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Abstract 

 

Friction Stir Spot Welding (FSSW) of Semi-Solid Metal (SSM) Aluminum Alloy 5083 poses challenges due to nonlinear interactions 

between process parameters and mechanical properties. Traditional optimization methods, such as Response Surface Methodology 

(RSM), provide statistical modeling but often fail to capture these complexities accurately. This study integrates Artificial Neural 

Networks (ANNs) with Genetic Algorithms (GAs) and Response Surface Methodology (RSM) to develop a hybrid optimization 

framework for FSSW parameter selection, aiming to enhance weld strength and hardness while minimizing the number of experimental 

trials. The ANN model, trained using a feed-forward backpropagation algorithm with the Levenberg-Marquardt learning rule, predicts 

tensile shear strength and weld hardness based on key parameters: rotational speed, travel speed, and dwell time. GA optimizes these 

parameters through an evolutionary search, while RSM validates the results and assesses parameter interactions. The optimized 

parameters 2143.93 RPM, 14.33 mm/min, and 6.58 s yield a shear strength of 5999.99 N. ANN exhibited lower mean absolute error 

(MAE) and root mean squared error (RMSE) than RSM, confirming superior predictive capability. However, RSM provided statistical 

validation, ensuring robust insights. The findings highlight the effectiveness of AI-driven optimization in welding applications, 

reducing experimental trials while ensuring optimal mechanical performance. Future research should explore the integration of deep 

learning and real-time sensor feedback for further enhancement. 
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1. Introduction 

 

Friction Stir Spot Welding (FSSW) has emerged as a promising solid-state technique for joining aluminum alloys in automotive, 

aerospace, and marine applications, offering advantages such as reduced thermal input, minimal deformation, and enhanced mechanical 

properties. Aluminum Alloy 5083 in its Semi-Solid Metal (SSM) state is valued for its strength and corrosion resistance, yet presents 

welding challenges due to complex heat flow, material behavior, and microstructural changes. Friction Stir Spot Welding (FSSW) is 

increasingly applied in lightweight structures across the automotive, aerospace, and electronics sectors due to its solid-state nature, 

which eliminates issues such as solidification cracking. However, its limitations include tool wear, restricted penetration depth, and 

difficulties in welding highly dissimilar materials. On the material side, Aluminum Alloy 5083 processed via Semi-Solid Metal (SSM) 

reheating offers superior properties, including a fine, globular, non-dendritic microstructure. This microstructure enhances resistance 

to deformation, reduces porosity, and improves flow behavior during welding, making it particularly suitable for solid-state welding 

processes such as FSSW. These limitations in FSSW highlight the importance of optimized parameters and material selection to ensure 

joint quality and consistency. Therefore, optimizing welding parameters is critical to ensuring joint integrity [1-3]. Traditional methods 

such as Response Surface Methodology (RSM) use second-order polynomial regression to model parameter interactions. While 

effective for general trends, RSM struggles to capture the highly nonlinear relationships in FSSW processes, limiting its predictive 

accuracy [4-6]. To overcome these limitations, data-driven approaches, particularly machine learning-based methods, are increasingly 

applied to welding optimization [7-9]. 

Artificial Neural Networks (ANN) have shown strong capabilities in modeling complex relationships between welding parameters 

and mechanical properties. Unlike Response Surface Methodology (RSM), which relies on predefined equations, ANN learns directly 

from experimental data, enabling more accurate predictions. Feed-forward networks trained via the Levenberg–Marquardt (LM) 

algorithm are particularly effective in welding applications [10-12]. However, ANN models require effective optimization to fine-tune 

parameters [13]. Genetic Algorithms (GA), based on evolutionary principles such as selection, crossover, and mutation, offer a robust 

approach to solving complex, nonlinear problems. Studies show GA outperforms other methods like Particle Swarm Optimization 
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(PSO) and Simulated Annealing (SA) in welding contexts [14, 15]. When combined with ANN, GA enhances model optimization, 

resulting in better weld quality and process efficiency [16]. 

The integration of Artificial Neural Networks (ANN) with Genetic Algorithms (GA) provides a hybrid optimization framework 

that combines predictive modeling with global search capabilities, addressing the limitations of conventional statistical methods. 

Models such as ANN-GA-RSM leverage machine learning and statistical validation to enhance both prediction accuracy and process 

stability [17-19]. This study aims to develop a hybrid ANN-GA approach for optimizing Friction Stir Spot Welding (FSSW) parameters 

of SSM Aluminum Alloy 5083, targeting maximum shear strength and weld hardness with minimal experimental effort. The approach 

involves training an ANN using the Levenberg–Marquardt algorithm, optimizing parameters through GA, and validating results via 

Response Surface Methodology (RSM). Key process parameters rotational speed, travel speed, and dwell time—are systematically 

varied. The model’s effectiveness is evaluated through comparison with RSM-based methods, hypothesizing that the hybrid ANN-GA 

approach offers superior accuracy, efficiency, and mechanical performance [20-24]. 

