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Abstract

Quality classification of durian fruits is based on the dry matter (DM) content of the pulp. According to Thai agricultural standards,
durian fruit (Monthong variety) must contain at least 32% DM. This study aimed to develop a classification model for assessing durian
quality based on DM content, categorizing fruits as either “rejected” (DM < 32%) or “accepted” (DM > 32%). Near-infrared (NIR)
spectra were collected as the durian fruits moved along a conveyor belt. The models were developed using two spectral ranges: short-
wavelength near-infrared (SWNIR; 4501000 nm) and long-wavelength near-infrared (LWNIR; 8601750 nm). Owing to the imbalance
in the dataset between the two classes, the data were adjusted using the synthetic minority oversampling technique to create a balanced
dataset. Prediction models were built using different spectral preprocessing methods and algorithms. For the LWNIR range, the models
constructed using LDA, SVM, KNN, and SDA achieved accuracies of 95%, 90%, 93%, and 93%, respectively, for the test set. The
SWNIR models, developed using the same algorithms, achieved accuracies of 90%, 88%, 90%, and 90%, respectively, for the test set.
PLS-regression was used to predict the DM content from both LWNIR and SWNIR data. With the 2nd derivative preprocessing method,
the models achieved R? values of 0.89 and 0.79, SEP values of 5% and 6.89%, and RPD values of 2.29 and 1.66, respectively. The
wavelength range significantly influenced the model performance, whereas spectral pretreatment had a minor effect on the model's
predictive ability. Overall, NIR spectroscopy demonstrated the potential for nondestructive quality grading of whole durian fruits. This
work is the first to establish real-time, in-line models for durian grading based on DM content, advancing beyond the previous
destructive method. The findings demonstrate the feasibility of automated, nondestructive, and objective quality assessment, supporting
industrial automation, precision agriculture, and export quality assurance.
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1. Introduction

Durian (Durio zibethinus), often referred to as the “king of fruits”, is a significant economic fruit in Thailand, enjoying widespread
popularity and showing continuous growth [1]. According to the Department of Agriculture, Ministry of Agriculture and Cooperatives,
the eastern region of Thailand was expected to produce no less than 700,000 tons of durians for export in the 2024 fruit season [1].
This output was achieved through coordinated efforts between the public and private sectors to control the production process and
maintain the quality of Thai durians [1]. In 2024, Thailand’s export of fresh durian products was projected to reach 800,000 tons [2].
Typically, durians are classified into two stages: mature and ripe. A ripe durian is considered ready to eat. Traditional techniques for
determining ripeness are based on external appearance, such as the skin becoming darker and transitioning from green to light yellow
or yellow when fully ripe. Additionally, a fully ripe durian may show cracks on the sides or spaces between the spikes, and the skin
should feel slightly soft when gently pressed. The smell becomes more intense as the durian nears full ripeness [3].

For exports, only fully mature durians are shipped to ensure that they are perfectly ripe when they reach customers. According to
the Ministry of Agriculture and Cooperatives Standard TAS 3-2013, “Monthong” durians are considered fully mature when their dry
matter (DM) content is >32% [4, 5]. Therefore, the challenge in sorting lies in distinguishing fully mature durians from immature
durians, which is typically more difficult than sorting ripe durians. Immature durians have a DM < 32%. The ripening period after
harvest under natural conditions is approximately 6-9 days [5]. Classifying durians as having DM > 32% or DM < 32% remains a
challenge, and many researchers have explored this issue. The dry oven method has traditionally been used to determine the DM of
fresh durian. However, this method is time-consuming and requires approximately 48 hours per sample. Durian fruits collected from
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farmers are randomly inspected, with one to two fruits typically tested to confirm maturity. This method is not only labor-intensive and
destructive to the samples, but also affects the quality and quantity of the produce, and it cannot guarantee 100% accuracy.

The implementation of rapid quality screening methods may help maintain the quality of durians, reduce product losses, and
enhance competitive pricing. Currently, near-infrared (NIR) spectroscopy is utilized for quality assessment of agricultural products [6].
Nondestructive NIR methods have been used for predicting the quality of agricultural product such as soluble solid content (SSC) of
Marian plum fruit [6]; soluble solids content in Nam Dok Mai mangoes [7], starch content, firmness, and acidity of Fuji apples [8],
SSC of Rocha pears [9], and starch and DM content of fresh cassava tubers [10-13] Previous research confirmed that the assessment
could be more accurate and reliable if the measurements were conducted using an appropriate methodology and if a suitable prediction
model is developed.

Applying benchtop spectrometer NIR to measure the quality of durian pulp, Onsawai et al. [14] evaluated the DM of durian by
scanning pulp and fruit, providing rough screening ability, with r> and RMSEP of 0.89 and 3.27%, respectively, using pulp spectra.
The DM of the pulp could be reasonably predicted by scanning the intact durian fruit at the largest locule, with r> and RMSEP of 0.79
and 5.23%, respectively. Sharma et al. [15] applied NIR hyperspectral imaging coupled with various machine learning techniques,
including partial least squares regression (PLSR), support vector machine (SVM), random forest (RF), and convolutional neural
network (models: Custom, U-Net, VGG19), and variable selection methods, including genetic algorithm (GA) and successive
projection algorithm (SPA), to evaluate the quality of durian pulp. GA and SPA achieved good results for DM (r2=0.97) and FC (r2 =
0.86). The GA-PLSR model was the best for predicting TSS, with an r2 equal to 0.90, whereas the SPA-PLSR model provided poor
performance, with an r2 of 0.79. Ali et al. [16] applied a thermal imaging technique combined with multivariate analysis to predict the
ripeness of durian fruit. PLSR results successfully developed quantitative prediction models with R2 values exceeding 0.94. The SVM
model achieved a classification accuracy of 97%, making it the most effective method for discriminating durian ripeness. This method
requires temperature control of the sample and the testing room. Saechua et al. [17], studied the application of a Vis-SWNIR
spectrometer integrated into a conveyor belt system in the production line to measure the DM of durian pulp, and the model was
developed using PLSR, which was recommended to preprocess the spectra using a standard normal variate (SNV) to achieve R?% and
RMSEP of 0.83, and 4.32%, respectively.

