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Abstract 

 

Missing data remains a significant challenge in emergency medicine, particularly in mortality prediction models. This study investigates 

five distinct missing value handling methods applied to various machine learning algorithms using a dataset of 331,151 emergency 

department records from a Thai hospital (2016–2021). The study evaluates complete case analysis, zero imputation, mean imputation, 

k-Nearest Neighbors (kNN) imputation, and MissForest, combined with logistic regression, decision tree, random forest, Light 

Gradient Boosting Machine (LightGBM), and Extreme Gradient Boosting (XGBoost). The results indicate that XGBoost with zero 

imputation delivers the best performance, achieving an accuracy of 0.8659, precision of 0.8726, recall of 0.8659, F1-score of 0.8681, 

and an AUC ranging from 0.8848 to 0.9947 across eight prediction classes. Furthermore, tree-based models demonstrated greater 

stability across different missing value handling methods, whereas linear models were more sensitive to imputation techniques. These 

findings suggest that strategic selection of missing data handling approaches can significantly enhance the reliability of mortality 

predictions in emergency care settings. 
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1. Introduction 

 

The over-triaging of patients in emergency departments (EDs) has emerged as a major issue for resource constraints and operational 

inefficiencies [1]. This issue contributes to broader challenges of ED overcrowding, which can result in inadequate patient outcomes 

[2]. When combined with escalating demands for emergency care, over-triaging creates significant bottlenecks, straining the already 

limited available resources and leading to their suboptimal utilization [3]. 

To solve the over-triaging issue, machine learning (ML) has become a pervasive technology in contemporary society, finding 

application across a diverse array of disciplines. The fundamental principle underlying ML is the utilization of historical data to enable 

autonomous learning and the prediction of outcomes with unseen data. A significant advantage of ML is its capacity to mitigate biases 

arising from human error [4]. Numerous applications have been developed within the medical field, including prediction of heart failure 

and cancer or tumor detection through image classification [5]. Recent advancements in the field of emergency medicine have yielded 

a wide range of treatment options and enhanced patient outcomes, particularly in cases of urgent health concerns. ML algorithms have 

been employed in emergency medicine to predict mortality outcomes and admissions [6]. However, only a limited number of studies 

have been conducted to predict the multiple outcomes of emergency triage like death in emergency room (ER), death within 24 hours, 

admission to the intensive care unit (ICU), and in-hospitality admission. 

Missing data is a common issue in real-world clinical datasets. It can be caused by human error, differences in documentation 

practices, equipment failure or patient conditions that prevent data collection. The presence of missing data within a specific dataset 

can be so pervasive that the deletion of the record containing the missing value becomes unfeasible [7]. Addressing missing data can 

be achieved through various techniques, including deletion, ignoring, estimation of statistical values, and imputation [8]. In high-

pressure environments such as EDs, incorrect or biased predictions resulting from unaddressed missing values can result in poor clinical 

decisions. 

Despite the significance of this problem, existing studies often overlook the impact of different missing value handling strategies 

on model performance—particularly in multi-class prediction settings where the stakes vary across outcomes like ICU admission or 

short-term mortality. Moreover, many studies focus on accuracy, neglecting other critical evaluation metrics such as recall and precision 

that are vital in clinical contexts. 

To address these limitations, this study investigates the impact of five missing value handling methods on the performance of five 

machine learning models in predicting eight different emergency department mortality and admission outcomes. The objective is to 
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identify effective imputation techniques that can enhance model robustness and predictive performance in the presence of incomplete 

data. The findings aim to guide future model development for real-world emergency care environments where data quality issues are 

inevitable. 

The following sections of this research will build upon the previously reviewed literature concerning mortality prediction with 

machine learning and methods for handling missing data on the dataset. Section 3 will describe methodology of the research including 

dataset description, data preparation, imputation methods, ML models and evaluation metrics. Section 4 will present the results of the 

computational analysis. Section 5 will provide a discussion of the research's results. Finally, section 6 will offer a summary of the 

research's findings and their future implications. 

 

2. Literature review 

 

2.1 Machine learning in emergency medicine 

  

A variety of features were employed in the prediction of mortality, including age, sex, vital signs (e.g., body temperature, heart 

rate, blood pressure, and oxygen saturation), and transportation method (e.g., self-entrance or emergency van) [9-11]. Studies have 

used machine learning to predict the mortality and triaging scores.  