The novelty of this research lies in integrating AI-driven techniques with conventional statistical modeling to create a hybrid 

optimization framework for FSSW parameter selection. By leveraging ANN’s predictive power, GA’s global search capability, and 

RSM’s statistical validation, this study introduces a more accurate and efficient approach to welding optimization [25]. Beyond 

theoretical advancements, the findings of this study offer practical insights for industrial applications in automotive, aerospace, and 

marine manufacturing [26-28].  

The subsequent sections of this paper are organized as follows: Section 2 outlines the materials used and the experimental approach, 

providing insights into the welding configuration and the criteria for selecting parameters. Section 3 describes the implementation of 

ANN, GA, and RSM in the optimization process. Section 4 discusses the computational results and comparative analysis of different 

optimization techniques. Section 5 concludes with key findings, implications, and future research directions. By bridging the gap 

between AI-driven and traditional optimization approaches, this study contributes to advancing intelligent welding process 

optimization. 

 

2.  Materials and experimental methodology 

 

2.1 Material selection and preparation  

 

This research focuses on Semi-Solid Metal (SSM) Aluminum Alloy 5083, chosen for its exceptional mechanical strength, high 

corrosion resistance, and excellent weldability. These attributes make it a preferred material for use in marine, aerospace, and 

automotive engineering [29]. The alloy was processed using a semi-solid casting technique, which enhances microstructural uniformity, 

reduces porosity, and improves mechanical strength [30]. To ensure consistency and repeatability in the experimental procedures, the 

workpieces were precisely machined to dimensions of 30 mm in width, 100 mm in length, and 2 mm in thickness. 

The chemical composition of the aluminum alloy is presented in Table 1, highlighting that aluminum (Al) is the dominant element 

(92.73%), providing excellent corrosion resistance and lightweight properties [31]. The magnesium (Mg) content (5.96%) enhances 

strength and toughness, while manganese (Mn) (0.66%) and chromium (Cr) (0.06%) contribute to improved mechanical performance 

and corrosion resistance [32]. The presence of silicon (Si), iron (Fe), titanium (Ti), copper (Cu), and zinc (Zn) in trace amounts helps 

refine the microstructure, enhancing weldability and mechanical stability [33]. 

 

Table 1 Elemental composition of Aluminum Alloy 5083 (%) 

 

Element Si Fe Mg Mn Zn Cr Ti Cu Al 

% Composition 0.18 0.24 5.96 0.66 0.05 0.06 0.07 0.05 92.73 

 

Figure 1 presents both a schematic depiction and actual photographs of the specimen layout used in Friction Stir Spot Welding 

(FSSW), providing a comprehensive view of the workpiece configuration. The schematic in Figure 1(a) illustrates a rectangular 

aluminum specimen with a width of 30 mm, a length of 100 mm, and a centrally located circular weld spot [34]. The side view 

demonstrates the overlapping configuration of two aluminum sheets, each 2 mm thick, which are joined using the FSSW process. The 

schematic representation emphasizes uniform load distribution and optimal material flow during welding, essential for achieving strong 

and defect-free weld joints [35]. Figure 1(b) shows actual photographs of the welded specimen after FSSW processing, including both 

top and side views. These real images confirm the weld formation, surface morphology, and quality of the joint produced. The presence 

of a distinct circular weld mark validates the successful implementation of the welding process and supports the schematic layout 

presented in Figure 1(a). The precisely machined specimen dimensions facilitate repeatability and consistency in experimental testing, 

allowing for accurate assessment of mechanical performance, microstructural evolution, and weld quality. Shear strength testing was 

conducted using a universal testing machine under displacement control. The welded lap joint specimens (30 mm × 100 mm × 2 mm) 

were pulled in tension at a constant crosshead speed until fracture occurred. The maximum load recorded during the test was defined 

as the shear strength (in Newtons), adhering to the standard lap-shear testing procedure for spot-welded joints. 

