNIR 

 

 
                                                          a)                                         b) 

 
                                                          c)                                                         d) 

 
                                                         e)                                                           f) 

 

Figure 4 Spectra of durian fruit, a) LWNIR as raw spectra, b) LWNIR as SNV spectra, c) LWNIR as 1st derivative spectra, d) 

LWNIR as 2nd derivative spectra, e) SWNIR as raw spectra, f) SWNIR as SNV spectra, h) SWNIR as 1st derivative spectra, and i) 

SWNIR as 2nd derivative spectra. 
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                                                         h)                                       i) 

 

Figure 4 (continued) Spectra of durian fruit, a) LWNIR as raw spectra, b) LWNIR as SNV spectra, c) LWNIR as 1st derivative spectra, 

d) LWNIR as 2nd derivative spectra, e) SWNIR as raw spectra, f) SWNIR as SNV spectra, h) SWNIR as 1st derivative spectra, and i) 

SWNIR as 2nd derivative spectra.  

 

Table 1 RMS value of sample nos. 5, 80, and 120 calculated from raw spectra.   

 

    LWNIR SWNIR 

Sample 

no. 

  RMS1 RMS2 RMS3  𝑹𝑴𝑺̅̅ ̅̅ ̅̅ ̅ RMS1 RMS2 RMS3  𝑹𝑴𝑺̅̅ ̅̅ ̅̅ ̅ 

5 Raw 0.007538 0.010675 0.017617 0.01194 0.128222 0.115193 0.24307 0.16216 

1st derivative 0.002295 0.002086 0.004004 0.00280 0.008897 0.005359 0.013204 0.00915 

2nd derivative 0.002221 0.001968 0.003683 0.00262 0.007467 0.005238 0.010366 0.00769 

SNV 0.009382 0.012336 0.017814 0.01318 0.165556 0.130693 0.28743 0.19456 

80 Raw 0.095774 0.051651 0.044186 0.06387 0.024203 0.00578 0.025647 0.01854 

1st derivative 0.006056 0.002695 0.003821 0.00419 0.004846 0.002335 0.004695 0.00396 

2nd derivative 0.005855 0.002126 0.004059 0.00401 0.004546 0.003268 0.004522 0.00411 

SNV 0.048778 0.023742 0.026362 0.03296 0.066832 0.027757 0.069259 0.05462 

120 Raw 0.014819 0.01700 0.029648 0.02049 0.077863 0.018479 0.070431 0.05559 

1st derivative 0.005446 0.002372 0.007742 0.00519 0.010688 0.008712 0.009326 0.00958 

2nd derivative 0.003929 0.001828 0.00561 0.00379 0.016238 0.013914 0.01359 0.01458 

SNV 0.035926 0.011984 0.046738 0.03155 0.129225 0.086665 0.13023 0.11537 

 

Table 1 reports the RMS value of durian fruit (samples no. 5, 80, and 120) calculated from the raw spectra. RMS value is a measure 

of the precision of the NIR spectrometer to produce consistent absorption values when measuring the same durian sample multiple 

times. Therefore, if the RMS value is low, then the absorption values for the same durian sample are close to each other when measured 

repeatedly [39]. However, if the RMS value is high, then the absorption values for the same sample vary significantly across repeated 

measurements.  

The experimental results show that LWNIR provides a lower RMS value than SWNIR, which could be because the LWNIR range 

allows the detector to be less affected by external light interference. However, both wavelength ranges had RMS values of no more 

than approximately 0.1. When comparing these RMS with the relative absorption values, which range from 0 to 1, the obtained RMS 

values are relatively low and acceptable for model development. 

 

3.2 Dry matter 

 

Table 2 shows the average DM values of durian flesh, categorized based on DM weight into two groups: those with DM < 32% 

and those with DM ≥ 32%. This categorization was based on the standard set by the Department of Agriculture and Food Product 

Standards [4], which defines durians with a DM ≥ 32% as suitable for harvesting, indicating good maturity. This finding shows that 

the DM value correlates with durian maturity. After outlier detection, the outliers of 18 samples were met and removed from the dataset. 

In the model experiment, the data were divided into calibration and validation sets. The division ratio was 3:1, with 87 samples in the 

calibration set and 25 samples in the validation set, which were randomly selected. Arranged from highest to lowest, the samples with 

the highest and lowest values were placed in the calibration set, which includes maximum, minimum, average, and SD.  