Measuring durian fruit remains challenging, and many researchers continue to investigate this topic. Phuangsombut et al. [18]
predicted the DM of durian fruit with decreasing influence of spikes. Before scanning, the spikes were removed, and part of the rind
of the most fertile locule of each fruit (approximately 2—-3 mm thick) was sliced off to present a flat area. The prediction accuracy
provided a coefficient of correlation of calibration (R%) = 0.67 and root mean square error of cross-validation (RMSECV) = 2.68%
[18]. However, this approach is not a completely nondestructive measurement. Ditcharoen et al. [19] developed a nondestructive model
to classify the maturity stages (day after blooming [DAB]) of durian fruits by using long-wave NIR (LWNIR) and short-wave NIR
(SWNIR), which was investigated by Ditcharoen et al. [19], and the spectra of durian fruit were collected while the fruit moved along
a conveyor belt. Three algorithms—LDA, SVM, and KNN—were employed to estimate the three maturity stages. LWNIR achieved
an accuracy of 83.15% to 88.04%, while SWNIR vyielded an accuracy of 64.73% to 93.77%. This method could be used to screen the
maturity stage of durian fruit using DAB. In the prediction models, the proportion of samples in each class directly influenced the
classification accuracy. Issues such as class overlap and small sample sizes can hinder classifier learning [20]. Model accuracy was
improved by generating synthetic samples using the synthetic minority oversampling technique (SMOTE) to balance the sample
distribution. The SMOTE-based method not only addresses the issue of imbalanced sample distribution but also enhances the
recognition accuracy of the classification model. Additionally, SMOTE was chosen to increase the sample size as it helps save time
and reduces costs associated with oversampling [21]. Previous studies on durian DM prediction relied mainly on offline or DAB-based
approaches, which are unsuitable for industrial use and are not directly linked to the export requirement of DM > 32%. Such methods
have limited robustness across orchards and seasons, and cannot support real-time quality control. Therefore, this study developed a
nondestructive, online classification method for intact durians that directly targets the export threshold, providing a practical solution
for implementation in production lines.

As noted in previous research, studies have focused on grading durian fruits by grouping them according to the number of DAB.
However, research on classification based on DM content is limited. A key research gap is that predicting DAB can lead to errors, as
durians of the same age (in DAB) may have different DM levels, which can result in grouping inaccuracies. Therefore, the objective
of this study was to develop an NIR model to predict the quality of durian fruit as it moves along a conveyor belt. The sub-objectives
of this study are twofold. First, it aims to evaluate the potential of online NIR spectroscopy for assessing durian fruit quality based on
DM content, categorizing the fruit into two groups: rejected (DM < 32%) and accepted (DM > 32%). Additionally, we investigated the
performance of models developed with both imbalanced and balanced datasets using SMOTE to generate a balanced sample size, thus
reducing the cost and effort associated with data collection for modeling. Second, it aims to predict the DM content of durian fruit by
using PLSR. The outcomes of this study will help identify the most effective wavelengths (from both LWNIR and SWNIR), spectral
preprocessing methods, and algorithms.

2. Materials and methods
2.1 Sample

This study used fresh durian (Monthong variety) samples collected from the Duang Kaen durian orchard in Nam Nao District,
Phetchabun Province. A total of 130 samples were collected on five different DABs: 80-90 DAB (40 fruits, DM~5.6-18.0%), 90-100
DAB (40 fruits, ~ 18.1-29.6%), 100-110 DAB (20 fruits, ~ 29.7-33.5%), 110-120 DAB (10 fruits, ~ 33.6-38.0%), and 120-130 DAB
(20 fruits, ~ 38.1-43.5%). Sample collection was conducted by tracking the blooming date of each tree. The fruits were harvested once
they reached the designated DAB range and were carefully transported to the laboratory. The room temperature was maintained at 25
°C.

A portion of the fruits at the premature stage were allowed to ripen at room temperature for 7 days prior to spectral scanning. These
fruits were assigned to the ripe-stage group. Durian is a climacteric fruit that ripens after harvest and is regulated by ethylene production
[22]. The imbalance in sample sizes occurred in DAB stages, with more samples collected at 80-100 DAB and fewer at 101-130 DAB
owing to seasonal variation in flowering and fruit set. This imbalance affects model performance, particularly for DM classification.
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This issue was addressed by using SMOTE to balance the minority class in the calibration set, whereas the test set remained unaltered
to avoid overfitting.

2.2 Scanning

The online measurement system is illustrated in Figure 1. It included a conveyor, a measurement chamber, two NIR spectrometers,
and a computer. Four 50 W halogen lamps were installed in the measurement chamber at each corner at 45° from the plane to serve as
a light source. The halogen lamps were placed 50 cm from the conveyor belt, and the NIR spectrometers were positioned 15 cm away
from the durian. The measurement chamber was a black box with dimensions of 60 x 60 x 60 cm. Each durian fruit was scanned on a
conveyor while moving at a speed of 20 cm/s. An LWNIR spectrometer (AvaSpec-ULS2048-USB2-VA-50, AVANTES, the
Netherlands) with a wavelength range of 860-1750 nm and an SWNIR spectrometer (AvaSpec-NIR256-1.7-EVO, AVANTES,
Netherlands) with a wavelength range of 450— 1000 nm were used. The sample holder was fabricated from black material with a matte
surface and rigid structure, providing stable support for the durian fruit during NIR measurements on the conveyor and minimizing
light reflection and vibration interference.

¢) SWNIR

==

¢) LWNIR

d) Black box

a) Durian fruit
€) Conveyor belt

Figure 1 Scanning durian on a conveyor belt: a) durian fruit, b) light source, c) experimental equipment of online scanning (LWNIR
and SWNIR), d) black box, and e) conveyor belt. (LWNIR: long-wavelengths near infrared; SWNIR: short-wavelengths near infrared)

Spectrum acquisition consisted of 3 steps: 1) The light source was switched on and allowed to stabilize for 10 min to ensure
consistent light intensity. 2) Before the sample was scanned, a dark reference—an opaque black object—was used as a reference for
background light reflection. We then set up a white reference, which serves as a reference for light reflection from a white opaque
object. A material called spectralon reference was used, and the values were scanned to reduce other interfering factors, such as light
or the use of a new machine. Scanning of the sample will yield a reflectance value between the dark (black) and white reference spectra.
3) The samples were scanned using two spectrometers with an integration time of 200 ms. Each fruit was scanned on the side
corresponding to the main pulp (fertile lobe) as it passed beneath the light window, and the results were averaged [23]. The absolute

reflection value was then obtained, and the relative reflectance was calculated as R = :rl;d , Where Rs is the intensity of the reflected
—Rqg

light of the sample (absolute reflectance), Rq is the dark reference, and Rw is the white reference. The spectral data were recorded as
absorbance (A) = log(1/R), where R is the relative reflectance [24].