 

 

 
 

 

(a) (b) 

 

Figure 1 Schematic and Actual Welded Specimen for Friction Stir Spot Welding (FSSW) of Aluminum Alloy 5083. (a) Schematic 

diagram of the specimen configuration showing dimensions and overlap arrangement, (b) Actual photographs of the welded specimen 

(top and side views) after FSSW processing. 
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2.2 Artificial Neural Network (ANN) Model  

 

An Artificial Neural Network (ANN) model was developed to optimize the process parameters in Friction Stir Spot Welding 

(FSSW) and to predict the mechanical properties of the welded joints. The network architecture consisted of three layers: an input 

layer, a hidden layer, and an output layer, designed to capture the complex relationships between the welding parameters and resulting 

mechanical performance [36]. The input layer included three key process variables: rotational speed, travel speed, and dwell time. The 

hidden layer, composed of 10 neurons, was responsible for modeling nonlinear interactions within the welding process. The output 

layer produced predictions for shear strength (N), enabling effective optimization of the welding parameters to achieve improved weld 

quality [37]. Compared to traditional statistical approaches, the ANN model demonstrated superior prediction accuracy and efficiency 

in welding process modeling [38]. The mathematical formulation of the ANN model is described as follows 

 

 Input Layer: 
The input layer consists of three process parameters: 

 

𝑋 = [𝑥1, 𝑥2, 𝑥3]                                                          (1) 

 

where: 

𝑥1 = Rotational Speed (RPM), 

𝑥2 = Travel Speed (mm/min), 

𝑥3 = Dwell Time (s). 

 

 Hidden Layer: 
The hidden layer contains 10 neurons, and each neuron receives weighted inputs, applies an activation function, and generates an 

output. 

The weighted sum for the 𝑗 th neuron in the hidden layer is given by: 

 

 𝑧𝑗 = ∑ 𝑤𝑖𝑗

3

𝑖=1

𝑥𝑖 + 𝑏𝑗 , 
(2) 

 

where: 

𝑤𝑖𝑗 represents the weight connecting the 𝑖 th input to the 𝑗 th hidden neuron, 

𝑏𝑗   is the bias term for the 𝑗 th hidden neuron. 

 

The activation function (typically a sigmoid or ReLU) is applied to obtain the hidden layer output: 

 

ℎ𝑗 = 𝑓(𝑧𝑗),                                                                         (3) 

 

where 𝑓(⋅) is the activation function. 

 

 Output Layer: 
The output layer consists of one neuron for predicting Tensile Shear Strength output neuron computes: 

 

 𝑦𝑘 = ∑ 𝑤𝑗𝑘
𝑜𝑢𝑡

10

𝑗=1

ℎ𝑗 + 𝑏𝑘
𝑜𝑢𝑡, 

(4) 

 

where: 

𝑤𝑗𝑘
𝑜𝑢𝑡  represents the weight connecting the 𝑗 th hidden neuron to the 𝑘 th output neuron, 

𝑏𝑘
𝑜𝑢𝑡  is the bias term for the 𝑘 th output neuron. 

 
The ANN model was trained using the feed-forward backpropagation algorithm with the Levenberg–Marquardt optimization 

technique, which is known for its fast convergence and high accuracy. The dataset was divided into three subsets: 80% for training, 

10% for validation, and 10% for testing, to ensure model robustness and generalizability [39]. This modeling approach reduces the 

number of experimental trials required and serves as an effective tool for welding parameter optimization in advanced manufacturing 

applications. 

 

2.3 Genetic Algorithm (GA) Optimization  

 

To further enhance the accuracy and efficiency of Friction Stir Spot Welding (FSSW) parameter optimization, a Genetic Algorithm 

(GA) was implemented as a metaheuristic approach to refine the Artificial Neural Network (ANN)-based predictive model [40]. GA 

is particularly effective for solving complex, nonlinear, multi-variable optimization problems, such as welding parameter selection, 

due to its global search capability and adaptive learning mechanism. This approach facilitates the identification of optimal welding 

parameters, ensuring enhanced mechanical performance while minimizing prediction errors [41]. In this study, GA was employed to 

fine-tune key welding parameters, including rotational speed, travel speed, and dwell time, to achieve the highest possible shear strength 

and weld hardness. The GA framework was structured as follows, as presented in Table 2. 
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Table 2 Genetic Algorithm (GA) Optimization Parameters 

 

The range of bounds Lower [1600, 5, 5] Upper [2400, 15, 15] 

Population Double vector 

Population size 50 

Number of Generations 50 

Selection function Tournament 

Crossover probability 90 % 

Mutation probability 1 % 

Crossover operator Single-point crossover 

 
The fitness function aimed to minimize the mean squared error (MSE) between ANN predictions and experimental results, ensuring 

alignment with the desired mechanical properties of welded joints [42]. As outlined in Table 2, the Genetic Algorithm (GA) employed 

iterative selection, crossover, and mutation to effectively identify optimal FSSW parameters, improving weld quality and structural 

integrity [43]. Compared to the Response Surface Methodology (RSM), GA demonstrated superior accuracy and adaptability, 

particularly in modeling nonlinear parameter interactions. The integration of ANN and GA resulted in higher predictive accuracy and 

reduced experimental error. This hybrid ANN-GA approach offers a robust, data-driven optimization framework that minimizes 

experimental trials while enhancing reliability, representing a significant advancement in intelligent welding parameter selection. 

