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Abstract 

 

Thailand faces persistent challenges in its labor market, notably low and declining labor productivity, labor shortages, and skill 

mismatches in the construction sector. Over the past decade, national development has focused more on capital investment and labor 

quantity than on productivity improvement. This study aims to address this gap by developing and validating a Structural Equation 

Model (SEM) to examine relationships among key labor productivity indicators in Thailand’s construction industry, particularly large-

scale high-rise projects. Data were collected from 600 construction workers employed in residential projects across Bangkok and 

surrounding provinces, representing a population of 1,125,400 workers (2013–2019). The SEM incorporated nine latent constructs: 

Materials, Equipment/Tools, Labor, Safety, Construction Methods, Rework, Weather, Motivation, and Productivity that capture both 

resource-related and human-factor dimensions. The validated model demonstrated a good fit with empirical data, with all observed 

variable correlations significant at the 0.05 level. Motivation was identified as the most influential factor on labor productivity (total 

effect = 0.680), followed by Equipment/Tool performance (0.483), Labor Management (−0.049), and Resource Management/Working 

Conditions (−0.066). Collectively, these factors explained 92.7% of the variance in productivity. Indirect effects through Motivation 

accounted for 51.7% of its variation. Findings underscore the crucial role of worker motivation in improving productivity. Housing 

support had the most substantial positive influence on Motivation, explaining 75.7% of its variance. Construction managers should 

prioritize motivational strategies, particularly housing support, project-end bonuses, and social insurance, to enhance workforce 

satisfaction and productivity in Thailand’s construction sector. 

 

Keywords: Factors hindering, Labor productivity, Large-scale high-rise building 

 

 

1. Introduction 

 

The construction industry plays a vital role in the economic development of every country, particularly in developing nations [1]. 

Almost all industries rely on construction as part of their business investments. The sector contributes approximately 15-20% of a 

country's Gross Domestic Product (GDP) [2-4]. Given the high investment involved, the construction industry significantly impacts 

national economies. Consequently, improving productivity in construction remains a critical concern for both developed and 

developing nations [5]. Developed countries emphasize economic growth and social welfare through cost savings and efficient resource 

utilization. In contrast, developing nations, facing challenges such as unemployment, inflation, and resource shortages, aim to maximize 

resource efficiency to drive economic progress and enhance citizens' quality of life [6]. 

Labor productivity is a key indicator of performance in the construction sector, as this industry is labor-intensive [7, 8]. Labor costs 

account for approximately 30-50% of total project expenses. Low labor productivity leads to cost overruns and project delays. However, 

research suggests that productivity growth in construction is lower than in other industries [4, 9]. Additionally, both labor shortages 

and skill gaps present significant challenges. While advanced technology and efficient management are crucial for improving outputs, 

they cannot replace the necessity of skilled labor [10, 11]. Ensuring high labor productivity at every project stage is essential for 

construction success. Despite extensive research on labor productivity, no universal improvement strategies or standardized 

performance metrics have been established [12, 13]. To enhance productivity, stakeholders must collaborate effectively, including 

public and private sector entities, contractors, project managers, skilled workers, and laborers. 

While prior studies have broadly discussed construction labor productivity [14], this study focuses explicitly on large-scale high-

rise building construction projects, which are resource-intensive, complex, and involve unique challenges such as vertical logistics, 

specialized equipment, and large, diverse workforces that differentiate them from other construction types. Understanding labor 

productivity in this context requires a tailored investigation of factors that directly affect on-site efficiency and workforce performance 

[15]. Although many factors influencing labor productivity have been identified globally, a gap remains in empirically validated models 

for large-scale high-rise projects in Thailand [16].  This study addresses that gap by developing a structural equation model (SEM) to 

examine the relationships between labor productivity indicators and empirical data within this specific construction context [17], 

thereby building upon existing knowledge while providing insights tailored to the particular challenges of high-rise construction. 
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This study aims to identify key factors influencing labor productivity in the construction industry, evaluate the validity of the 

measurement model, and determine the significance of each observed variable on the latent variables affecting labor productivity 

decline. Structural equation modeling (SEM) is employed to analyze these relationships, offering insights into enhancing workforce 

efficiency in large-scale, high-rise construction projects. 