2.3 Uncertainty test of NIR spectra

This study investigated the accuracy and consistency of scanning durian pulp, focusing on factors such as measurement reliability,
potential errors, and the effectiveness of the scanning method in capturing the physical and compositional characteristics of the pulp.
The NIR spectra data of three durian fruits (sample nos. 5, 80, and 120) were used to calculate the uncertainty test of the NIR spectra.
Three spectra were collected, as shown in Figure 2. Calculations were performed to verify the extent to which the spectrum values
would differ if the same sample was scanned at three different positions, which served as a test for the uncertainty of future predictions.
The root mean square (RMS) was reported as an indicator of the sample scanning precision and was calculated using the following
formula:

RMS] — Zral=1(x;zlb_)?a)z (1)

[T 1)

where Xap represents the absorption value of sample “a” at wavelength “b,” X is the mean absorption value at wavelength “a” across
all samples, and n is the total number of data points corresponding to the number of wavelengths. RMS; denotes the RMS value for
spectrum j. The RMS values were determined for the raw spectra, SNV, 1% derivative spectra, and 2" derivative spectra. A low mean
RMS value signifies high precision in the NIR data, indicating that the spectral measurements were highly consistent and exhibited
minimal variation across repeated scans. This finding suggests that the NIR system is reliable for capturing the characteristics of durian
pulp with little deviation. Conversely, a high mean RMS value suggests substantial differences between the individual spectra, even
when scanning the same durian fruit. This implies low precision, as the variability in the spectral data may stem from inconsistencies
in the scanning process, instrument sensitivity, or external factors that affect measurement stability.
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Figure 2 Flow diagrams for prediction model development of durian DM content for classifying quality (DAB: the durian at 5 different
age stages after the flowers bloom)

2.4 Dry matter

After scanning, the fruit samples were peeled off. The durian pulp was used to determine the DM content. The pulp sample was
divided into three parts: the head, middle, and tail. Each part was cut, weighed to 10 g, and placed in a hot-air oven at 60 °C for 48 h
until a constant weight was achieved. DM was calculated using the following formula:

Dry matter (%) = % x 100 2

where W2 represents the final weight of the dried sample (g), and W1 denotes the initial weight (g). Three replicates were averaged to
obtain one, which was assigned as a representative DM [17, 19, 25]. Outliers in the measured DM were determined using the criterion
(y;i —¥)/SD = 13, where yi represents the DM value obtained from the reference method, y is the mean of the reference values, and
SD is the standard deviation of the reference values. Any sample with a reference value that met this condition was excluded from the
dataset.

2.5 Classification model

Durian fruit quality was categorized into two groups based on DM: accepted (DM > 32%) and rejected (DM < 32%). Principal
component analysis was performed on the raw spectral data to detect outliers. The process of developing the classification model is
illustrated in Figure 2.

The classification model was developed based on three factors: 1) factors of different wavelength ranges: LWNIR and SWNIR; 2)
factors of different algorithms: LDA, SVM, KNN, and ensemble SDA; and 3) factors of different spectral preprocessing: raw spectra,
1%t derivative (segments =5, gaps = 5), 2" derivative (segments =5, gaps = 5), and SNV. Therefore, 32 models or 32 treatments (2
wavelength ranges x 4 supervised algorithms x 4 spectral preprocessing) were derived. The dataset was split into 70% calibration set
and 30% test set. SMOTE was applied only to the calibration set to avoid data leakage, while the model training used leave-one-out
cross-validation (LOOCV). An independent test set containing only real samples was reserved for the final performance evaluation.
The models were developed and evaluated using the test set method, maintaining a 3:1 ratio between calibration and validation sets.
The robustness of the model was improved by using the SMOTE algorithm to increase the number of samples in the underrepresented
group, making the sample size equal to that of the other group or ensuring that the sample groups were balanced. Subsequently, the
model was constructed using the method described above. SMOTE is used to address class imbalance in datasets, particularly in
machine learning. It generates synthetic samples for the minority class to balance the number of samples between the minority and
majority classes [26].

The 1st derivative method helped alleviate the problem of increasing the spectral values across the wavelength (Y-axis), which
caused the spectra to shift closer together. This adjustment ensured that the data were more accurate. The 2™ derivative separates the
overlapping peak points in the spectrum and reduces the impact that causes the spectrum to increase in size throughout the range. The
second derivative aligns the peak points with the original spectrum peaks even if they are inverted. SNV adjusts for the effects caused
by light scattering, which often results in a multiplicative effect on absorbance values. Reducing the variability that leads to movement
along the vertical axis of the spectrum helps correct for these effects [27].

LDA is a widely used technique for dimensionality reduction and classification. In this study, LDA is utilized to transform high-
dimensional data into (n-1) components, where n is the total number of classes, by utilizing eigenvector decomposition. Additionally,
LDA components are employed in conjunction with SVM, an algorithm that constructs hyperplanes or a set of hyperplanes in high-
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dimensional or infinite-dimensional space. All points belonging to class A are designated as +1, whereas all points in class B are
designated as -1 [28]. KNN utilizes a database in which data points are divided into several distinct classes to predict the classification
of new sample points. This is considered one of the best-case scenarios demonstrated by the example [29]. This method utilizes an
analysis technique from the k-nearest data points to the data that need to be classified by categorizing according to the majority class
of the k-nearest training data points [16]. Ensembles are used to improve the predictive performance of modeling problems by
combining multiple models instead of relying on a single model. This enhancement occurs because the ensemble approach reduces the
variance component of the prediction error, albeit by introducing some bias [30]. The selection of SVM and RF as classification
algorithms was supported by Wu et al. [31], who demonstrated that SVM achieved the highest accuracy and stability in spectral
classification, whereas RF effectively reduced overfitting and provided insights into feature importance.

The performance of the model was evaluated using several metrics, including accuracy (Eq. 3), precision (Eq. 4), recall (Eq. 5),
specificity (Eq. 6), and F1-score (Eq. 7). These equations are based on four key variables: true positives (TP), true negatives (TN),
false positives (FP), and false negatives (FN). It is calculated using the following formula:

TP+TN

Overall accuracy = ————— x 100 3)
TP+TN+FP+FN
Precision = ——— x 100 4)
TP+FP
Recall = ——— x 100 )
TP + FN
e . TN
Specificity = e < 100 (6)
F1-Score= 2XPrecisioanecall (7)

Precision+Recall

The overall accuracy indicates the model’s performance when immature durians are predicted to be mature and mature durians are
predicted as another group. Precision indicates the performance of the model when the prediction result is FP, where immature durians
are predicted to be mature. Recall indicates the performance of the model when the prediction result is FN, where mature durians are
predicted as another group. Specificity indicates the model’s performance when the prediction result is TP, where mature durians are
predicted as another group [32].