 

2.4 Response Surface Methodology (RSM) Approach 

 

Response Surface Methodology (RSM) constitutes a statistical and mathematical technique utilized for refining various processes, 

including welding. This approach is instrumental in assessing the interactions between multiple independent variables such as process 

parameters and the corresponding dependent variables, which signify the intended results. Through the application of regression 

analysis, RSM models these relationships effectively. A second-order polynomial function is typically employed to mathematically 

define the response surface, allowing for precise representation and optimization. The general structure of this model is formulated as 

follows. 
 

 𝐴 = 𝜔0 + ∑ 𝜔𝑖𝐵𝑖

𝑘

𝑖=1

+ ∑ 𝜔𝑖𝑖𝐵    𝑖
2

𝑘

𝑖=1

+ ∑ ∑ 𝜔𝑖𝑗𝐵𝑖𝐵𝑗

𝑘

𝑗=𝑖+1

+ 𝜀

𝑘

𝑖=1

 

(5) 

       

where: 

𝐴  is the response variable, 

𝐵𝑖  are the independent variables, 

𝜔0  is the intercept, 

𝜔𝑖  are the linear coefficients, 

𝜔𝑖𝑖  are the quadratic coefficients, 

𝜔𝑖𝑗  are the interaction coefficients, and 

𝜀  is the error term. 

 
To enhance the optimization of Friction, Stir Spot Welding (FSSW) parameters, Response Surface Methodology (RSM) was 

applied as a statistical modeling approach to evaluate the effects of critical process variables on mechanical characteristics, including 

shear strength [44]. While the Artificial Neural Network (ANN) and Genetic Algorithm (GA) models provided a data-driven approach 

to parameter optimization, RSM served as a complementary validation tool, ensuring that the identified parameter relationships were 

statistically significant and experimentally verifiable [45]. 

RSM was utilized to assess how welding parameters such as rotational speed, travel speed, and dwell time impact weld quality 

[46]. This approach involved constructing a second-order polynomial regression model, enabling the analysis of both individual 

influences and interactive effects among process variables. The use of a Box-Behnken design allowed for a systematic investigation of 

parameter variations while minimizing the number of required experimental trials.  This approach provided a precise mathematical 

representation of how process inputs influence welding performance.  

 

3. Optimization 

 

3.1 Analysis of experimental results 

 

Evaluating the experimental findings offers valuable insights into how rotational speed, travel speed, and dwell time affect the 

shear strength of Friction Stir Spot Welding (FSSW) joints. The objective was to identify optimal parameter settings that maximize 

joint strength and ensure structural reliability. The selection of the three primary process variables rotational speed (1600–2400 RPM), 

travel speed (5–15 mm/min), and dwell time (5–15 s) was based on prior experimental studies on FSSW of aluminum alloys [1,2,34], 

initial feasibility trials to avoid tool wear and material distortion, and equipment limitations. These levels ensure a balanced 

representation of heat input and material flow suitable for the semi-solid-state processing of AA5083. The welding parameters selected 

for this study are outlined in Table 3, detailing the range of rotation speeds (1600, 2000, and 2400 RPM), travel speeds (5, 10, and 15 

mm/min), and dwell times (5, 10, and 15 s). The selected parameter levels were systematically adjusted to evaluate their effects on the 

mechanical properties of the welded joints. 
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Table 3 Optimization Parameter 

 

Parameter Levels 

Rotation speed (RPM) 1600, 2000, 2400 

Travel speed (mm/min) 5, 10, 15 

Dwell time (s) 5, 10, 15 

 

The outcomes, summarized in Table 4, demonstrate a clear correlation between welding parameters and mechanical properties. 

Notably, shear strength showed significant enhancement with increases in rotational speed and travel speed, while the influence of 

dwell time was found to be more nuanced, affecting heat input and material flow dynamics. 

 

Table 4 Mechanical Properties Results 

 

Test 
Rotation speed 

(RPM) 

Travel speed 

(mm/min) 

Dwell time   

(s) 

Shear Strength  

(N) 

FSW 1 1,600 5 5 2,122.24 

FSW 16 2,000 15 5 6,309.07 

 

The data reveal a marked improvement in mechanical strength under optimized conditions. For instance, FSW 1, performed with 

a rotation speed of 1600 RPM, travel speed of 5 mm/min, and dwell time of 5 s, resulted in a shear strength of 2,122.24 N, representing 

the lower end of the performance spectrum. Conversely, FSW 16, executed at a rotation speed of 2000 RPM, a travel speed of 15 

mm/min, and the same dwell time, achieved a significantly higher shear strength of 6,309.07 N. This substantial increase underscores 

the importance of optimizing welding parameters to enhance joint performance. The findings suggest that higher rotational and travel 

speeds promote better material mixing and consolidation, leading to improved mechanical interlocking and higher joint strength. 