 

2. Review of previous studies 

 

Labor is a critical resource in construction projects, both in terms of workforce quantity and associated costs. A project's success 

heavily depends on worker productivity, making labor efficiency a key factor in a company's competitiveness within the construction 

industry [18]. However, the declining trend in labor productivity remains a significant concern [19, 20]. Despite extensive research on 

this topic, there is still no consensus among academics and industry practitioners regarding the definition and measurement of 

construction effectiveness. 

High labor productivity in the construction sector is often reflected through several key characteristics, including strong job 

security, competitive wage levels, good work discipline, and high job satisfaction among workers. Job security represents a stable 

employment environment that supports employees’ commitment, motivation, and long-term performance focus [21]. Competitive 

wages indicate an organization’s ability to attract and retain skilled labor, thereby reducing turnover and sustaining consistent work 

quality, consistent with human capital theory and expectancy theory [22]. Likewise, work discipline reflects adherence to established 

procedures, schedules, and quality standards, which contributes to efficient and error-free performance [23]. Furthermore, high job 

satisfaction signifies a positive psychological state among workers, leading to greater commitment and reduced absenteeism and 

turnover conditions that typify productive labor forces, as supported by the Human Relations Movement and Herzberg’s Two-Factor 

Theory [24, 25]. 

Attar et al. [26] examined factors affecting labor productivity in India and categorized them into 15 groups: design, planning, 

materials, equipment, labor, health and safety, supervision, working time, project quality, finance, leadership, organization, and external 

influences. Similarly, Soekiman et al. [27] identified 113 variables impacting construction labor productivity, grouping them into the 

same 15 categories. Shashank et al. [28] analyzed key factors influencing labor productivity changes in construction projects, 

categorizing them into eight groups with 34 specific factors. Material-related factors ranked among the top three, aligning with Gerges 

et al. [29], who studied labor productivity improvement in Egypt's construction sector. Their classification included labor, management, 

environmental conditions, motivation, materials/equipment, scheduling, safety, and work quality. In Zimbabwe, a study identified the 

top five factors affecting labor productivity: material availability, delayed salary payments, project suitability, equipment shortages, 

supervisory capability, and worker skills. These factors were grouped into construction site conditions, equipment, materials, 

management, labor, motivation, and technical aspects [13]. 

Over the years, research has identified numerous factors influencing labor productivity, forming the basis for questionnaire 

development in construction industry studies. These factors apply to both developed countries, such as Canada [30], the UK [31], and 

New Zealand [32], as well as developing nations like Nigeria [33, 34], Malaysia [35], Palestine [6], Kuwait [36], Sri Lanka [37], Turkey 

[38], Trinidad and Tobago [39], Yemen [40], Zimbabwe [13], and Uganda [41]. Labor productivity is affected by both external and 

internal elements, totaling 103 factors classified into 12 categories. 

 

3. Method 

 

3.1 Identifying population and sampling 

 

The population in this research consists of construction workers classified by industry from 2013 to 2019 throughout Thailand, 

totaling 1,125,400 people [42]. 

The determination of the sample size for this study was based on Yamane’s [43] formula, with additional units reserved to 

compensate for potential incomplete responses. To ensure statistical rigor, the guidelines proposed by Krejcie and Morgan [44] were 

also applied, using a 95% confidence level and a 5% margin of error. This calculation yielded an initial required sample size of 

approximately 400 respondents. However, to strengthen the reliability of the study and address issues related to incorrect or incomplete 

responses, the sample size was further increased to 600 units [45]. In terms of sampling approach, the distribution of questionnaires 

initially adopted a non-probability convenience sampling method, which facilitated practical data collection. Following the completion 

of data collection, purposive sampling was employed to refine and select the final set of usable questionnaires, ensuring that the data 

aligned with the objectives of the study. The response rate obtained from the survey was 56%, corresponding to 336 valid questionnaires 

returned. According to Babbie’s criterion, a response rate above 50% is deemed acceptable for social research, and thus the achieved 

response rate in this study was considered suitable for subsequent analysis and interpretation [46]. 