2.6 Predictive regression model

A flowchart illustrating the model development for durian fruit at various stages of maturity using an online NIR spectroscopy
system is shown in Figure 2. The DM model was developed through PLSR considering different factors, such as the use of various
spectral pretreatment methods (four treatments: raw, first derivative, second derivative, and SNV), and factors of different wavelength
ranges (two treatments: LWNIR and SWNIR). A total of 12 treatments (2 x 8 = 12) were analyzed. Each treatment was applied to the
calibration and validation sets with a separation ratio of 3:1 between the two sets. For regression models, SMOTE was not applied
because regression requires continuous target values, and no class imbalance adjustment is necessary. In both cases, the calibration and
test sets were independent, non-overlapping, and randomly selected to avoid bias and ensure a fair model evaluation. Model evaluation
was performed using LOOCV. In this approach, a single sample is set aside as the test set in each iteration, whereas all the remaining
samples are used to train the model. This process was repeated until every sample was used exactly once for validation. This method
is particularly suitable for datasets with limited sample sizes because it maximizes data utilization and provides a reliable estimate of
model performance.

Once the models were created, they were validated using a prediction set. Model performance was evaluated based on several
statistical parameters, including the coefficient of determination (R?), standard error of calibration (SEC), standard error of prediction
(SEP), ratio of prediction to standard deviation (RPD), and bias. According to commonly accepted criteria, good model performance
was indicated by R2 > 0.90 and RPD > 3 [33].

3. Results and discussion
3.1 NIR spectra

The durian spectra collected by scanning on conveyor belts at different wavelength ranges, namely, LWNIR (860-1750 nm) and
SWNIR (450-1000 nm), are illustrated in Figures 3 and 4. Figure 3 illustrates the spectra of whole durian fruit versus the black conveyor
belt for LWNIR and SWNIR, where the absorption of the conveyor is higher than that of durian fruit. The advantage is that it makes it
easier to distinguish between the spectra of durian and non-durian objects, which helps the online measurement system easily identify
durian fruit. Figure 4 shows the NIR spectra collected from the LWNIR and SWNIR spectrometers, which were either raw spectra or
preprocessed by SNV, 1% derivative and 2" derivative, respectively. Figure 4 also shows the spectra based on two groups: rejected
group (DM < 32%: red line) and accepted group (DM > 32%: blue line). In the raw spectra, the distinction between the two sample
groups was not very clear compared with the spectra that were processed. An obvious absorption peak was found at wavelengths of
681 and 1450, corresponding to the absorption bands of anthocyanins and chlorophylls [34], vibration of the third overtone of O-H
stretches [35], and water content, which is the vibrational band of H20 [35]. The spectral variation observed in the peel reflects
compositional changes associated with fruit maturation, particularly an increase in pulp DM and a corresponding decrease in peel
moisture. This chemical relationship between the peel and pulp enables the use of peel spectra as an indirect indicator for predicting
internal pulp quality [36, 37]. Distinct differences in the absorbance values at each maturity stage were observed. The absorbance
values varied across different DM. As mentioned earlier, these distinct differences in absorbance values across different maturity stages
make the model efficient for accurately classifying groups [38].



66 Engineering and Applied Science Research 2026;53(1)
LW-NIR a) SW-NIR b)
1.2 1
1 08
0.8 0.6
2 0.6 M 8 04
£ 02
E 04 E Y
I =
2 02 5 02
= =
< 0 <04
-0.2 -0.6
-0.4 ‘ -0.8
-0.6 -1
860 1010 1160 1310 1460 1610 400 500 600 700 800 900 1000
Wavelength, nm Wavelength, nm
—Conveyor belt—Spectrum]1 ~—— Spectrum2 =——Spectrum3 —Conveyor belt —Spectrum] ——Spectrum2 ——Spectrum3

Figure 3 Spectra of durian fruit vs. conveyor belt, a) LWNIR and b) SWNIR

1st derivative spectra

1

T T T T T T T T T

900 1000 1100 1200 1300 1400 1500 1600 1700
a)
03— T T . T T
—— DM<32%
— DM>32%
0al— . . A , . . . .
~ e00 1000 1100 1200 1300 1400 1500 1800 1700

c)

— DM<32%
— DM=>32%

2nd derivative spectra

SNV spectra

SNV spectra

25

1100

900

d)

— DM<32%
— DM>32%

Figure 4 Spectra of durian fruit, a) LWNIR as raw spectra, b) LWNIR as SNV spectra, ¢c) LWNIR as 1% derivative spectra, d)
LWNIR as 2™ derivative spectra, ) SWNIR as raw spectra, f) SWNIR as SNV spectra, h) SWNIR as 1% derivative spectra, and i)
SWNIR as 2" derivative spectra.



Engineering and Applied Science Research 2026;53(1) 67

0.1
@ 005 4 E
S -
- [&)
9 @
(] ey
g ° 7
= O
2 s
= 005 1=
©
g >
= — DM<32% Az DM<32%
D 01 10
© — DM=>32% O 00f DM>32%
» o
~ 015 1 (SI ook
i ’ , X X . ) . ) ) X 0.08 L A 1 L . . L L L .
500 550 600 650 700 750 800 850 900 950 500 550 600 650 700 750 800 850 900 950
Wavelength, nm Wavelength, nm
h) i)

Figure 4 (continued) Spectra of durian fruit, ) LWNIR as raw spectra, b) LWNIR as SNV spectra, ¢c) LWNIR as 1% derivative spectra,
d) LWNIR as 2™ derivative spectra, €) SWNIR as raw spectra, f) SWNIR as SNV spectra, h) SWNIR as 1% derivative spectra, and i)
SWNIR as 2™ derivative spectra.

Table 1 RMS value of sample nos. 5, 80, and 120 calculated from raw spectra.

LWNIR SWNIR

Sample RMS1 RMS; RMS3 RMS RMS: RMS; RMS3 RMS

no.