However, the effect of dwell time needs careful management, as excessive heat input may lead to thermal degradation and reduced 

mechanical properties. 

 

3.2 Artificial Neural Network (ANN) Optimization 

 

To further enhance the predictive accuracy and parameter optimization capabilities of the ANN-GA model was integrated to refine 

the selection of Friction Stir Spot Welding (FSSW) parameters. The hybrid ANN-GA approach leverages the data-driven predictive 

power of ANN while utilizing GA’s global search capability to identify optimal welding conditions that maximize shear strength. The 

GA optimization process was designed to fine-tune key welding parameters, including rotational speed, travel speed, and dwell time, 

to achieve the highest possible mechanical performance. The optimization framework employed a population-based evolutionary 

search, where the algorithm iteratively selected, recombined, and mutated solutions to identify the optimal set of process parameters. 

The results of the ANN-GA optimization, as presented in Table 5, demonstrate the significant improvement in shear strength achieved 

through the refined parameter selection process. The optimal welding conditions identified by GA included a rotation speed of 2143.93 

RPM, a travel speed of 14.33 mm/min, and a dwell time of 6.58 s, which resulted in a shear strength of 5999.99 N. 

 

Table 5 ANN-GA Optimized Welding Parameters 

 

Rotation Speed (RPM) Travel Speed (mm/min) Dwell Time (s) Shear Strength (N) 

2143.93 14.33 6.58 5999.99 

 

 
 

Figure 2 ANN-GA Optimization Convergence. 

 

A graphical representation of the ANN-GA optimization process is shown in Figure 2, illustrating the evolutionary convergence of 

the GA model toward an optimal solution. The ANN-GA framework efficiently navigated the complex, nonlinear relationships between 

welding parameters and mechanical responses, ultimately identifying a globally optimized solution that outperformed traditional 

optimization techniques. 

The comparative analysis between ANN-GA and standalone ANN models confirmed that GA integration significantly improved 

the accuracy of tensile shear strength predictions while reducing experimental error. Additionally, the hybrid ANN-GA approach 

provided a more reliable and computationally efficient optimization strategy, minimizing the need for extensive experimental trials. 
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By combining machine learning with evolutionary optimization, this study presents a novel data-driven framework for FSSW parameter 

optimization, ensuring enhanced weld quality, process efficiency, and structural reliability. The findings highlight the potential of AI-

based methodologies in advancing materials processing and welding technology, establishing ANN-GA as a highly effective 

optimization tool for industrial applications in friction stir welding. 

 

3.3 The Response Surface Methodology (RSM) Optimization 

 

Alongside the ANN-GA optimization framework, RSM was utilized to enhance and statistically validate the optimization process 

for Friction Stir Spot Welding (FSSW) parameters. As a robust statistical technique, RSM employs regression analysis and response 

surface modeling to establish correlations between process variables and mechanical characteristics. By integrating RSM with the 

Genetic Algorithm (GA), this study ensures a more structured and experimentally validated approach to welding optimization. The 

RSM model was developed to evaluate the influence of rotational speed, travel speed, and dwell time on shear strength using a second-

order polynomial regression equation. This model enables the identification of both linear and nonlinear effects of process parameters, 

ensuring a precise mathematical representation of their interactions. To further enhance practical usability, the predictive model derived 

from RSM for estimating shear strength (𝑌) as a function of rotational speed (𝑋1), travel speed (𝑋2), and dwell time (𝑋3) is expressed 

as follows: 

 

𝑌 = −20824.1783 + 17.6339𝑋1 + 443.2299𝑋2 + 853.7145𝑋3 − 0.0033𝑋1
2 + 4.9083𝑋2

2 − 14.7569𝑋3
2

       − 0.1261𝑋1𝑋2 − 0.1909𝑋1𝑋3 − 20.6828𝑋2𝑋3.
                                      (6) 

 

This forecasting equation offers a straightforward analytical approach for estimating shear strength from known process parameters 

within the defined experimental range, supporting optimization and design planning tasks. Unlike ANN, which relies on data-driven 

learning, RSM explicitly defines these interactions, making it a complementary validation tool for predictive optimization frameworks. 

The results of RSM-GA optimization, as summarized in Table 6, indicate that the optimal welding parameters were identified as a 

rotation speed of 2204.28 RPM, a travel speed of 16.06 mm/min, and a dwell time of 5.83 s, yielding a shear strength of 5833.68 N. 

These values demonstrate the effectiveness of integrating statistical modeling with evolutionary algorithms to achieve superior weld 

strength. 