Several studies have successfully demonstrated the effectiveness of ML in predicting binary clinical outcomes. For example, 

logistic regression and random forest have been applied to predict 7-day and 30-day mortality, achieving AUCs above 0.90 in training 

sets [10]. Similarly, deep learning and ensemble tree models have outperformed conventional triage systems in estimating Emergency 

Severity Index (ESI) scores and predicting ICU admissions [11].  

However, many of these models are limited to binary classification and do not account for the range of clinically relevant outcomes. 

A study highlighted the need for multi-class prediction models in ED settings to better reflect the complexity of patient trajectories 

[12]. Moreover, most of the reviewed studies assume complete data availability, despite the reality that EHRs are often incomplete. 

Thus, while prior research supports the potential of ML in emergency medicine, there remains a gap in the development of models 

that can handle multiple outcomes under real-world data conditions, particularly when dealing with missing values. 

 

2.2 Missing value handling methods in Electronic Health Record (EHR) dataset 

 

Based on probability and distribution, the missing data can be divided into three main mechanisms: not missing at random (NMAR), 

missing at random (MAR), and missing completely at random (MCAR). Missingness that is unrelated to observed or missing data is a 

characteristic of MCAR. On the other hand, missingness is linked to observed data but not to missing data, according to MAR. Lastly, 

NMAR indicates that missing values in the data matrix directly affect missing data [13]. Traditional methods for handling missing data, 

such as complete case analysis or mean imputation, are simple to apply but can lead to biased results or significant information loss 

when the assumptions of MCAR are violated [14]. 

In response to these limitations, more advanced imputation methods have emerged. MissForest, which uses random forests to 

estimate missing values has shown improved performance over statistical methods, especially in high-dimensional medical datasets 

[15]. A recent study [16] analyzed EHR data from diabetic patients and found that multiple imputation using chained equations (MICE) 

yielded better prediction accuracy than complete case analysis, highlighting the importance of robust imputation in clinical settings. 

Interpretable machine learning has also been explored in the context of missing data. A study demonstrated how explainable 

boosting machines (EBMs) can help uncover missingness mechanisms and guide imputation strategy selection [17]. Another study 

used the Framingham Heart Study dataset, compared traditional imputation methods with deep learning techniques such as 

autoencoders and generative adversarial networks (GANs) [18]. Their findings showed that deep learning models better preserved the 

underlying data structure, particularly in clinical domains. 

Moreover, studies have explored optimization-based approaches. For example, hybrid methods using whale optimization and late 

acceptance hill climbing have improved imputation for diabetic patient datasets [19]. Similarly, multi-objective particle swarm 

optimization (MOPSO) has been applied to maximize sensitivity and specificity in cancer datasets with missing data [20]. 

While these methods show promise, most studies focus on improving a single performance metric—typically accuracy—without 

considering precision or recall. This limits their clinical relevance, as false negatives in mortality prediction can have severe 

consequences. Moreover, few works evaluate these techniques across multiple ML models and multiclass outcomes, which is critical 

in emergency triage where patients can follow diverse trajectories (e.g., death in a day, ICU admission, or discharge). 

 

2.3 Research gap 

 

Despite the increasing integration of machine learning in emergency medicine, several critical gaps remain in the literature—

particularly regarding the treatment of missing data in multiclass clinical prediction tasks. 

First, most prior research assumes a complete dataset or only superficially addresses missingness using simplistic strategies such 

as complete case analysis or mean imputation. While these methods are easy to implement, they often introduce bias, reduce statistical 

power, or fail to reflect real-world data conditions where missing values are pervasive and non-random. Although some advanced 

imputation methods have been proposed—such as MissForest, kNN, or optimization-based techniques—there is limited comparative 

evaluation across multiple methods within the same experimental framework. This makes it difficult to determine which techniques 

are most robust or suitable for high-stakes clinical applications. 

Second, much of the existing literature focuses on binary outcomes (e.g., survival vs. death, admit vs. discharge), which 

oversimplifies the spectrum of patient conditions in emergency departments. Real-world scenarios often involve a variety of possible 

outcomes, such as death within different time windows (1, 3, 7, or 60 days), ICU admission, or discharge to general wards. These 

outcomes have different implications for hospital resource allocation and patient management but are rarely captured together in 

machine learning models. 