5 Raw 0.007538  0.010675 0.017617  0.01194 0.128222  0.115193  0.24307 0.16216
1%t derivative  0.002295  0.002086  0.004004  0.00280 0.008897  0.005359  0.013204  0.00915
2" derivative  0.002221  0.001968  0.003683  0.00262  0.007467  0.005238  0.010366  0.00769
SNV 0.009382  0.012336  0.017814  0.01318 0.165556  0.130693  0.28743 0.19456

80 Raw 0.095774  0.051651  0.044186  0.06387  0.024203  0.00578 0.025647  0.01854
1%t derivative  0.006056  0.002695  0.003821  0.00419  0.004846  0.002335 0.004695  0.00396
2" derivative  0.005855  0.002126  0.004059  0.00401  0.004546  0.003268  0.004522  0.00411
SNV 0.048778  0.023742  0.026362  0.03296  0.066832  0.027757  0.069259  0.05462

120 Raw 0.014819  0.01700 0.029648  0.02049 0.077863  0.018479  0.070431  0.05559

1%t derivative  0.005446  0.002372  0.007742  0.00519 0.010688 0.008712  0.009326  0.00958
2" derivative  0.003929  0.001828  0.00561 0.00379  0.016238  0.013914  0.01359 0.01458
SNV 0.035926  0.011984  0.046738  0.03155 0.129225 0.086665  0.13023 0.11537

Table 1 reports the RMS value of durian fruit (samples no. 5, 80, and 120) calculated from the raw spectra. RMS value is a measure
of the precision of the NIR spectrometer to produce consistent absorption values when measuring the same durian sample multiple
times. Therefore, if the RMS value is low, then the absorption values for the same durian sample are close to each other when measured
repeatedly [39]. However, if the RMS value is high, then the absorption values for the same sample vary significantly across repeated
measurements.

The experimental results show that LWNIR provides a lower RMS value than SWNIR, which could be because the LWNIR range
allows the detector to be less affected by external light interference. However, both wavelength ranges had RMS values of no more
than approximately 0.1. When comparing these RMS with the relative absorption values, which range from 0 to 1, the obtained RMS
values are relatively low and acceptable for model development.

3.2 Dry matter

Table 2 shows the average DM values of durian flesh, categorized based on DM weight into two groups: those with DM < 32%
and those with DM > 32%. This categorization was based on the standard set by the Department of Agriculture and Food Product
Standards [4], which defines durians with a DM > 32% as suitable for harvesting, indicating good maturity. This finding shows that
the DM value correlates with durian maturity. After outlier detection, the outliers of 18 samples were met and removed from the dataset.
In the model experiment, the data were divided into calibration and validation sets. The division ratio was 3:1, with 87 samples in the
calibration set and 25 samples in the validation set, which were randomly selected. Arranged from highest to lowest, the samples with
the highest and lowest values were placed in the calibration set, which includes maximum, minimum, average, and SD.

Table 2 Statistical value of the DM content of durian fruit sample.

Data set N Max Min Mean SD
Calibration set 87 43.52 5.61 20.80 11.85
Validation set 25 41.87 6.59 20.64 11.46

DM < 32% group 25 29.60 5.61 15.44 6.74
DM > 32% group 87 43.52 33.57 39.91 241

Notes: N Number of samples; ¥ Maximum; M" Minimum; S° Standard deviation
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Figure 5 Box plot of DM distribution in durian between the rejected group (DM < 32%) and the accepted group (DM > 32%).

The box plot demonstrated that the rejected group (DM < 32%) exhibited a lower mean DM content (15.44%) with high variability
(SD = 6.74), indicating inconsistent fruit quality. By contrast, the accepted group (DM >32%) showed a higher mean DM (39.91%)
with lower variability (SD = 2.41), reflecting a more uniform quality that met export standards. The clear separation between these
groups supports the use of the DM > 32% threshold as a reliable criterion for durian quality classification (see Figure 5).

3.3 Classification model
3.3.1 Model evaluation on imbalanced data

The models were built to classify durian maturity using LWNIR spectra with wavelengths ranging from 860 to 1750 nm (LWNIR)
and 450 to 1000 nm (SWNIR spectra). The modeling process involved different factors, namely, different algorithms (LDA, SVM,
KNN, and SDA), and different spectral preprocessing methods (raw, SNV, 1% derivative, and 2" derivative). The models were
developed from an imbalanced sample and improved using a balanced dataset created using the SMOTE method. Then, the performance
of the models was calculated based on confusion metrics such as overall accuracy, recall, precision, F1-score, specificity, and negative
predictive value, which were calculated based on the frequency from the confusion matrix of the classification model (see Figure 6).

Actually Positive (1) Actually Negative (2)
Positive Predictive
Predicted Positive (1) True Positive (TP) False Positive (FP) - _™ 100
TP + FP
Negative Predictive
Predicted Negative (2) False Negative (FN) True Negative (TN) - _™ 100
TN + FN
TP Specificit Accurac
Recall = TP+ PN 100 _ gN ><y100 _ TP+TN yx 100
TN + FP TP+TN+ FP+FN

Figure 6 Confusion matrix of model frequency for conveyor scanning of calibration set and validation set.

Table 3 presents the performance of the classification model developed using LWNIR coupled with different methods. This
consisted of the results of the calibration and test sets. For the imbalanced dataset, the model developed from the raw spectra showed
low ability. Meanwhile, the SNV-KNN, 1%t derivative-LDA, 1% derivative-KNN, and 2™ derivative-KNN models provided highly
effective prediction results. Although the number of samples between the two groups was imbalanced, the prediction outcomes helped
minimize the impact on recall, precision, and F1-score values. The 1% derivative-LDA model provides the best performance both in
the calibration set and test sets.

3.3.2 Performance improvement after SMOTE balancing

The results of improving the model by creating a balanced dataset clearly showed that the model’s performance in both the
calibration and test sets significantly increased the recall, precision, and F1-score, leading to a noticeable improvement in the overall
performance of the model. For our results, the model developed using the 1% derivative-LDA still provided effective performance,
accuracy, recall, precision, F1-score, specificity, and negative predictive values of 0.95, 1.00, 0.90, 0.95, 0.91, and 1.00, respectively.
The overall results for the test set are shown in Figures 7a and 7b.

Table 4 shows the performance of the classification model developed using SWNIR in combination with various methods. It
includes results from both the calibration set and the test set. For the model developed from the imbalanced samples, a significant issue
with low recall, precision, and F1-score was observed as a result of the imbalance in the number of samples between the groups. After
the model was improved by creating new data to balance the two datasets, its performance improved significantly (Figures 7c and 7d).
Evidently, the recall, precision, and F1-score values increased substantially. The results show that the performance of all models
improved. The model is highly efficient, and there is not much noticeable difference. In the researcher’s opinion, the 2" derivative-
SVM model provides effective performance, with accuracy, recall, precision, F1-score, specificity, and negative predictive values of
0.88, 0.84, 0.89, 0.86, 0.91 and 0.87, respectively.