 

Table 6 RSM-GA Optimized Welding Parameters 

 

Rotation Speed (RPM) Travel Speed (mm/min) Dwell Time (s) Shear Strength (N) 

2204.28 16.06 5.83 5833.68 

 

The comparative evaluation between RSM-GA and ANN-GA revealed that while ANN-GA exhibited higher adaptability to 

nonlinear parameter relationships, RSM-GA provided a more structured and experimentally validated optimization approach. The 

integration of AI-based models with traditional statistical methods enhanced the reliability and accuracy of the optimization framework, 

reinforcing the importance of hybrid methodologies in advanced materials processing. By incorporating RSM into the FSSW parameter 

optimization process, this study demonstrates the value of statistically driven decision-making in welding applications. The 

combination of machine learning, genetic algorithms, and statistical modeling establishes a comprehensive and efficient strategy for 

optimizing welding parameters, ensuring process stability, enhanced joint strength, and reduced experimental costs. 

 

3.4 Comparative analysis  

 

A comparative evaluation was performed to examine the predictive capabilities of the Artificial Neural Network (ANN) and 

Response Surface Methodology (RSM) models in estimating the shear strength of Friction Stir Spot Welding (FSSW) joints. The 

primary goal was to identify the most effective method for capturing intricate correlations between welding parameters and mechanical 

properties while optimizing process conditions. The results in Table 7 indicate that the ANN model outperformed RSM in predictive 

accuracy. ANN effectively captured nonlinear interactions between rotational speed, travel speed, and dwell time, yielding lower MAE, 

RMSE, and mean MAPE values compared to RSM. Specifically, ANN achieved an RMSE of 389.42, MAE of 273.34, and MAPE of 

6.65%, whereas RSM exhibited higher errors with an RMSE of 406.75, MAE of 313.22, and MAPE of 7.36%. These results highlight 

ANN’s robust learning capability and its superior performance in handling complex datasets compared to the polynomial regression 

approach of RSM. 

ANN predictions are closely aligned with experimental shear strength values, particularly at optimized welding conditions. For 

instance, at FSW 16 (2000 RPM, 15 mm/min travel speed, and 5 s dwell time), the experimental shear strength was 6,309.07 N, with 

ANN predicting 6,081.97 N, whereas RSM estimated a lower value of 5,501.16 N. This demonstrates ANN’s ability to model intricate 

welding dynamics, whereas RSM’s polynomial regression may introduce deviations due to its assumptions of linearity. While RSM 

remains a valuable statistical tool for identifying parameter significance and interaction effects, ANN provides a more precise and 

adaptive predictive model. The integration of ANN with the Genetic Algorithm (GA) further enhances its optimization capabilities, 

reducing reliance on extensive experimental trials. The findings confirm that ANN-GA is a highly effective optimization framework 

for FSSW applications, offering improved accuracy, efficiency, and reliability in welding parameter selection and mechanical property 

prediction. Given the nonlinear nature of FSSW processes and the observed performance metrics, this study recommends the use of 

ANN-based models, especially when integrated with genetic algorithms as the preferred method for predictive modeling and 

optimization. RSM remains a useful statistical validation tool but is more limited in handling complex nonlinear dependencies. 

The Response Surface Methodology (RSM) analysis provides a comprehensive visualization of the effects of key process 

parameters on shear strength in Friction Stir Spot Welding (FSSW), as illustrated in Figure 3. Figure 3(a) depicts the interaction between 

rotation speed and travel speed. The surface plot indicates that shear strength improves significantly with increasing values of both 

parameters. Peak strength is observed at rotation speeds above 2000 RPM and travel speeds between 10–15 mm/min, while lower 

travel speeds result in suboptimal strength despite high rotation speed. This highlights the need for balanced parameter tuning to ensure 

effective material flow and joint formation. Although higher spindle speeds generally improve heat generation and plastic flow, 

excessive rotational speed can lead to overheating, which adversely affects weld strength. The surplus heat may cause over-softening 
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of the material, reduce forging pressure effectiveness, and lead to insufficient mechanical interlocking. These effects degrade the joint 

quality and reduce the shear strength, particularly when not accompanied by an optimized dwell time or travel speed. Figure 3(b) 

presents the effect of rotation speed and dwell time. The plot shows that shear strength increases with higher rotation speed when the 

dwell time is kept moderate. However, excessive dwell time leads to a decline in strength, likely due to overheating and microstructural 

degradation. Figure 3 (c) illustrates the influence of travel speed and dwell time. Here, strength increases with higher travel speed, 

especially when dwell time is within an optimal range. Prolonged dwell times at low travel speeds do not enhance strength, indicating 

insufficient thermal input and material mixing. Collectively, these surface plots validate the suitability of second-order polynomial 

models used in RSM to describe the nonlinear interactions between process variables. The analysis underscores the importance of 

integrating machine learning and statistical modeling to optimize welding parameters, thereby enhancing process efficiency and 

reducing experimental efforts. 