Third, while some studies report accuracy, fewer consider additional performance metrics such as precision, recall, and AUC, 

which are essential for evaluating predictive models in clinical environments where false negatives or false positives can lead to serious 

consequences. Additionally, performance stability across imputation methods and model types is rarely analyzed—yet this is vital in 

healthcare settings where missing data mechanisms may change over time or vary between institutions. 
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To address these gaps, this study presents a large-scale, multiclass evaluation of five missing value handling methods—ranging 

from simple substitutions including complete case analysts, zero imputation and mean imputation to algorithmic imputations including, 

k-NN imputation and MissForest—across five machine learning models including logistic regression, decision tree, random forest, 

Light Gradient Boosted Machine (LightGBM), and eXtreme Gradient Boosting (XGBoost). Using real-world emergency department 

data with eight clinically relevant outcome classes, the analysis considers not only accuracy, but also precision, recall, F1-score, and 

AUC. This comprehensive approach provides robust insights into which imputation techniques and model combinations offer the most 

reliable performance under the constraints of real-world clinical data. 

 

3. Methodology 

  

The experiment is coded using Python 3.10.13, which was executed locally on an M3 Apple silicon CPU. To scale and generate 

models, the Scikit-Learn, LightGBM and XGBoost libraries were utilized. The dataset's imbalanced class was addressed using the 

Imbalanced-learn library. 

 

3.1 Dataset description 

  

The dataset was retrieved from an ED of a hospital located in north-eastern region of Thailand, comprising a total of 331,151 

records during the period from 2016 to 2021. dataset consists of eight classes and 20 features including vital signs, laboratory tests, 

nurses' triage, procedure complexity evaluation, and patient-transfer types. The characteristics and missingness of each feature are 

presented in Table 1. The number of eight prediction classes which are death in a day, three days, seven days, 28 days, 60 days, 

Intensive Care Unit (ICU), admit, and others, are 383, 309, 284, 622, 182, 7,394, 46,019 and 275,958, respectively. 

 

Table 1 Feature characteristics and their missingness 

 

 

3.2 Data preprocessing  

  

The categorical features in the dataset were encoded using One-hot encoding method. Subsequently, the data matrix was scaled 

using Min-Max scaler. Then, the missing values were addressed using each missing value handling method. Once the missing values 

were handled, the dataset was split into training (80%) and testing (20%) subsets. Then, Synthetic Minority Over-sampling Technique 

(SMOTE) [21] was used only on the training set to address class imbalance and to keep the test set’s original distribution. This approach 

ensures that oversampling does not introduce synthetic data into the test set, preserving its original distribution. The preprocessing 

pipeline is illustrated in Figure 1. 

 

3.3 Missing value handling method 

  

A variety of missing value handling methods have been developed to address the issue of missing data points in datasets. These 

methods encompass a range of approaches, from the straightforward, such as complete case analysis, to the more complex, including 

single imputation methods like zero imputation or mean imputation, [13] and algorithmic imputation techniques like KNN imputation 

[22] or MissForest [23]. 

 

3.3.1 Complete case analysis 

  

The term "complete case analysis" refers to a methodological approach that involves the exclusion of missing values, thereby 

simplifying the handling of incomplete datasets by eliminating the samples that contain missing elements. 

Feature n = 331,151 Missingness (%) 

Age, median 38 0 

Sex, mode(n) Female (185,676) 0 

Patient Type, mode(n) Non Trauma (279,265) 0 

Temperature, mean 36.93 9.7140 

PR, mean 91.99 4.4242 

RR, mean 20.68 4.4309 

SBP, mean 130.02 6.2488 

DBP, mean 77.51 6.2555 

MAP, mean 89.47 0.0012 

O2 Sat., mean 97.89 10.8654 

Eye score, mode(n) 4 (277,066) 15.0542 

Voice score, mode(n) 5 (275,203) 15.1375 

Movement score, mode(n) 6 (276,609) 15.1737 

Triage, mode(n) Level 4 Less Urgency (132,299) 0 

Cardiac arrest, mode(n) No (330,611) 0 

EKG, mode(n) No (267,010) 1.7360 

Plain radiography, mode(n) No (212,187) 1.7361 

CT scan, mode(n) No (316,642) 0 

Blood test, mode(n) No (198,985) 0 

EMS No (315,650) 0 
PR = Pulse Rate, RR = Respiratory Rate, SDP = Systolic Blood Pressure, DBP = Diastolic Blood Pressure, O2 Sat = Oxygen Saturation, EKG = 
Electrocardiogram, CT scan = Computerized Tomography scan, EMS = Emergency Medical Services 
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Figure 1 Overall framework of the research 

 

3.3.2 Zero imputation  

 

Zero imputation is a missing value handling that involves replacing any missing values in the dataset with the value of zero.  