Engineering and Applied Science Research 2026;53(1) 69

Table 3 Classification result of the validation set of durians at two different grade levels using various multivariate algorithms and
spectra data obtained from LWNIR

Calibration set Test set

Imbalanced TP FN TN FP Accuracy Recall Precision Fl-score Specificity Negative Accuracy Recall Precision F1-score Specificity Negative
samples predictive predictive

Raw LDA 15 4 64 3 0.92 0.79 0.83 0.81 0.96 0.94 0.83 0.67 0.57 0.62 0.87 0.91

SVM 0 19 67 0 0.78 0.00 0.00 0.00 1.00 0.78 0.79 0.00 0.00 0.00 1.00 0.79

KNN 16 3 55 12 0.83 0.84 0.57 0.68 0.82 0.95 0.79 0.33 0.50 0.40 0.91 0.84

SDA 16 3 64 3 0.93 0.84 0.84 0.84 0.96 0.96 0.83 0.67 0.57 0.62 0.87 0.91

SNV LDA 17 2 60 7 0.90 0.89 0.71 0.79 0.90 0.97 0.83 0.67 0.57 0.62 0.87 0.91

SVM 8 1 65 2 0.85 0.42 0.80 0.55 0.97 0.86 0.83 0.50 0.60 0.55 0.91 0.88

KNN 16 2 63 4 0.93 0.89 0.80 0.84 0.94 0.97 0.90 0.83 0.71 0.77 0.91 0.95

SDA 16 3 60 7 0.88 0.84 0.70 0.76 0.90 0.95 0.83 0.67 0.57 0.62 0.87 0.91

1% dev LDA 14 5 62 5 0.88 0.74 0.74 0.74 0.93 0.93 0.95 1.00 0.90 0.95 0.91 1.00

SVM 12 7 65 2 0.90 0.63 0.86 0.73 0.97 0.90 0.86 0.67 0.67 0.67 0.91 0.91

KNN 17 2 63 4 0.93 0.89 0.81 0.85 0.94 0.97 0.93 0.83 0.83 0.83 0.96 0.96

SDA 14 5 63 4 0.90 0.74 0.78 0.76 0.94 0.93 0.83 0.67 0.57 0.62 0.87 0.91

27 dev LDA 16 3 61 6 0.90 0.84 0.73 0.78 0.91 0.95 0.79 0.67 0.50 0.57 0.83 0.90

SVM 13 6 66 1 0.92 0.68 0.93 0.79 0.99 0.92 0.83 0.50 0.60 0.55 0.91 0.88

KNN 17 2 63 4 0.93 0.89 0.81 0.85 0.94 0.97 0.93 0.83 0.83 0.83 0.96 0.96

SDA 15 4 64 3 0.92 0.79 0.83 0.81 0.96 0.94 0.83 0.67 0.57 0.62 0.87 0.91
Balanced TP FN TN FP Accuracy Recall Precision F1-score Specificity Negative Accuracy Recall Precision Fl-score Specificity Negative
samples predictive predictive

Raw LDA 56 0 59 8 0.93 1.00 0.88 0.93 0.88 1.00 0.93 1.00 0.86 0.93 0.87 1.00

SVM 50 6 45 22 0.77 0.89 0.69 0.78 0.67 0.88 0.74 0.84 0.67 0.74 0.65 0.83

KNN 51 5 63 4 0.93 0.91 0.93 0.92 0.94 0.93 0.88 0.89 0.85 0.87 0.87 0.91

SDA 52 2 60 7 0.93 0.96 0.88 0.92 0.90 0.97 0.90 1.00 0.83 0.90 0.83 1.00

SNV LDA 56 0 62 5 0.96 1.00 0.92 0.96 0.93 1.00 0.93 1.00 0.86 0.93 0.87 1.00

SVM 47 9 59 8 0.86 0.84 0.85 0.85 0.88 0.87 0.81 0.74 0.82 0.78 0.87 0.80

KNN 55 1 59 8 0.93 0.98 0.87 0.92 0.88 0.98 0.88 0.95 0.82 0.88 0.83 0.95

SDA 56 0 64 3 0.98 1.00 0.95 0.97 0.96 1.00 0.90 1.00 0.83 0.90 0.83 1.00

1 dev  LDA 56 0 55 12 0.90 1.00 0.82 0.90 0.82 1.00 0.95 1.00 0.90 0.95 0.91 1.00

SVM 45 11 61 6 0.86 0.80 0.88 0.84 0.91 0.85 0.83 0.74 0.88 0.80 0.91 0.81

KNN 50 5 63 4 0.93 0.91 0.93 0.92 0.94 0.93 0.93 0.95 0.90 0.92 0.91 0.95

SDA 54 2 58 9 0.91 0.96 0.86 0.91 0.87 0.97 0.93 1.00 0.86 0.93 0.87 1.00

2" dev LDA 56 0 54 13 0.89 1.00 0.81 0.90 0.81 1.00 0.93 1.00 0.86 0.93 0.87 1.00

SVM 49 7 63 4 0.91 0.88 0.92 0.90 0.94 0.90 0.90 0.89 0.89 0.89 0.91 0.91

KNN 54 2 62 5 0.94 0.96 0.92 0.94 0.93 0.97 0.90 0.95 0.86 0.90 0.87 0.95

SDA 56 0 54 13 0.89 1.00 0.81 0.90 0.81 1.00 0.90 1.00 0.83 0.90 0.83 1.00
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Figure 7 Performance of classification model as test set developed using a) LWNIR developed by imbalanced samples b) LWNIR
developed by balanced samples ¢) SWNIR developed by imbalance samples and d) SWNIR developed by balanced samples
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Table 4 Classification result of the validation set of durians at two different grade levels using various multivariate algorithms and
spectra data obtained from SWNIR