 

Table 7 ANN-RSM Prediction Results 

 

Test 

Input Output ANN model RSM model 

Rotation speed 

(RPM) 

Travel speed 

(mm/min) 

Dwell time  

(s) 

Shear Strength 

(N) 

Shear 

Strength 

(N) 

Shear 

Strength 

(N) 

FSW 1 1,600 5 5 2,122.24 2322.234 2029.918 

FSW 2 1,600 5 10 3,357.98 3380.940 3147.105 

FSW 3 1,600 5 15 3,475.62 3341.920 3526.449 

FSW 4 1,600 10 5 3,255.75 3194.711 3088.617 

FSW 5 1,600 10 10 3,833.57 3973.385 3688.734 

FSW 6 1,600 10 15 3,551.37 3354.423 3551.009 

FSW 7 1,600 15 5 4,018.92 4724.737 4392.730 

FSW 8 1,600 15 10 3,767.55 4376.294 4475.777 

FSW 9 1,600 15 15 4,338.32 4365.696 3820.981 

FSW 10 2,000 5 5 3,528.24 3500.171 3642.599 

FSW 11 2,000 5 10 4,456.64 4315.674 4377.899 

FSW 12 2,000 5 15 3,953.22 3583.634 4375.356 

FSW 13 2,000 10 5 4,587.68 4646.275 4449.173 

FSW 14 2,000 10 10 4,099.69 4217.267 4667.403 

FSW 15 2,000 10 15 3,858.37 3818.740 4147.790 

FSW 16 2,000 15 5 6,309.07 6081.966 5501.161 

FSW 17 2,000 15 10 5,189.63 5180.398 5202.321 

FSW 18 2,000 15 15 4,546.80 3462.780 4165.638 

FSW 19 2,400 5 5 3,921.38 4380.288 4187.087 

FSW 20 2,400 5 10 4,405.69 4545.390 4540.499 

FSW 21 2,400 5 15 4,761.97 3786.700 4156.069 

FSW 22 2,400 10 5 4,526.35 4632.176 4741.536 

FSW 23 2,400 10 10 5,661.21 5445.140 4577.879 

FSW 24 2,400 10 15 3,214.53 3808.603 3676.378 

FSW 25 2,400 15 5 5,304.59 5815.920 5541.399 

FSW 26 2,400 15 10 4,766.33 4567.688 4860.672 

FSW 27 2,400 15 15 3,161.57 3170.730 3442.101 

RMSE  389.4170 406.7537 

MAE 273.3389 313.2161 

MAPE 6.65% 7.36% 

 

 
(a)                                                                                                            (b) 

 

Figure 3 Response Surface Plot for Shear Strength Based on RSM Analysis. (a) Travel Speed vs. Rotation Speed, (b) Rotation Speed 

vs. Dwell Time, (c) Travel Speed vs. Dwell Time. 
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(c)  

 

Figure 3 (continued) Response Surface Plot for Shear Strength Based on RSM Analysis. (a) Travel Speed vs. Rotation Speed, (b) 

Rotation Speed vs. Dwell Time, (c) Travel Speed vs. Dwell Time. 
 

3.5 Comparison of experimental and predicted results 
 

A comparative study was carried out to evaluate the predictive precision of the Artificial Neural Network (ANN) model and 

Response Surface Methodology (RSM) in estimating the shear strength of Friction Stir Spot Welding (FSSW) joints. The aim was to 

assess the reliability of both techniques in capturing the intricate relationships between welding parameters and mechanical properties 

while reducing prediction errors. Figures 4 and 5 illustrate the correlation between experimentally measured shear strength values and 

those predicted by the ANN and RSM models. The graphical representations provide insight into the predictive capability of each 

model, highlighting their respective strengths and limitations in welding parameter optimization. It should be noted that while RSM 

offers explicit polynomial forecasting equations useful for analytical interpretation and extrapolation, the ANN model provides 

predictive capability through its trained architecture, making it ideal for computational forecasting. Both models, therefore, support 

forecasting tasks but through different means RSM analytically and ANN computationally. 
 

  
  

Figure 4 Comparative Analysis of Experimental Data and ANN-

Predicted Shear Strength. 

Figure 5 Evaluation of Experimental, ANN, and RSM-Predicted 

Shear Strength. 
 

Figure 4 presents the comparison between experimental shear strength values and those predicted by the ANN model. The strong 

agreement between the data points indicates that the ANN model achieved high predictive accuracy, effectively capturing the nonlinear 

dependencies among rotation speed, travel speed, and dwell time. The minimal deviation between experimental and predicted values 

further confirms the robustness of ANN in learning complex parameter interactions, making it a highly reliable tool for welding process 

optimization. 