 

Table 2 Statistical value of the DM content of durian fruit sample. 

 

Data set N Max Min Mean SD 

Calibration set 87 43.52 5.61 20.80 11.85 

Validation set 25 41.87 6.59 20.64 11.46 

DM < 32% group 25 29.60 5.61 15.44 6.74 

DM ≥ 32% group 87 43.52 33.57 39.91 2.41 
Notes: N Number of samples; Max Maximum; Min Minimum; SD Standard deviation 
 

       DM<32% 

        DM≥32% 

       DM<32% 

        DM≥32% 
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Figure 5 Box plot of DM distribution in durian between the rejected group (DM < 32%) and the accepted group (DM ≥ 32%). 

 

The box plot demonstrated that the rejected group (DM < 32%) exhibited a lower mean DM content (15.44%) with high variability 

(SD = 6.74), indicating inconsistent fruit quality. By contrast, the accepted group (DM ≥32%) showed a higher mean DM (39.91%) 

with lower variability (SD = 2.41), reflecting a more uniform quality that met export standards. The clear separation between these 

groups supports the use of the DM ≥ 32% threshold as a reliable criterion for durian quality classification (see Figure 5). 

 

3.3 Classification model 

 

3.3.1 Model evaluation on imbalanced data 

 

The models were built to classify durian maturity using LWNIR spectra with wavelengths ranging from 860 to 1750 nm (LWNIR) 

and 450 to 1000 nm (SWNIR spectra). The modeling process involved different factors, namely, different algorithms (LDA, SVM, 

KNN, and SDA), and different spectral preprocessing methods (raw, SNV, 1st derivative, and 2nd derivative). The models were 

developed from an imbalanced sample and improved using a balanced dataset created using the SMOTE method. Then, the performance 

of the models was calculated based on confusion metrics such as overall accuracy, recall, precision, F1-score, specificity, and negative 

predictive value, which were calculated based on the frequency from the confusion matrix of the classification model (see Figure 6). 

 

 Actually Positive (1) Actually Negative (2)  

Predicted Positive (1) True Positive (TP) False Positive (FP) 
Positive Predictive 

=  
TP 

TP + FP 
×  100  

Predicted Negative (2) False Negative (FN) True Negative (TN) 
Negative Predictive 

=  
TN 

TN + FN 
×  100  

 
Recall  =  

TP 

TP +  FN
 ×  100 

Specificity 

=  
TN 

TN +  FP
 ×  100 

Accuracy 

=  
TP+TN

TP+TN+ FP+FN 
×  100 

 

Figure 6 Confusion matrix of model frequency for conveyor scanning of calibration set and validation set.  

 

Table 3 presents the performance of the classification model developed using LWNIR coupled with different methods.  This 

consisted of the results of the calibration and test sets. For the imbalanced dataset, the model developed from the raw spectra showed 

low ability. Meanwhile, the SNV-KNN, 1st derivative-LDA, 1st derivative-KNN, and 2nd derivative-KNN models provided highly 

effective prediction results. Although the number of samples between the two groups was imbalanced, the prediction outcomes helped 

minimize the impact on recall, precision, and F1-score values. The 1st derivative-LDA model provides the best performance both in 

the calibration set and test sets.  

 

3.3.2 Performance improvement after SMOTE balancing 

 

The results of improving the model by creating a balanced dataset clearly showed that the model’s performance in both the 

calibration and test sets significantly increased the recall, precision, and F1 - score, leading to a noticeable improvement in the overall 

performance of the model. For our results, the model developed using the 1st derivative-LDA still provided effective performance, 

accuracy, recall, precision, F1-score, specificity, and negative predictive values of 0.95, 1.00, 0.90, 0.95, 0.91, and 1.00, respectively. 

The overall results for the test set are shown in Figures 7a and 7b.  

Table 4 shows the performance of the classification model developed using SWNIR in combination with various methods. It 

includes results from both the calibration set and the test set. For the model developed from the imbalanced samples, a significant issue 

with low recall, precision, and F1-score was observed as a result of the imbalance in the number of samples between the groups. After 

the model was improved by creating new data to balance the two datasets, its performance improved significantly (Figures 7c and 7d). 