 

3.3.3 Mean imputation 

   

Mean imputation is a classical approach in statistical methodology for handling missing data. The underlying principle is 

straightforward yet powerful: it replaces missing values with the arithmetic mean of the observed values for that variable. 

 

3.3.4 k-Nearest Neighbors (KNN) imputation 

  

The k-nearest neighbors imputer is predicated on the principle that data points sharing similar characteristics will likely possess 

analogous values. The imputer methodically identifies the k most similar data points (neighbors) that are complete, subsequently 

utilizing these data points as a reference to estimate the value of missingness [22]. 

 

3.3.5 MissForest 

  

MissForest is a non-parametric imputation algorithm that can handle missing values of different types. It employs a random forest 

model to predict a single missing point in a dataset. The algorithm's use of multiple trees, or bootstrapping, helps to reduce overfitting 

and improve the accuracy of the predictions [23]. 

 

3.4 Machine learning models 

  

Five machine learning algorithms were used in this study, including tree-based models like decision trees, random forests, light 

gradient boosting machine (LightGBM), and extreme gradient boosting (XGBoost) trees, as well as linear models like logistic 

regression. These algorithms were implemented with 10-fold cross-validation without replacement to select the optimal combination 

of ML model and missing value handling method.  

 

3.4.1 Logistic regression 

  

Logistic regression represents a particular type of linear model that has been developed for the purposes of classification. This 

model involves the calculation of prediction probabilities, which are determined using coefficients in linear equations [24]. 

 

3.4.2 Decision tree 

  

A non-parametric machine learning algorithm known as Decision Tree utilizes the advantages of the recursive feature space 

partitioning principle. This process involves the division of feature spaces into nodes and leaves, a process that continues until the 

information gain is maximized or the impurity measures are minimized [25]. 

 

3.4.3 Random forest 

  

The random forest methodology extends the concept of decision trees through the ensemble methodology, employing the bootstrap 

aggregating (Bagging) technique combined with a random feature selection process. The final classification prediction is determined 

by the majority vote of the ensemble members [26]. 
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3.4.4 Light Gradient Boosting Machine (LightGBM) 

  

The LightGBM, an ensemble learning decision tree, employs a light gradient boosting strategy that has been shown to enhance 

model performance while minimizing memory usage and training time. This approach utilizes a histogram-based algorithm to construct 

the decision tree, a method that has been demonstrated to optimize operational efficiency. [27].  

 

3.4.5 Extreme Gradient Boosting (XGBoost) 

  

The Extreme Gradient Boosting (XGBoost) tree is a popular machine learning model designed for distributed optimization. It has 

been utilized in various applications due to its capacity for high-efficiency and adaptability. The XGBoost algorithm employs a 

gradient-boosting tree architecture, which facilitates parallel computing, resulting in enhanced accuracy and speed for machine learning 

tasks. [28]. 

 

3.5 Evaluation metrics 

  

The evaluation of ML algorithms employed various metrics, including accuracy, weighted precision, weighted recall, and weighted 

F1 score. Accuracy is defined as the extent to which a model correctly predicts values. Precision, also known as PPV, signifies the 

performance of a model to accurately predict positive outcomes. Recall, alternatively, is the frequency with which a model identifies 

true positive instances among all positive instances. The F1 score is a metric that balances precision and recall, offering a 

comprehensive assessment of the model's performance. In this research, weighted precision, recall and F1-score will be used throughout 

the analysis. Moreover, Receiver Operating Characteristics (ROC) and Area Under ROC (AUC) curves of each class will be assessed 

with the selected combination ML model and missing value handling methods. 