Calibration set Test set
Imbalanced TP FN TN FP Accuracy Recall Precision Fl1-score Specificity = Negative Accuracy Recall Precision Fl-score Specificity = Negative
sample predictive predictive
Raw LDA 17 2 65 3 0.94 0.89 0.85 0.87 0.96 0.97 0.82 0.67 0.57 0.62 0.86 0.90
SVM 17 2 64 4 0.93 0.89 0.81 0.85 0.94 0.97 0.86 0.67 0.67 0.67 0.91 0.91
KNN 14 5 63 5 0.89 0.74 0.74 0.74 0.93 0.93 0.82 0.50 0.60 0.55 0.91 0.87
SDA 17 2 64 4 0.93 0.89 0.81 0.85 0.94 0.97 0.86 0.67 0.67 0.67 0.91 0.91
SNV LDA 17 2 66 2 0.95 0.89 0.89 0.89 0.97 0.97 0.82 0.67 0.57 0.62 0.86 0.90
SVM 5 14 67 1 0.83 0.26 0.83 0.40 0.99 0.83 0.86 0.67 0.67 0.67 0.91 0.91
KNN 16 3 60 8 0.87 0.84 0.67 0.74 0.88 0.95 0.82 0.50 0.60 0.55 0.91 0.87
SDA 17 2 63 5 0.92 0.89 0.77 0.83 0.93 0.97 0.82 0.67 0.57 0.62 0.86 0.90
1 _dev LDA 15 4 63 5 0.90 0.79 0.75 0.77 0.93 0.94 0.75 0.50 0.43 0.46 0.82 0.86
SVM 15 4 66 2 0.93 0.79 0.88 0.83 0.97 0.94 0.86 0.67 0.67 0.67 0.91 0.91
KNN 15 4 64 4 0.91 0.79 0.79 0.79 0.94 0.94 0.82 0.50 0.60 0.55 0.91 0.87
SDA 11 8 61 7 0.83 0.58 0.61 0.59 0.90 0.88 0.79 0.67 0.50 0.57 0.82 0.90
2" _dev LDA 12 7 62 6 0.85 0.63 0.67 0.65 0.91 0.90 0.79 0.67 0.50 0.57 0.82 0.90
SVM 16 3 66 2 0.94 0.84 0.89 0.86 0.97 0.96 0.86 0.67 0.67 0.67 0.91 0.91
KNN 12 7 63 5 0.86 0.63 0.71 0.67 0.93 0.90 0.82 0.50 0.60 0.55 0.91 0.87
SDA 16 3 63 5 0.91 0.84 0.76 0.80 0.93 0.95 0.75 0.50 0.43 0.46 0.82 0.86
Balance TP FN TN FP Accuracy recall precision Fl-score Specificity = Negative Accuracy Recall Precision F1-score Specificity Negative
sample predictive predictive
Raw LDA 54 2 64 4 0.95 0.96 0.93 0.95 0.94 0.97 0.90 1.00 0.83 0.90 0.82 1.00
SVM 47 9 63 5 0.89 0.84 0.90 0.87 0.93 0.88 0.88 0.84 0.89 0.86 0.91 0.87
KNN 52 4 58 10 0.89 0.93 0.84 0.88 0.85 0.94 0.88 0.89 0.85 0.87 0.86 0.90
SDA 54 2 5 12 0.89 0.96 0.82 0.89 0.82 0.97 0.85 1.00 0.76 0.86 0.73 1.00
SNV LDA 56 0 61 17 0.87 1.00 0.77 0.87 0.78 1.00 0.88 1.00 0.79 0.88 0.78 1.00
SVM 47 9 51 17 0.79 0.84 0.73 0.78 0.75 0.85 0.76 0.84 0.70 0.76 0.68 0.83
KNN 53 3 61 7 0.92 0.95 0.88 0.91 0.90 0.95 0.83 0.84 0.80 0.82 0.82 0.86
SDA 56 0 57 11 0.91 1.00 0.84 0.91 0.84 1.00 0.93 1.00 0.86 0.93 0.86 1.00
1% _dev LDA 54 2 60 8 0.92 0.96 0.87 0.92 0.88 0.97 0.88 1.00 0.79 0.88 0.77 1.00
SVM 47 9 59 9 0.85 0.84 0.84 0.84 0.87 0.87 0.85 0.84 0.84 0.84 0.86 0.86
KNN 54 2 55 13 0.88 0.96 0.81 0.88 0.81 0.96 0.90 0.95 0.86 0.90 0.86 0.95
SDA 54 2 50 18 0.84 0.96 0.75 0.84 0.74 0.96 0.85 1.00 0.76 0.86 0.73 1.00
Z"d_dev LDA 56 0 57 11 0.91 1.00 0.84 0.91 0.84 1.00 0.88 1.00 0.79 0.88 0.77 1.00
SVM 48 8 62 6 0.89 0.86 0.89 0.87 0.91 0.89 0.88 0.84 0.89 0.86 0.91 0.87
KNN 56 0 58 10 0.92 1.00 0.85 0.92 0.85 1.00 0.88 0.95 0.82 0.88 0.82 0.95
SDA 56 0 46 22 0.82 1.00 0.72 0.84 0.68 1.00 0.90 1.00 0.83 0.90 0.82 1.00

3.3.3 Comparison between LWNIR and SWNIR

A comparison of the model performance between LWNIR and SWNIR shows that the classification model built using the LWNIR
wavelength range performed significantly better than that built using SWNIR, particularly when the samples between the two groups
were imbalanced. However, when the two groups were balanced, the performance of both LWNIR and SWNIR was similar. Thus,
both wavelengths could be used for online measurement. In addition, the LDA and KNN algorithms, when combined with derivative-
based spectral preprocessing, performed well for both LWNIR and SWNIR. This result could be attributed to the fact that the LWNIR
range has a higher absorbance and is less susceptible to external light interference compared with the SWNIR range. Additionally, the
experimental results from both wavelength ranges indicated that scanning along the entire length of the durian fruit to obtain a spectrum
representative of the whole fruit helped reduce the impact of spikes more effectively than scanning individual points, as reported in
previous studies. This approach resulted in a more efficient model. However, some areas still require further investigation. For instance,
increasing the intensity of the light source may improve the prediction accuracy because it can help reduce the scanning noise and
enhance the overall performance. The performance of the 15 derivative and LDA models can be attributed to the reduced baseline drift
and improved class separation, enhancing the classification accuracy. While we acknowledge trade-offs between accuracy and
precision across models, simpler approaches, such as LDA, with fewer latent variables, offer practical advantages for real-time
application. This finding is consistent with Cen and He [40], who showed that derivative preprocessing combined with linear classifiers
improves online interpretability and efficiency [40]. LWNIR (860—1750 nm) has a wavelength range that covers more than that of
SWNIR (450-1000 nm). The absorption bands are related to the water and starch components (e.g., the region around 1450 nm, which
corresponds to the DM value), which play a crucial role in determining the ripeness levels of durian. As a result, the LWNIR model
has significantly higher accuracy in cases of imbalanced data. After the application of SMOTE, the performance gap between LWNIR
and SWNIR diminished, indicating that the initial superiority of LWNIR was mainly due to class imbalance rather than inherent spectral
advantages.

The use of SMOTE effectively addresses the problem of class imbalance by generating additional samples for minority classes,
enabling the model to learn more comprehensively and improving performance metrics, such as F1-score and balanced accuracy.
However, synthetic data generation may introduce noise or lead to overfitting if applied inappropriately, and the outcomes largely
depend on dataset characteristics and classifier sensitivity. Therefore, selecting the appropriate SMOTE variant is crucial to ensure
optimal results for a given dataset and model. [26, 41].