Evidently, the recall, precision, and F1-score values increased substantially. The results show that the performance of all models 

improved. The model is highly efficient, and there is not much noticeable difference.  In the researcher’s opinion, the 2nd derivative-

SVM model provides effective performance, with accuracy, recall, precision, F1-score, specificity, and negative predictive values of 

0.88, 0.84, 0.89, 0.86, 0.91 and 0.87, respectively.
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Table 3 Classification result of the validation set of durians at two different grade levels using various multivariate algorithms and 

spectra data obtained from LWNIR 

   
Calibration set Test set 

Imbalanced 

samples 

TP FN TN FP Accuracy Recall Precision F1-score Specificity Negative 

predictive 

Accuracy Recall Precision F1-score Specificity Negative 

predictive 

Raw LDA 15 4 64 3 0.92 0.79 0.83 0.81 0.96 0.94 0.83 0.67 0.57 0.62 0.87 0.91 

SVM 0 19 67 0 0.78 0.00 0.00 0.00 1.00 0.78 0.79 0.00 0.00 0.00 1.00 0.79 

KNN 16 3 55 12 0.83 0.84 0.57 0.68 0.82 0.95 0.79 0.33 0.50 0.40 0.91 0.84 

SDA 16 3 64 3 0.93 0.84 0.84 0.84 0.96 0.96 0.83 0.67 0.57 0.62 0.87 0.91 

SNV LDA 17 2 60 7 0.90 0.89 0.71 0.79 0.90 0.97 0.83 0.67 0.57 0.62 0.87 0.91 

SVM 8 11 65 2 0.85 0.42 0.80 0.55 0.97 0.86 0.83 0.50 0.60 0.55 0.91 0.88 

KNN 16 2 63 4 0.93 0.89 0.80 0.84 0.94 0.97 0.90 0.83 0.71 0.77 0.91 0.95 

SDA 16 3 60 7 0.88 0.84 0.70 0.76 0.90 0.95 0.83 0.67 0.57 0.62 0.87 0.91 

1st_dev LDA 14 5 62 5 0.88 0.74 0.74 0.74 0.93 0.93 0.95 1.00 0.90 0.95 0.91 1.00 

SVM 12 7 65 2 0.90 0.63 0.86 0.73 0.97 0.90 0.86 0.67 0.67 0.67 0.91 0.91 

KNN 17 2 63 4 0.93 0.89 0.81 0.85 0.94 0.97 0.93 0.83 0.83 0.83 0.96 0.96 

SDA 14 5 63 4 0.90 0.74 0.78 0.76 0.94 0.93 0.83 0.67 0.57 0.62 0.87 0.91 

2nd_dev LDA 16 3 61 6 0.90 0.84 0.73 0.78 0.91 0.95 0.79 0.67 0.50 0.57 0.83 0.90 