 

4. Results  

 

4.1 Performance of missing value handling methods 

  

As shown in Table 2 and visualized in Figure 2 to Figure 5, the results of 10-fold cross-validated metrics tested on five machine 

learning models including logistic regression, decision tree, random forest, light gradient boosted machine and extreme gradient 

boosting applied with five missing value handling methods which are complete case analysis, zero imputation, mean imputation, kNN 

imputation and MissForest are presented. The best-performed combination between ML model and missing value handling method is 

random forest with kNN imputation with the accuracy of 0.9806, precision of 0.9812, recall of 0.9806, and F1-score of 0.9806. 

Moreover, the results of testing dataset show that combining logistic regression model with any missing value handling method 

outperformed the complete case analysis one by approximately 2%. The best performed pair of random forest and kNN imputation in 

the training and validation lacks a short amount of performance in all metrics when contrasted with the combination of XGBoost and 

zero imputation, yielding 0.8659, 0.8726, 0.8659, and 0.8681 in accuracy, precision, recall, and F1-score, respectively.   

 

Table 2 Training and testing results of each ML model and missing value handling method 

 

 

 

Model Method 
Training   Testing 

accuracy precision recall f1-score 
 

accuracy precision recall f1-score   

Logistic Regression     
 

    

 Complete Case Analysis 0.4485 0.4430 0.4485 0.4373  0.7126 0.8688 0.7126 0.7726 
 Zero Imputation 0.4701 0.4666 0.4701 0.4621  0.7335 0.8739 0.7335 0.7876 
 Mean Imputation 0.4674 0.4620 0.4674 0.4584  0.7339 0.8737 0.7339 0.7868 
 KNN Imputation 0.4664 0.4621 0.4664 0.4583  0.7325 0.8736 0.7325 0.7864 
 MissForest 0.4674 0.4620 0.4674 0.4584  0.7339 0.8737 0.7339 0.7868 

Decision Tree     
 

    

 Complete Case Analysis 0.9550 0.9555 0.9550 0.9547  0.8068 0.8339 0.8068 0.8193 
 Zero Imputation 0.9548 0.9553 0.9548 0.9547  0.8221 0.8463 0.8221 0.8333 
 Mean Imputation 0.9547 0.9552 0.9547 0.9545  0.8193 0.8457 0.8193 0.8314 
 KNN Imputation 0.9564 0.9569 0.9564 0.9562  0.8205 0.8468 0.8205 0.8326 
 MissForest 0.9547 0.9552 0.9547 0.9545  0.8194 0.8463 0.8194 0.8318 

Random Forest     
 

    

 Complete Case Analysis 0.9798 0.9804 0.9798 0.9797  0.8444 0.8653 0.8444 0.8532 
 Zero Imputation 0.9781 0.9787 0.9781 0.9781  0.8543 0.8755 0.8543 0.8631 
 Mean Imputation 0.9783 0.9789 0.9783 0.9782  0.8538 0.8739 0.8538 0.8622 
 KNN Imputation 0.9804 0.9810 0.9804 0.9803  0.8543 0.8743 0.8543 0.8627 
 MissForest 0.9783 0.9789 0.9783 0.9782  0.8538 0.8739 0.8538 0.8622 

LightGBM      
 

    

 Complete Case Analysis 0.8683 0.8652 0.8683 0.8633  0.8581 0.8620 0.8581 0.8577 
 Zero Imputation 0.8531 0.8493 0.8531 0.8483  0.8657 0.8699 0.8657 0.8653 
 Mean Imputation 0.8532 0.8494 0.8532 0.8483  0.8659 0.8703 0.8659 0.8657 
 KNN Imputation 0.8452 0.8410 0.8452 0.8400  0.8639 0.8678 0.8639 0.8640 
 MissForest 0.8532 0.8494 0.8532 0.8483  0.8624 0.8681 0.8624 0.8634            

XGBoost      
 

    

 Complete Case Analysis 0.8822 0.8803 0.8822 0.8787  0.8585 0.8622 0.8585 0.8593 
 Zero Imputation 0.8703 0.8677 0.8703 0.8668  0.8659 0.8726 0.8659 0.8681 
 Mean Imputation 0.8713 0.8687 0.8713 0.8676  0.8647 0.8709 0.8647 0.8668 
 KNN Imputation 0.8629 0.8601 0.8629 0.8588  0.8632 0.8708 0.8632 0.8661 

  MissForest 0.8713 0.8687 0.8713 0.8676   0.8647 0.8709 0.8647 0.8668 
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Figure 2 Accuracy across ML models and imputation methods 