 

3.2 Questionnaire design and measurement scales 

 

Prior to field administration, the questionnaires underwent a rigorous development and validation process to ensure their validity, 

relevance, and reliability. The validity of the instrument was examined through the Index of Item-Objective Congruence (IOC), 

evaluated by a panel of five experts. The overall IOC score was 0.81, which indicates strong alignment between the questionnaire items 

and the research objectives. To further confirm the reliability of the instrument, a pilot test was conducted with a group of 30 

respondents possessing characteristics similar to those of the target population. The analysis produced a Cronbach’s Alpha [47] 

coefficient of 0.961, significantly exceeding the generally accepted threshold of 0.7, thereby demonstrating excellent internal 

consistency. The final questionnaire employed an interval-level measurement using a five-point Likert-type rating scale, specifically 

designed to capture the degree of perceived impact of various factors on labor productivity [48].  

 

3.3 Data collection 

 

Data were collected through questionnaires administered to construction workers engaged in residential housing projects located 

in Bangkok and its surrounding provinces. These projects were characterized by standardized housing units with uniform or nearly 

identical design features. The selection of construction workers as respondents was appropriate, as their direct involvement in these 
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projects enables them to reliably assess the practical impact of various factors on labor productivity. Their daily work experience 

provided the foundation for their perceptions and evaluations of these linkages. 

 

3.4 Variable reduction and analytical procedures 
 

The researcher developed a measurement model to systematically extract and refine relevant variables for analyzing labor 

productivity factors in construction projects. The process began with a comprehensive literature review, which established the 

theoretical relationships between observed and latent variables, ensuring that the model was grounded in both empirical evidence and 

conceptual foundations. To verify the reliability and validity of the constructs, composite reliability (CR) values were required to 

exceed 0.70, indicating internal consistency, while the average variance extracted (AVE) values were expected to surpass 0.50, 

confirming adequate convergent validity. Furthermore, individual observed variables were required to demonstrate standardized factor 

loadings between 0.50 and 1.00, ensuring that each indicator made a significant contribution to its corresponding latent construct [49]. 

Following this rigorous variable extraction and validation process, nine latent variables were identified and retained, representing 

key domains influencing construction labor productivity: (1) Materials, (2) Equipment/Tools, (3) Labor, (4) Safety, (5) Construction 

Methods, (6) Rework, (7) Weather, (8) Motivation, and (9) Productivity. These latent variables serve as the study's foundational 

theoretical constructs, capturing both resource-related and human-factor dimensions critical to productivity analysis. From the initial 

pool of factors, 57 observed sub-components were retained, as summarized in Table 1. These observed variables not only satisfied the 

statistical criteria for inclusion but also aligned with findings from previous studies, thereby reinforcing the theoretical robustness and 

validity of the measurement model. 

 

Table 1 Compilation of labor productivity factors affecting construction projects 

 