SVM 13 6 66 1 0.92 0.68 0.93 0.79 0.99 0.92 0.83 0.50 0.60 0.55 0.91 0.88 

KNN 17 2 63 4 0.93 0.89 0.81 0.85 0.94 0.97 0.93 0.83 0.83 0.83 0.96 0.96 

SDA 15 4 64 3 0.92 0.79 0.83 0.81 0.96 0.94 0.83 0.67 0.57 0.62 0.87 0.91 

Balanced 

samples 

TP FN TN FP Accuracy Recall Precision F1-score Specificity Negative 

predictive 

Accuracy Recall Precision F1-score Specificity Negative 

predictive 

Raw LDA 56 0 59 8 0.93 1.00 0.88 0.93 0.88 1.00 0.93 1.00 0.86 0.93 0.87 1.00 

SVM 50 6 45 22 0.77 0.89 0.69 0.78 0.67 0.88 0.74 0.84 0.67 0.74 0.65 0.83 

KNN 51 5 63 4 0.93 0.91 0.93 0.92 0.94 0.93 0.88 0.89 0.85 0.87 0.87 0.91 

SDA 52 2 60 7 0.93 0.96 0.88 0.92 0.90 0.97 0.90 1.00 0.83 0.90 0.83 1.00 

SNV LDA 56 0 62 5 0.96 1.00 0.92 0.96 0.93 1.00 0.93 1.00 0.86 0.93 0.87 1.00 

SVM 47 9 59 8 0.86 0.84 0.85 0.85 0.88 0.87 0.81 0.74 0.82 0.78 0.87 0.80 

KNN 55 1 59 8 0.93 0.98 0.87 0.92 0.88 0.98 0.88 0.95 0.82 0.88 0.83 0.95 

SDA 56 0 64 3 0.98 1.00 0.95 0.97 0.96 1.00 0.90 1.00 0.83 0.90 0.83 1.00 

1st_dev LDA 56 0 55 12 0.90 1.00 0.82 0.90 0.82 1.00 0.95 1.00 0.90 0.95 0.91 1.00 

SVM 45 11 61 6 0.86 0.80 0.88 0.84 0.91 0.85 0.83 0.74 0.88 0.80 0.91 0.81 

KNN 50 5 63 4 0.93 0.91 0.93 0.92 0.94 0.93 0.93 0.95 0.90 0.92 0.91 0.95 

SDA 54 2 58 9 0.91 0.96 0.86 0.91 0.87 0.97 0.93 1.00 0.86 0.93 0.87 1.00 

2nd_dev LDA 56 0 54 13 0.89 1.00 0.81 0.90 0.81 1.00 0.93 1.00 0.86 0.93 0.87 1.00 

SVM 49 7 63 4 0.91 0.88 0.92 0.90 0.94 0.90 0.90 0.89 0.89 0.89 0.91 0.91 

KNN 54 2 62 5 0.94 0.96 0.92 0.94 0.93 0.97 0.90 0.95 0.86 0.90 0.87 0.95 

SDA 56 0 54 13 0.89 1.00 0.81 0.90 0.81 1.00 0.90 1.00 0.83 0.90 0.83 1.00 

 

 

 
 

Figure 7 Performance of classification model as test set developed using a) LWNIR developed by imbalanced samples b) LWNIR 

developed by balanced samples c) SWNIR developed by imbalance samples and d) SWNIR developed by balanced samples 
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Table 4 Classification result of the validation set of durians at two different grade levels using various multivariate algorithms and 

spectra data obtained from SWNIR 

   
Calibration set Test set 

Imbalanced 

sample 

TP FN TN FP Accuracy Recall Precision F1-score Specificity Negative 

predictive 

Accuracy Recall Precision F1-score Specificity Negative 

predictive 

Raw LDA 17 2 65 3 0.94 0.89 0.85 0.87 0.96 0.97 0.82 0.67 0.57 0.62 0.86 0.90 

SVM 17 2 64 4 0.93 0.89 0.81 0.85 0.94 0.97 0.86 0.67 0.67 0.67 0.91 0.91 

KNN 14 5 63 5 0.89 0.74 0.74 0.74 0.93 0.93 0.82 0.50 0.60 0.55 0.91 0.87 

SDA 17 2 64 4 0.93 0.89 0.81 0.85 0.94 0.97 0.86 0.67 0.67 0.67 0.91 0.91 

SNV LDA 17 2 66 2 0.95 0.89 0.89 0.89 0.97 0.97 0.82 0.67 0.57 0.62 0.86 0.90 

SVM 5 14 67 1 0.83 0.26 0.83 0.40 0.99 0.83 0.86 0.67 0.67 0.67 0.91 0.91 

KNN 16 3 60 8 0.87 0.84 0.67 0.74 0.88 0.95 0.82 0.50 0.60 0.55 0.91 0.87 

SDA 17 2 63 5 0.92 0.89 0.77 0.83 0.93 0.97 0.82 0.67 0.57 0.62 0.86 0.90 

1st_dev LDA 15 4 63 5 0.90 0.79 0.75 0.77 0.93 0.94 0.75 0.50 0.43 0.46 0.82 0.86 

SVM 15 4 66 2 0.93 0.79 0.88 0.83 0.97 0.94 0.86 0.67 0.67 0.67 0.91 0.91 

KNN 15 4 64 4 0.91 0.79 0.79 0.79 0.94 0.94 0.82 0.50 0.60 0.55 0.91 0.87 

SDA 11 8 61 7 0.83 0.58 0.61 0.59 0.90 0.88 0.79 0.67 0.50 0.57 0.82 0.90 

2nd_dev LDA 12 7 62 6 0.85 0.63 0.67 0.65 0.91 0.90 0.79 0.67 0.50 0.57 0.82 0.90 