 

 
 

Figure 3 Precision across ML models and imputation methods 

 

 
 

Figure 4 Recall across ML models and imputation methods 
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Figure 5 F1-score across ML models and imputation methods 

 

4.2 One-vs-Rest (OvR) AUC analysis of models and missing value handling methods 

 

As shown in Table 3, the AUC values of the random forest model and the k-nearest neighbor (kNN) imputation method 

demonstrates the eight prediction targets, including death in a day, three days, seven days, 28 days, 60 days, ICU, admit, and others, 

are 0.9587, 0.8245, 0.8044, 0.8818, 0.7439, 0.9337, 0.9120 and 0.9375, respectively. In contrast, when considering the highest 

performing model on the testing dataset, combination of XGBoost and zero imputation, it can be seen the AUC values in all of the 

outcomes which are 0.9947, 0.9216, 0.8848, 0.9213, 0.9533, 0.9385, 0.9119 and 0.9420, respectively. 

 

Table 3 AUC results of ML model and missing value handling method 

 

 

5. Discussion 

 

5.1 Addressing the missing data challenge in mortality prediction 

 

A notable finding was that even basic imputation methods substantially improved linear model performance compared to complete 

case analysis, suggesting that in clinical settings, the utilization of any reasonable imputation strategy may be preferable to excluding 

Model Method 

AUC 

Death in 
ICU Admit Other 

1 day 3 days 7 days 28 days 60 days 

Logistic Regression         

 Complete Case Analysis 0.9576 0.9075 0.8783 0.9096 0.9398 0.8785 0.7789 0.9160 
 Zero Imputation 0.9887 0.9278 0.8956 0.9178 0.9414 0.8876 0.7919 0.9206 
 Mean Imputation 0.9900 0.9284 0.9031 0.9181 0.9475 0.8773 0.7934 0.9196 
 KNN Imputation 0.9904 0.9258 0.8908 0.9203 0.9459 0.8796 0.7926 0.9201 
 MissForest 0.9900 0.9284 0.9031 0.9181 0.9475 0.8773 0.7934 0.9196 

Decision Tree         

 Complete Case Analysis 0.5998 0.5631 0.5110 0.5295 0.4995 0.6258 0.7004 0.7808 
 Zero Imputation 0.7917 0.5314 0.5079 0.5298 0.5133 0.6314 0.7068 0.7867 
 Mean Imputation 0.7917 0.5069 0.5079 0.5098 0.4993 0.6328 0.7034 0.7858 
 KNN Imputation 0.8046 0.5230 0.5253 0.5176 0.5132 0.6321 0.7044 0.7881 
 MissForest 0.7917 0.5068 0.5167 0.5178 0.4993 0.6319 0.7039 0.7877 

Random Forest         

 Complete Case Analysis 0.7439 0.8455 0.8270 0.8837 0.7353 0.9264 0.9089 0.9343 
 Zero Imputation 0.9522 0.8187 0.8216 0.8545 0.6894 0.9317 0.9130 0.9383 
 Mean Imputation 0.9653 0.8345 0.7811 0.8575 0.6349 0.9326 0.9113 0.9368 
 KNN Imputation 0.9587 0.8245 0.8044 0.8818 0.7439 0.9337 0.9120 0.9375 
 MissForest 0.9651 0.8334 0.8050 0.8596 0.7021 0.9317 0.9119 0.9366 

LightGBM  
        

 Complete Case Analysis 0.9093 0.9087 0.9045 0.9294 0.9385 0.9332 0.9066 0.9390 
 Zero Imputation 0.9565 0.9183 0.9125 0.9297 0.9545 0.9404 0.9101 0.9413 
 Mean Imputation 0.9935 0.9417 0.9111 0.9254 0.9602 0.9376 0.9085 0.9404 
 KNN Imputation 0.9551 0.9309 0.9081 0.9332 0.9489 0.9372 0.9073 0.9391 
 MissForest 0.9816 0.9395 0.9103 0.9283 0.9536 0.9375 0.9053 0.9380 

XGBoost  
        

 Complete Case Analysis 0.8866 0.8930 0.8945 0.9075 0.9227 0.9284 0.9100 0.9392 
 Zero Imputation 0.9947 0.9216 0.8848 0.9213 0.9533 0.9385 0.9119 0.9420 
 Mean Imputation 0.9882 0.9274 0.8854 0.9207 0.9432 0.9364 0.9111 0.9417 
 KNN Imputation 0.9952 0.9154 0.8750 0.9230 0.9401 0.9345 0.9091 0.9402 

  MissForest 0.9882 0.9274 0.8854 0.9207 0.9432 0.9364 0.9111 0.9417 
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incomplete records when working with linear models. As stated in Bartlett et al. [14], despite the simplicity of complete case analysis, 

the result of performance is under-performed other methods in this circumstance. 