Criteria Factors Symbol Reference 

1. Materials 

1.1 Materials have not arrived onsite yet V1b*  [13, 40] 

1.2 Lack of material V2b  [11, 50, 51] 

1.3 Insufficient or poor material handling V3b  [13, 52] 

1.4 Unsuitability of materials storage location V4b  [28, 51] 

1.5 Low quality of raw materials V5b  [6, 28, 40] 

2. Equipment/ 

Tools 

2.1 Lack of proper tools and equipment on-site V1c*  [6, 11, 51] 

2.2 There are frequent tools/equipment breakdowns due to aging or poor maintenance V2c  [13, 50] 

2.3 Suitability or adequacy of equipment/tools V3c  [13, 40] 

2.4 Old and Inefficiency of equipment/tools V4c  [28, 50, 51] 

3. Labor 

3.1 High absenteeism of labor V1d  [18, 28, 51] 

3.2 Working for long periods without holiday V2d  [13, 53] 

3.3 Lack of manpower skills V3d  [5, 52, 54] 

3.4 Lack of labor experience V4d  [55, 56] 

3.5 Inappropriate use of skills V5d  [13] 

3.6 Crew size inefficiency V6d  [13] 

3.7 Use of alcohol and drugs V7d  [27, 41] 

3.8 Worker turnover and changing crewmember V8d  [54, 56] 

3.9 Labor disloyalty V9d*  [53, 55] 

3.10 Labour dissatisfaction V10d  [6, 52] 

3.11 Misunderstanding among labor V11d  [6, 53] 

3.12 Lack of training V12d  [28] 

4. Safety 

4.1 Accidents V1e*  [28, 41, 55] 

4.2 Violation of safety precautions V2e*  [6, 28, 55] 

4.3 Management does not support safety planning V3e*  [50] 

4.4 Lack of site safety resources V4e*  [56] 

4.5 No safety engineer in site V5e*  [28] 

4.6 Working at high places V8e*  [28, 50] 

4.7 Insufficient lighting  V9e*  [28, 41, 50] 

4.8 Bad ventilation  V10e*  [6, 41, 55] 

5. Construction 

method 

5.1 The site is slippery or steep imposing terrible conditions V1f*  [50] 

5.3 Delay in responding to requests for information V3f*  [39] 

5.4 The extent of variation/change orders during execution V4f*  [5, 39, 54] 

5.5 Improper construction method V6f*  [56] 

5.6 Stringent inspection by the engineer V10f*  [5, 39] 

5.7 Ease of processing and preparation of materials for the work (cutting/ chopping) V11f*  [40] 

5.8 Quantity of work available every day (daily workloads) V13f*  [40] 

5.9 Specialized nature of the work  V14f*  [40] 

6. Rework 

6.1 The work needs to be redone due to the damage after the work was complete V5g*  [50] 

6.2 The works need to be redone because it fails quality control inspection or testing V6g*  [50] 

6.3 The work needs to be redone due to changes in design, drawings or specifications V8g*  [50, 57] 

7. Weather 

7.1 Cold, Humidity V1h* 

 [5, 39, 58] 7.2 Rain V2h* 

7.3 High Temperature V3h* 
*Factors with eigenvalues less than 1 were eliminated.  
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Table 1 (continue) Compilation of labor productivity factors affecting construction projects 

 

Criteria Factors Symbol Reference 

8. Motivation 

8.1 Proportion of labor's salary and responsibility V1j  [59] 

8.2 Delay in salary payment V2j  [37, 53, 59] 

8.3 Bonus at the end of project or year  V3j  [13, 36, 40] 

8.4 Social insurance V4j  [36, 40, 41] 

8.5 Canteen for employee (Good food for free or at a reduced price) V5j  [6, 37, 53] 

8.6 Medical care (Having a particular hospital to attend in case of illness or subsidizing 

the cost of hospital bills) 
V6j  [13, 37, 40] 

8.7 Accommodation (Provision of physical accommodation) V7j  [28, 37] 

8.8 Working hours (working 8 hours per day) V8j  [40] 

8.9 Wages level for labor V9j  [13, 37, 41] 

8.10 Public holidays V10j  [40] 

9. Productivity 

9.1 Job security V1p  [37, 59] 

9.2 Wages level for labor V2p  [13, 38, 40] 

9.3 Work discipline V3p  [38] 

9.4 Work satisfaction V4p  [38] 
*Factors with eigenvalues less than 1 were eliminated.  

 

3.5 Exploratory Factor Analysis (EFA) 

 

Exploratory Factor Analysis (EFA) was employed as a preliminary and essential step within the Structural Equation Modeling 

(SEM) framework to validate and refine the theoretical structure of latent variables empirically. By identifying underlying latent 

constructs from a broad set of observed variables, EFA consolidated a large number of factors into a more parsimonious and 

theoretically meaningful measurement model. This process ensured that the latent variables incorporated into the SEM were both 

empirically supported and reflective of the actual relationships in the dataset, thereby establishing a robust foundation for subsequent 

analyses. In contrast, relying solely on theoretically derived groupings without empirical validation would risk poor model fit and 

undermine the accuracy of the study’s findings. Based on a review of previous research, seven principal components were initially 

identified: (1) Materials, (2) Equipment/Tools, (3) Labor, (4) Safety, (5) Construction Methods, (6) Rework, and (7) Weather. These 

components were further decomposed into 43 observed variables [47]. 