SVM 16 3 66 2 0.94 0.84 0.89 0.86 0.97 0.96 0.86 0.67 0.67 0.67 0.91 0.91 

KNN 12 7 63 5 0.86 0.63 0.71 0.67 0.93 0.90 0.82 0.50 0.60 0.55 0.91 0.87 

SDA 16 3 63 5 0.91 0.84 0.76 0.80 0.93 0.95 0.75 0.50 0.43 0.46 0.82 0.86 

Balance  

sample 

TP FN TN FP Accuracy recall precision F1-score Specificity Negative 

predictive 

Accuracy Recall Precision F1-score Specificity Negative 

predictive 

Raw LDA 54 2 64 4 0.95 0.96 0.93 0.95 0.94 0.97 0.90 1.00 0.83 0.90 0.82 1.00 

SVM 47 9 63 5 0.89 0.84 0.90 0.87 0.93 0.88 0.88 0.84 0.89 0.86 0.91 0.87 

KNN 52 4 58 10 0.89 0.93 0.84 0.88 0.85 0.94 0.88 0.89 0.85 0.87 0.86 0.90 

SDA 54 2 56 12 0.89 0.96 0.82 0.89 0.82 0.97 0.85 1.00 0.76 0.86 0.73 1.00 

SNV LDA 56 0 61 17 0.87 1.00 0.77 0.87 0.78 1.00 0.88 1.00 0.79 0.88 0.78 1.00 

SVM 47 9 51 17 0.79 0.84 0.73 0.78 0.75 0.85 0.76 0.84 0.70 0.76 0.68 0.83 

KNN 53 3 61 7 0.92 0.95 0.88 0.91 0.90 0.95 0.83 0.84 0.80 0.82 0.82 0.86 

SDA 56 0 57 11 0.91 1.00 0.84 0.91 0.84 1.00 0.93 1.00 0.86 0.93 0.86 1.00 

1st_dev LDA 54 2 60 8 0.92 0.96 0.87 0.92 0.88 0.97 0.88 1.00 0.79 0.88 0.77 1.00 

SVM 47 9 59 9 0.85 0.84 0.84 0.84 0.87 0.87 0.85 0.84 0.84 0.84 0.86 0.86 

KNN 54 2 55 13 0.88 0.96 0.81 0.88 0.81 0.96 0.90 0.95 0.86 0.90 0.86 0.95 

SDA 54 2 50 18 0.84 0.96 0.75 0.84 0.74 0.96 0.85 1.00 0.76 0.86 0.73 1.00 

2nd_dev LDA 56 0 57 11 0.91 1.00 0.84 0.91 0.84 1.00 0.88 1.00 0.79 0.88 0.77 1.00 

SVM 48 8 62 6 0.89 0.86 0.89 0.87 0.91 0.89 0.88 0.84 0.89 0.86 0.91 0.87 

KNN 56 0 58 10 0.92 1.00 0.85 0.92 0.85 1.00 0.88 0.95 0.82 0.88 0.82 0.95 

SDA 56 0 46 22 0.82 1.00 0.72 0.84 0.68 1.00 0.90 1.00 0.83 0.90 0.82 1.00 

 

3.3.3 Comparison between LWNIR and SWNIR 

 
A comparison of the model performance between LWNIR and SWNIR shows that the classification model built using the LWNIR 

wavelength range performed significantly better than that built using SWNIR, particularly when the samples between the two groups 

were imbalanced. However, when the two groups were balanced, the performance of both LWNIR and SWNIR was similar. Thus, 

both wavelengths could be used for online measurement. In addition, the LDA and KNN algorithms, when combined with derivative-

based spectral preprocessing, performed well for both LWNIR and SWNIR. This result could be attributed to the fact that the LWNIR 

range has a higher absorbance and is less susceptible to external light interference compared with the SWNIR range. Additionally, the 

experimental results from both wavelength ranges indicated that scanning along the entire length of the durian fruit to obtain a spectrum 

representative of the whole fruit helped reduce the impact of spikes more effectively than scanning individual points, as reported in 

previous studies. This approach resulted in a more efficient model. However, some areas still require further investigation. For instance, 