It is worth noting that for specific runs, such as SFW16, the ANN model was able to closely match the high shear strength observed 

experimentally, while the RSM model significantly underpredicted the value. This discrepancy can be attributed to the limited 

flexibility of RSM’s second-order polynomial structure, which may not capture complex nonlinear trends, especially near the design 

space boundaries. In contrast, the ANN model effectively captured such local nonlinearities due to its data-driven learning approach, 

demonstrating superior forecasting capability in these scenarios. Figure 5 illustrates the relationship between experimental shear 

strength values and those predicted by the RSM model. While RSM predictions generally follow the experimental trend, noticeable 

deviations occur in certain cases, particularly where higher-order nonlinear interactions influence the welding process. This limitation 

arises from RSM's reliance on second-order polynomial regression, which may not fully capture the intricate dependencies between 

welding parameters as effectively as ANN. The comparative analysis confirms that ANN demonstrates superior predictive accuracy 

compared to RSM, as indicated by its lower error margins and stronger correlation with experimental values. The integration of ANN 

with the Genetic Algorithm (GA) further refines the optimization process, ensuring that the identified welding parameters consistently 

5500 

5000 

4500 

4000 

3500 

15 

10 

5 Dwell Time (s) 

S
h

e
a

r 
S

tr
e

n
g

th
 (

N
) 

5 

10 

15 

Travel Speed (mm/min) 

RSM Surface Plot (Travel Speed, Dwell Time, Shear Strength) 

5400 

5200 

5000 

4800 

4600 

4400 

4200 

4000 

3800 



Engineering and Applied Science Research 2025;52(5)                                                                                                                                                  549 

yield higher shear strength while minimizing prediction discrepancies. These findings reinforce the effectiveness of AI-driven 

approaches in welding parameter optimization, demonstrating their capability to reduce experimental workload, enhance process 

efficiency, and improve weld quality. The integration of machine learning, statistical modeling, and evolutionary computation provides 

a comprehensive and reliable framework for optimizing FSSW parameters, underscoring the significance of advanced computational 

methodologies in modern materials processing and welding technology. 
 

4. Conclusion  
 

The necessity of this research stems from the increasing demand for optimizing Friction Stir Spot Welding (FSSW) parameters to 

improve the mechanical properties of Semi-Solid Metal (SSM) Aluminum Alloy 5083. Traditional optimization techniques often fail 

to accurately capture the complex, nonlinear interactions between welding parameters and mechanical performance. While previous 

studies have focused on empirical methodologies, the integration of Artificial Neural Networks (ANN) and Genetic Algorithms (GA) 

offers a data-driven approach to optimizing welding conditions with enhanced precision and efficiency. 

This study employed an ANN model trained using a feed-forward backpropagation algorithm, leveraging the Levenberg-Marquardt 

learning rule for rapid convergence. The dataset was divided into training, validation, and testing sets to ensure robustness and 

generalizability. Additionally, a Genetic Algorithm was integrated to optimize the welding parameters rotational speed, travel speed, 

and dwell time aiming to maximize shear strength. The GA framework utilized an evolutionary approach with tournament selection, 

single-point crossover, and mutation operators to identify optimal parameter sets, ensuring minimal mean squared error (MSE) between 

ANN predictions and experimental results. 

The computational results demonstrated that the hybrid ANN-GA model significantly improved prediction accuracy and 

optimization efficiency compared to traditional Response Surface Methodology (RSM). The optimal welding parameters identified 

through GA optimization yielded a shear strength of 5999.99 N, a marked improvement over baseline experimental trials. Comparative 

analysis indicated that ANN exhibited superior predictive performance with lower MAE and RMSE values compared to RSM, 

reaffirming its capability to model complex welding dynamics. 

The research findings underscore the effectiveness of AI-driven optimization techniques in enhancing weld quality and mechanical 

performance. The integration of ANN and GA not only reduced experimental trial requirements but also provided a systematic, 

repeatable methodology for refining welding parameters. The study also highlights the critical role of rotational speed and travel speed 

in improving weld strength, with dwell time requiring careful optimization to prevent thermal degradation. The practical significance 

of this work is evident in its applicability to real-world industrial settings, where optimized FSSW parameters can lead to stronger, 

more reliable weld joints in automotive, aerospace, and marine applications. 

Future research should focus on expanding the hybrid optimization framework to include additional process variables such as tool 

geometry and plunge depth to further enhance weld performance. Additionally, implementing deep learning techniques in conjunction 

with evolutionary algorithms could further refine predictive accuracy and process optimization. The application of real-time sensor 

feedback systems integrated with AI models may also enable adaptive control of welding parameters, enhancing automation and 

efficiency in manufacturing environments. Ultimately, this study establishes a robust foundation for the continued advancement of AI-

driven welding optimization, paving the way for smarter, more efficient materials processing techniques. 
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