EFA was a critical step in the SEM process, as it provided empirical confirmation and refinement of the theoretical structure 

established through the literature review. While prior studies offered a foundation for identifying potential latent variables, EFA was 

necessary to ensure that the observed variables were appropriately grouped and represented distinct underlying constructs within the 

specific context of this study [60]. Through this process, the researchers were able to determine the appropriate number of latent factors 

that best explained the variance in the observed variables. This data-driven validation ensured that the latent variables incorporated into 

the subsequent SEM were empirically supported and reflected the actual relationships present within the dataset. Furthermore, the use 

of EFA prevented the risk of poor model fit that might arise if theoretically derived latent variables were applied directly without 

empirical validation [61].  

The EFA procedure involved several systematic stages to ensure the validity and reliability of the measurement model. The process 

comprised the following key steps 

 

3.5.1 Data suitability assessment 

 

Prior to factor extraction, the adequacy of the dataset for factor analysis was evaluated using two statistical tests: 

- The Kaiser-Meyer-Olkin (KMO) Measure of Sampling Adequacy, where values between 0.6 and 1.0 indicate acceptable sampling 

adequacy. 

- Bartlett’s Test of Sphericity, where a significance value (p < 0.05) confirms that the observed variables are sufficiently correlated 

for factor analysis. 

 

3.5.2 Factor extraction 

 

The extraction of factors was performed using the Principal Component Analysis (PCA) technique. The number of factors to be 

retained was determined based on the following selection criteria: 

- Eigenvalues (Kaiser’s Criterion): Only factors with eigenvalues greater than 1 were retained, as these explain more variance than 

a single observed variable. 

- Scree Plot Analysis: A scree plot was examined to identify the “elbow point,” representing the optimal number of factors before 

the curve levels off. 

- Cumulative Variance: The total variance explained by the extracted factors was considered adequate when exceeding 60%, 

ensuring sufficient representation of the original dataset. 

- Component Validity: Each retained factor was required to include at least three observed variables with significant loadings. 

 

3.5.3 Factor rotation 

 

To facilitate interpretability and ensure that extracted factors remain uncorrelated, Varimax orthogonal rotation was applied. This 

rotation method simplifies the factor structure by maximizing the variance of squared loadings within each factor, making it easier to 

identify which observed variables load most strongly on specific factors. 
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3.5.4 Interpretation and model validation 

 

After rotation, the pattern of factor loadings was examined to ensure conceptual coherence and theoretical consistency among the 

grouped variables. Observed variables with low loadings (below 0.50) or cross-loadings on multiple factors were eliminated to maintain 

construct validity. The retained factors were interpreted and labeled according to the theoretical framework derived from the literature 

review. 

Discriminant validity was assessed using the Fornell–Larcker criterion [62] to verify the distinctiveness of the latent constructs in 

the measurement model. The analysis compared the square root of the Average Variance Extracted for each construct with the inter-

construct correlations. The results indicated that the AVE values for each latent construct Resource Management (X1) = 0.816, Labor 

Management (X2) = 0.629, Equipment/Tool Performance (X3) = 0.651, Motivation (Y1) = 0.625, and Labor Productivity (Y2) = 0.774 

were greater than their highest inter-construct correlations, which ranged between 0.001 and 0.609. According to the Fornell–Larcker 

criterion, discriminant validity is achieved when the AVE of each construct exceeds its correlations with other constructs. The findings, 

therefore, confirm that all latent constructs are empirically distinct and conceptually independent, indicating that the measurement 

model possesses satisfactory discriminant validity before structural model analysis. 

 

3.6 Structural Equation Modeling (SEM) process 

 

Structural Equation Modeling (SEM) was employed to examine the structural relationships among latent and observed variables, 

integrating both the measurement and structural components within a single analytical framework. This method allows simultaneous 

evaluation of multiple dependency relationships, thereby providing a comprehensive understanding of how latent constructs interact 

within the proposed theoretical model. The SEM process in this study consisted of three primary stages: model specification, parameter 

estimation, and model evaluation. 

 

3.6.1 Model specification 

 

Model specification involves developing a conceptual framework that defines the hypothesized relationships between latent and 

observed variables. This step includes identifying: 

- Exogenous variables, which represent independent latent constructs, and 

- Endogenous variables, which are dependent constructs influenced by other variables in the model. 

Each latent variable was linked to its respective observed indicators based on theoretical foundations and prior empirical studies.  

The structural relationships among the latent constructs were then represented through directional paths, forming the hypothesized 

model to be tested. 