increasing the intensity of the light source may improve the prediction accuracy because it can help reduce the scanning noise and 

enhance the overall performance. The performance of the 1st derivative and LDA models can be attributed to the reduced baseline drift 

and improved class separation, enhancing the classification accuracy. While we acknowledge trade-offs between accuracy and 

precision across models, simpler approaches, such as LDA, with fewer latent variables, offer practical advantages for real-time 

application. This finding is consistent with Cen and He [40], who showed that derivative preprocessing combined with linear classifiers 

improves online interpretability and efficiency [40]. LWNIR (860–1750 nm) has a wavelength range that covers more than that of 

SWNIR (450–1000 nm). The absorption bands are related to the water and starch components (e.g., the region around 1450 nm, which 

corresponds to the DM value), which play a crucial role in determining the ripeness levels of durian. As a result, the LWNIR model 

has significantly higher accuracy in cases of imbalanced data. After the application of SMOTE, the performance gap between LWNIR 

and SWNIR diminished, indicating that the initial superiority of LWNIR was mainly due to class imbalance rather than inherent spectral 

advantages. 

The use of SMOTE effectively addresses the problem of class imbalance by generating additional samples for minority classes, 

enabling the model to learn more comprehensively and improving performance metrics, such as F1-score and balanced accuracy. 

However, synthetic data generation may introduce noise or lead to overfitting if applied inappropriately, and the outcomes largely 

depend on dataset characteristics and classifier sensitivity. Therefore, selecting the appropriate SMOTE variant is crucial to ensure 

optimal results for a given dataset and model. [26, 41]. 

Our results showed similar accuracy to the experiment by Talabnark and Terdwongworakul [42], in which durian fruits were 

scanned while stationary. They found that FT-NIR across the full wavelength range (800–2500 nm) could classify the maturity levels 

of durian fruit at different ages (101, 108, 115, and 122 DAB), using smoothed peel spectra with a reasonably high accuracy of 87.48%. 

Somton et al. [37] also reported a classification model developed using NIR (1000–2500 nm) [37]. Their model, which combined peel 

and stem spectra from stationary scans, achieved a higher accuracy than that based solely on peel spectra, reaching 94.4% compared 

with 87.5%. This result demonstrated that incorporating spectra from durian stems along with peel spectra improved classification 

accuracy. By contrast, Timkhum and Terdwongworakul [43] used SWNIR (350–750 nm) to distinguish between five ripening stages 

(106–134 DAB) of durian fruits, with a classification accuracy of 83.30%. These findings are consistent with previous analyses that 

compared short- and long-wave spectra, suggesting that models that use different wavelength ranges perform similarly in classification 

tasks.  
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3.4 Regression model 

 

The results of the regression models are shown in Table 5, which presents the prediction results for DM developed using LWNIR 

and SWNIR spectra with R², SEP, RPD, and bias values. The analysis showed that for LWNIR spectral analysis, the second derivative 

method performed the best, with calibration (R²c) values of 0.85 and validation (R²v) values of 0.89. The standard errors of calibration 

(SEC), cross-validation (SECV), and prediction (SEP) were 4.75%, 6.23%, and 5.00%, respectively, and the RPD was 2.29. For 

SWNIR spectral analysis, the raw spectra provided the highest accuracy, with R²c for the calibration set being 0.83 and R²v for the 

validation set being 0.80. SEC, SECV, and SEP were 11%, 4.37%, and 6.69%, respectively, with an RPD of 1.71. The scatter plot 

compares the measured and predicted values from PLSR, as shown in Figure 8. Although the SW-raw model achieved high accuracy, 

the SW-2nd derivative model was considered more practical for real-time applications. This is because the 2nd derivative not only 

reduced the number of required latent variables, thereby improving model simplicity and minimizing the risk of overfitting, but also 

corrected for baseline shifts and light scattering while enhancing the resolution of overlapping peaks. These advantages lead to more 

robust and interpretable models, which are crucial for reliable implementation of online NIR spectroscopy systems. The model that 

uses spectra from LWNIR with 2nd derivative processing shows the highest efficiency in predicting the durian DM value. This is 

because LWNIR covers the absorption bands of water and starch. In particular, the region of 1450 nm corresponds to the O–H stretching 

overtone that reflects the moisture content and DM well (see Figure 9). Using the 2nd derivative, it also helps reduce scatter noise and 

baseline from the durian peel and allows the model to differentiate samples more accurately. However, the models were developed for 

specific orchards and varieties, which may introduce bias when applied to other cultivation areas. Therefore, external validation across 

different orchards and cultivars is recommended prior to large-scale industrial adoption. 