In contrast, tree-based models (e.g., decision tree, random forest, LightGBM, XGBoost) demonstrated greater stability across 

various imputation methods, likely due to their non-parametric nature and capacity to address missingness implicitly through feature 

splits. This stability underscores their suitability for real-world ED applications where missing data patterns are inherently 

unpredictable. 

 

5.2 Advancement in multi-class mortality prediction outcomes 

 

Due to the limitation of previous research, most of ML models for ED mortality prediction focus on a wide range of mortality 

outcomes which are death in seven and 30 days [10, 12] which may fail to capture the more complex patient outcomes. This research 

expands the predicting outcomes into eight different trajectories including death in a day, three days, seven days, 28 days, 60 days, 

ICU admission, general admission, and others.  

The expanded range of patient outcomes allows ED to identify patients at emergent risk of death, recognize moderate-risk patient, 

allocate ICU resources more efficiently and reduce unnecessary hospital admissions. With all of the benefits mentioned above, it leads 

to higher patient satisfaction, lower operating cost and better hospital’s resources allocation. 

 

5.3 Research implications, limitations and future directions 

  

The research provides the findings that missing value handling can significantly improve the performance of prediction in both 

training and hold-out dataset. These results suggest that such a combination can effectively guide triage processes, enhancing patient 

care and streamlining hospital operations. The resilience of tree-based models, like random forest, across different imputation 

techniques highlights their potential as reliable tools in real-world ED settings, where data inconsistencies are common. 

Although the research is giving promising results, it has some limitations. The data derived only from a hospital in the northeastern 

part of Thailand, so it might not show how patients, medical practice, or data problems are taken in other places which may restrict the 

application of model elsewhere. In addition, the multi-class prediction framework relies on limited sample sizes for some outcomes 

(e.g., only 182 cases of death within 60 days), which could lower the model’s reliability for rarer events, despite the use of SMOTE to 

balance classes. 

In the future, researchers may consider evaluating the model in various healthcare settings, examining the role of mechanisms for 

handling missing data, and refining the approach to facilitate faster computation, making it suitable for real-time emergency department 

applications. This research utilized the original SMOTE technique to handle class imbalance. Future work can explore alternative or 

more advanced variants, such as Borderline-SMOTE, SMOTE-ENN, or wavelet-based ensemble approaches [29], which may offer 

additional performance gains in highly skewed datasets. Additionally, exploring advanced techniques, such as hybrid imputation 

methods or neural network-based solutions, could potentially enhance performance, particularly in datasets with substantial missing 

data or complex missingness patterns. 

 

6. Conclusion 

  

This research contributes the understanding of impact of missing value handling methods in an emergency department mortality 

prediction and hospitalization. The employment of XGBoost and zero imputation has been demonstrated to yield higher performance 

metrics in comparison to alternative methodologies with the results of accuracy, precision, recall and f1-score of 0.8659, 0.8726, 

0.8659, and 0.8681, respectively, and the AUC values of death in a day, three days, seven days, 28 days, 60 days, ICU, admit, and 

others, are 0.9947, 0.9216, 0.8848, 0.9213, 0.9533, 0.9385, 0.9119 and 0.9420, respectively, thereby substantiating the efficacy of 

integrating missing value handling method with machine learning algorithms. Moreover, tree-based models have shown stability across 

a range of missing value approaches, a property that renders them particularly well-suited for real-world applications characterized by 

the presence of missing data. 

The findings of this research have practical implications for healthcare institutions that are developing mortality prediction systems. 

The clear advantage of certain model-imputation combinations provides concrete guidance for implementation choices. Research 

opportunities in the future will include examining the effectiveness of these methods in different healthcare contexts and investigating 

performance with varying patterns of missing data. 
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