 

3.6.2 Measurement model validation 

 

Before testing the structural relationships, Confirmatory Factor Analysis (CFA) was conducted to assess the measurement validity 

of the latent constructs. CFA evaluates how well the observed variables represent their respective latent variables by examining factor 

loadings, reliability, and convergent validity. Items with low factor loadings (below 0.50) or significant cross-loadings were considered 

for elimination to enhance construct validity. To ensure the robustness of the measurement model, a rigorous validation process was 

applied following established SEM guidelines [17, 61]. The results demonstrated that all retained items exhibited satisfactory 

standardized factor loadings (> 0.50), composite reliability (CR > 0.70), and average variance extracted (AVE > 0.50), confirming both 

reliability and convergent validity. This comprehensive validation procedure ensures that each latent construct is measured accurately 

and consistently, providing a sound empirical foundation for subsequent SEM analysis. 

 

3.6.3 Model identification and parameter estimation 

 

In the model estimation stage, model identification was performed first to ensure the dataset contained sufficient information to 

estimate all parameters uniquely. Once the model was identified, parameter estimation was conducted using the Maximum Likelihood 

(ML) and Generalized Least Squares (GLS) methods. These estimation techniques were selected for their robustness in handling large 

samples and their ability to produce efficient, unbiased parameter estimates. During the estimation process, the model’s parameters, 

including path coefficients, variances, and covariances, were computed to assess the strength and direction of the hypothesized 

relationships among the latent and observed variables. Non-significant paths or parameters inconsistent with theoretical expectations 

were subsequently examined and considered for revision in later stages of model refinement. 

 

3.6.4 Model fit evaluation 

 

Model fit was assessed using a combination of absolute, incremental, and parsimonious fit indices, which were explicitly applied 

as a critical step in evaluating the quality of the proposed SEM. The following criteria were used to ensure the adequacy and overall 

appropriateness of the model. 

- Chi-square (χ²) and its associated p-value, to test overall model discrepancy; 

- Root Mean Square Error of Approximation (RMSEA), with values below 0.08 indicating acceptable fit; 

- Comparative Fit Index (CFI) and Tucker-Lewis Index (TLI), where values above 0.90 reflect good model fit; and 

- Goodness of Fit Index (GFI) and Adjusted Goodness of Fit Index (AGFI) as complementary measures of model adequacy. 

When the model did not meet these fit criteria, modification indices (MIs) were examined to identify potential areas for 

improvement. Adjustments such as correlating error terms or removing weak indicators were made only when they aligned with 

theoretical justifications, maintaining the model’s conceptual integrity. 

 

3.6.5 Model refinement 

 

To enhance model fit and ensure empirical robustness, a systematic refinement process was conducted. This involved: 
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- Eliminating low-loading variables (factor loadings < 0.50) to strengthen convergent validity; 

- Checking for multicollinearity by identifying observed variables with excessively high intercorrelations (r > 0.85); 

- Examining standardized residuals, where residuals beyond ±2.58 indicated poor model-data fit at a 99% confidence level; and 

- Reviewing modification indices (MIs) to assess potential misfit relationships and determine whether theoretical adjustments were 

warranted. 

This iterative process ensured that the final model achieved an optimal balance between statistical validity and theoretical 

coherence. 

 

3.6.6 Interpretation 

 

Once a satisfactory model fit was achieved, the final stage involved interpreting the results through path coefficients, variances, 

and correlations among latent variables. Statistical significance was evaluated to confirm the hypothesized relationships and to assess 

the extent to which the empirical findings supported the study's underlying theoretical framework. 

 

4. Research findings and results 

 

4.1 Results of exploratory factor analysis 

 

The analysis was performed using SPSS, employing Principal Component Analysis (PCA) and Varimax rotation. The Kaiser-

Meyer-Olkin (KMO) measure yielded a value of 0.910, indicating the appropriate sample size. Additionally, Bartlett's test of sphericity 

produced a significance value (Sig.) < 0.05, verifying the data's suitability for EFA. For the seven principal components Materials, 

Equipment/Tools, Safety, Construction Methods, Labor, Rework, and Weather Conditions the following quality assessment criteria 

were applied: 

- Eigenvalues: Factors with eigenvalues less than 1 were excluded. Three components met the selection criteria, with the lowest 

eigenvalue at 1.100. 