Our results showed similar accuracy to the experiment by Talabnark and Terdwongworakul [42], in which durian fruits were
scanned while stationary. They found that FT-NIR across the full wavelength range (800-2500 nm) could classify the maturity levels
of durian fruit at different ages (101, 108, 115, and 122 DAB), using smoothed peel spectra with a reasonably high accuracy of 87.48%.
Somton et al. [37] also reported a classification model developed using NIR (1000-2500 nm) [37]. Their model, which combined peel
and stem spectra from stationary scans, achieved a higher accuracy than that based solely on peel spectra, reaching 94.4% compared
with 87.5%. This result demonstrated that incorporating spectra from durian stems along with peel spectra improved classification
accuracy. By contrast, Timkhum and Terdwongworakul [43] used SWNIR (350-750 nm) to distinguish between five ripening stages
(106-134 DAB) of durian fruits, with a classification accuracy of 83.30%. These findings are consistent with previous analyses that
compared short- and long-wave spectra, suggesting that models that use different wavelength ranges perform similarly in classification
tasks.



Engineering and Applied Science Research 2026;53(1) 71
3.4 Regression model

The results of the regression models are shown in Table 5, which presents the prediction results for DM developed using LWNIR
and SWNIR spectra with R2, SEP, RPD, and bias values. The analysis showed that for LWNIR spectral analysis, the second derivative
method performed the best, with calibration (R2c) values of 0.85 and validation (R2v) values of 0.89. The standard errors of calibration
(SEC), cross-validation (SECV), and prediction (SEP) were 4.75%, 6.23%, and 5.00%, respectively, and the RPD was 2.29. For
SWNIR spectral analysis, the raw spectra provided the highest accuracy, with R2c for the calibration set being 0.83 and R2v for the
validation set being 0.80. SEC, SECV, and SEP were 11%, 4.37%, and 6.69%, respectively, with an RPD of 1.71. The scatter plot
compares the measured and predicted values from PLSR, as shown in Figure 8. Although the SW-raw model achieved high accuracy,
the SW-2" derivative model was considered more practical for real-time applications. This is because the 2" derivative not only
reduced the number of required latent variables, thereby improving model simplicity and minimizing the risk of overfitting, but also
corrected for baseline shifts and light scattering while enhancing the resolution of overlapping peaks. These advantages lead to more
robust and interpretable models, which are crucial for reliable implementation of online NIR spectroscopy systems. The model that
uses spectra from LWNIR with 2™ derivative processing shows the highest efficiency in predicting the durian DM value. This is
because LWNIR covers the absorption bands of water and starch. In particular, the region of 1450 nm corresponds to the O—H stretching
overtone that reflects the moisture content and DM well (see Figure 9). Using the 2™ derivative, it also helps reduce scatter noise and
baseline from the durian peel and allows the model to differentiate samples more accurately. However, the models were developed for
specific orchards and varieties, which may introduce bias when applied to other cultivation areas. Therefore, external validation across
different orchards and cultivars is recommended prior to large-scale industrial adoption.

Our research demonstrated better performance than Phuangsombut et al. [18] and Onsawai et al. [14] did in creating models to
predict the DM content of durian. Our research achieved an R2 of 0.89, while Phuangsombut et al. [18] obtained an R2 of 0.67 and
Onsawai et al. [14] achieved an R? of 0.55 [13,17]. Which is consistent with Puttipipatkajorn et al. [44], who showed that the rind and
stem spectra can indirectly predict durian pulp DM. Unlike their offline setup, this study developed an online NIR system that can
classify intact fruits on a conveyor, demonstrating practical applicability for industrial use. The strong LWNIR absorption around 1450
nm further confirmed the physiological linkage between the rind and pulp, supporting real-time maturity assessment [44]. Our study
used an online spectral measurement method that involved measuring the spectra of the entire fruit, representing the entire durian. By
contrast, previous studies employed point-based contact scanning with or without removing the spikes, which had a significant impact
on the spectra.

Table 5 Results of modeling for DM weight prediction for conveyor belt scanning data of LWNIR and SWNIR

Spectral  Calibration set Validation set
range Pretreatment N Factor R% SEC  SECV n R% SEP RPD Bias
LW Raw 87 10 0.78 5.51 6.76 25 0.81 6.45 1.78 -0.14
1t dev 12 0.81 5.07 6.79 0.85 5.70 2.01 0.43
2" dev 12 0.85 4.75 6.23 0.89 5.00 2.29 -0.05
SNV 13 0.79 5.38 7.08 0.83 6.09 1.88 0.04
SwW Raw 87 11 0.85 4.37 6.25 25  0.80 6.69 1.71 -0.17
1t dev 6 0.80 5.18 6.26 0.77 7.15 1.60 -0.17
2" dev 6 0.83 4.75 6.15 0.79 6.89 1.66 0.18
SNV 12 0.79 5.32 7.67 0.77 7.06 1.62 -0.69
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Figure 8 Scatter plots between measured and predicted value in the prediction of DM of durian a) LWNIR of the calibration set, b)
LWNIR of the test set, c) SWNIR of the calibration set, and d) SWNIR of the test set.
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Figure 9 Regression coefficients of the PLSR model for predicting durian DM.

The experimental results and a comparison with previous studies show that for contact-based measurements, scanning durians with
the spikes removed (to create a flat surface) yields better results than scanning without removing the spikes. However, if nondestructive
scanning of the whole durian fruit is preferred, without cutting the spikes, then a non-contact measurement method should be used.
Therefore, appropriate preprocessing is necessary. Specifically, applying the second derivative can reduce the baseline effects and
enhance the clarity of important peaks. This approach reduces the influence of spikes and provides better model performance, as
demonstrated by our experimental results. The resulting spectra represent the entire fruit, demonstrating that this method can be applied
for online DM measurements of durians as they move along a conveyor belt.

4, Conclusions

The proposed method enables online assessment of durian fruit quality based on DM, categorizing them into two groups: rejected
(DM < 32%) and accepted (DM > 32%). The model performed well when developed using a balanced dataset for LWNIR and SWNIR
spectra. The most effective approach for model development, based on conveyor belt scanning, was derived from LWNIR spectra
using the 1% derivative-LDA, as it could be applied to both imbalanced and balanced datasets. The feasibility of classifying durian
grades based on DM was confirmed by the PLSR model, which predicted DM with an r2 of up to 0.80 for LWNIR and SWNIR. NIR
spectroscopy demonstrated high potential for nondestructive classification of durian quality. Online quality grading on a conveyor belt
can be implemented for quality control, particularly during the sorting process for produce in the durian export industry. It can also be
applied to post-harvest quality assessment.
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