Our research demonstrated better performance than Phuangsombut et al. [18] and Onsawai et al. [14] did in creating models to 

predict the DM content of durian. Our research achieved an R² of 0.89, while Phuangsombut et al. [18] obtained an R² of 0.67 and 

Onsawai et al. [14] achieved an R² of 0.55 [13,17]. Which is consistent with Puttipipatkajorn et al. [44], who showed that the rind and 

stem spectra can indirectly predict durian pulp DM. Unlike their offline setup, this study developed an online NIR system that can 

classify intact fruits on a conveyor, demonstrating practical applicability for industrial use. The strong LWNIR absorption around 1450 

nm further confirmed the physiological linkage between the rind and pulp, supporting real-time maturity assessment [44]. Our study 

used an online spectral measurement method that involved measuring the spectra of the entire fruit, representing the entire durian. By 

contrast, previous studies employed point-based contact scanning with or without removing the spikes, which had a significant impact 

on the spectra. 

 

Table 5 Results of modeling for DM weight prediction for conveyor belt scanning data of LWNIR and SWNIR 

 

Spectral 

range 

Calibration set Validation set 

Pretreatment N Factor R2
c SEC SECV n R2

v SEP RPD Bias 

LW Raw 87 10 0.78 5.51 6.76 25 0.81 6.45 1.78 -0.14 

1st_dev 12 0.81 5.07 6.79 0.85 5.70 2.01 0.43 

2nd_dev 12 0.85 4.75 6.23 0.89 5.00 2.29 -0.05 

SNV 13 0.79 5.38 7.08 0.83 6.09 1.88 0.04 

SW Raw 87 11 0.85 4.37 6.25 25 0.80 6.69 1.71 -0.17 

1st_dev 6 0.80 5.18 6.26 0.77 7.15 1.60 -0.17 

2nd_dev 6 0.83 4.75 6.15 0.79 6.89 1.66 0.18 

SNV 12 0.79 5.32 7.67 0.77 7.06 1.62 -0.69 

 

 
 

Figure 8 Scatter plots between measured and predicted value in the prediction of DM of durian a) LWNIR of the calibration set, b) 

LWNIR of the test set, c) SWNIR of the calibration set, and d) SWNIR of the test set. 
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Figure 9 Regression coefficients of the PLSR model for predicting durian DM. 
 

The experimental results and a comparison with previous studies show that for contact-based measurements, scanning durians with 

the spikes removed (to create a flat surface) yields better results than scanning without removing the spikes. However, if nondestructive 

scanning of the whole durian fruit is preferred, without cutting the spikes, then a non-contact measurement method should be used. 

Therefore, appropriate preprocessing is necessary. Specifically, applying the second derivative can reduce the baseline effects and 

enhance the clarity of important peaks. This approach reduces the influence of spikes and provides better model performance, as 

demonstrated by our experimental results. The resulting spectra represent the entire fruit, demonstrating that this method can be applied 

for online DM measurements of durians as they move along a conveyor belt. 
 

4. Conclusions 
 

The proposed method enables online assessment of durian fruit quality based on DM, categorizing them into two groups: rejected 

(DM < 32%) and accepted (DM ≥ 32%). The model performed well when developed using a balanced dataset for LWNIR and SWNIR 

spectra. The most effective approach for model development, based on conveyor belt scanning, was derived from LWNIR spectra 

using the 1st derivative-LDA, as it could be applied to both imbalanced and balanced datasets. The feasibility of classifying durian 

grades based on DM was confirmed by the PLSR model, which predicted DM with an r² of up to 0.80 for LWNIR and SWNIR. NIR 

spectroscopy demonstrated high potential for nondestructive classification of durian quality. Online quality grading on a conveyor belt 

can be implemented for quality control, particularly during the sorting process for produce in the durian export industry. It can also be 

applied to post-harvest quality assessment.  
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