- Cumulative Variance: The variance explained reached 64.41%, exceeding the 60% threshold. 

- Scree Test: Used to confirm the number of components influencing labor productivity. 

- Component Validity: Each component required at least 3 observed variables. 

 Through Exploratory Factor Analysis (EFA), three principal components were extracted based on eigenvalues greater than 1, 

representing the key influences on construction labor productivity. These components correspond to Resource Management (X1), 

Labor Management (X2), and Equipment/Tool Performance (X3), which serve as the independent latent variables in the model and 

play critical roles in large-scale high-rise construction projects. (1) Within Resource Management (X1), challenges such as material 

handling, storage locations, and raw material quality are exacerbated by vertical transportation requirements and limited on-site space. 

Inadequate material supply and the use of low-quality materials were identified as significant determinants of efficiency in high-rise 

projects. (2) Labor Management (X2) encompasses factors including workforce skill levels, worker turnover, and crew changes 

elements that are particularly vital given the large and diverse labor forces required for vertical construction tasks. The study highlights 

that maintaining high labor productivity at every stage of a construction project is essential to ensure overall project success. Finally, 

Equipment/Tool Performance (X3) in terms of suitability, adequacy, and maintenance was found to be of paramount importance in 

high-rise construction, where specialized, heavy machinery is indispensable for lifting, hoisting, and working at considerable heights. 

Together, these three components provide a comprehensive framework for understanding and enhancing labor productivity in the 

complex environment of high-rise building projects, as detailed in Table 2. 

 

Table 2 Result on total variance explained 

 

 Criteria No. of items 
Extraction Sums of Squared Loading 

Total Variance % Cumulative % 

1 Resource Management and Working Conditions (X1) 9 7.727 48.635 48.635 

2 Labor Management (X2) 6 2.218 21.096 69.731 

3 Equipment/Tool Performance (X3) 3 1.479 7.397 77.128 

 Total 18 11.424 77.128 77.128 

  

The Exploratory Factor Analysis (EFA) resulted in the extraction of three principal components, each representing distinct latent 

constructs relevant to construction labor productivity. 

Component 1, named Resource Management and Working Conditions (X1), has an Eigenvalue of 7.727, explaining 48.635% of 

the total variance. This component comprises nine observed variables, with factor loadings ranging from 0.529 to 0.850. The variable 

with the highest factor loading is Low-quality materials (V5b), while the variable with the lowest loading is Misunderstanding among 

labor (V11d). These variables can be ranked in descending order according to their factor loadings, reflecting their relative contributions 

to the construct of resource management and working conditions. 

Component 2 , named Labor Management (X2 ) , has an Eigenvalue of 2 .2 1 8 , accounting for 2 1 .0 9 6 %  of the variance. This 

component consists of six observed variables, with factor loadings ranging from 0.509 to 0.789. The variable with the highest factor 

loading is Labor turnover and replacement (V8d), while the lowest is Labor dissatisfaction (V10d). As with Component 1, the variables 

in this component can be systematically ranked in descending order of factor loadings, indicating their relative significance in shaping 

the latent construct of labor management. 

Component 3 , named Equipment/Tool Performance (X3) , has an Eigenvalue of 1.479 , explaining 7.397% of the variance. This 

component comprises three observed variables, with factor loadings ranging from 0.582 to 0.699. The variable with the highest loading 

is Suitability or adequacy of equipment/tool (V3 c), while the lowest loading is associated with Frequent tools/equipment breakdowns 

due to aging or poor maintenance (V2 c). These variables may also be arranged in descending order of factor loadings to demonstrate 

their relative contributions to the construct of equipment and tool performance, as shown in Table 3. 

Each group of variables derived from the review of relevant past research and analyzed through exploratory factor analysis will be 

used to develop measurement models for the continuous linear relationship between latent and observed variables. These indicators 
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reflect different aspects or dimensions of the primary construct, consisting of a total of 5 models. Then, the relationships are drawn as 

a path diagram based on the proposed hypotheses, as shown in Figure 1. 

 

Table 3 The analysis resulted in the extraction of three principal components. 
 

Component Factor Symbol Factor loading 
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Lack of labour experience V4d 0.849 

Lack of material V2b 0.724 

Insufficient or poor material handling V3b 0.716 

High absenteeism of labors V1d 0.701 
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Misunderstanding among labor V11d 0.529 

L
ab

o
r 

M
an

ag
em

en
t 

(X
2

) 

Worker turnover and changing crewmember V8d 0.789 

Working for long periods without holiday V2d 0.696 

Crew size inefficiency V6d 0.614 

Lack of manpower skills V3d 0.533 

Inappropriate use of skills V5d 0.526 

Labor dissatisfaction V10d 0.509 

E
q

u
ip

m

en
t/

T
o
o

l 

P
er

fo
rm

an
ce

 

(X
3

) 

Suitability or adequacy of equipment/tool V3c 0.699 

Old and Inefficiency of equipment/tool V4c 0.691 

There are frequent tools/equipment breakdowns due to aging or poor 

maintenance 
V2c 0.582 

 

 
 

Figure 1 The structural equation model was generated using the AMOS software 

 

4.2 Measurement model results 

 

Enhancing model fit in Structural Equation Modeling (SEM) requires a systematic and rigorous evaluation process. This section 

outlines the step by step refinement of the measurement model, focusing on the elimination of variables that failed to meet established 

statistical criteria. Such refinement ensures that the final model is both theoretically meaningful and empirically robust. This study 

applied the following refinement principles: 
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4.2.1 Evaluating factor loadings 

 

According to Hair et al. [17], observed variables with factor loadings below 0.50 should be removed, as they indicate weak 

relationships with latent variables and reduce convergent validity. Based on this criterion, 6 variables were eliminated: V5j (0.327), 

V10j (0.424), V8j (0.439), V2p (0.202), V2c (0.485), and V4d (0.478). 

 

4.2.2 Checking correlation between observed variables 

 

Observed variables with excessively high correlations (above 0.85) can impact model reliability, causing issues such as: 

- Regression Weight Instability. 

- Fluctuations in regression coefficients or non-significant parameters. 

- Inconsistent Relationship Directions - Empirical results may not align with theoretical expectations. 

- Increased Standard Errors - Lowering confidence in parameter estimates.  

- Poor Model Fit - Reducing overall model accuracy. 

- Difficult Impact Differentiation  

- This makes it challenging to distinguish individual variable effects, leading to misinterpretation [63]. 

Based on this analysis, 5 variables were removed: V1j (0.891), V1d (0.917), V4b (0.869), V11d (0.907), and V5d (0.924).  

 

4.2.3 Identifying high residuals 

 

Variables with residuals greater than ±2.58 indicate poor model-data fit at a 99% confidence level. Standardized Residual 

Covariances were examined, and variables with high residuals were considered for elimination [61]. 10 variables were removed due to 

high residuals: V19d (2.611), V2j (3.039), V6j (3.204), V9j (3.208), V4p (3.692), V5b (3.055), V7d (2.880), V8d (2.663), V6d (3.668), 

and V10d (2.783). 

 

4.2.4 Modification Indices (MI) analysis 

 

Modification Indices (MI) were used to assess whether eliminating or adding relationships between specific variables could 

enhance model fit. High MI values indicate potential misfit relationships, and removing such variables helps: Reduce residual errors 

and improve overall model fit.  

 

4.3 Structural model results 

 

The SEM analysis was conducted to evaluate the appropriateness and accuracy of the structural equation model. The model was 

refined by eliminating variables using the Modification Indices method to enhance completeness and ensure statistical values met 

acceptable criteria. Further evaluation was performed by analyzing factor loadings and R² values and examining the covariance among 

indicators to validate the model's reliability. The results are summarized in Table 4, while Table 5 presents the analysis of relationships 

between the variables within the model. 

From the standardized score regression coefficients of independent variables, which indicate the influence of variables with 

statistical significance at the 0.05 level, the test results are summarized by aspect as follows: 

 

4.3.1 Resource management and working conditions 

 

The test results indicate that insufficient/improper material handling has the most significant direct positive influence on the 

structural equation model of labor productivity, with a standardized weight of 0.864, explaining 62.7% of the changes in resource 

management and working conditions. There is one direct influence and one indirect influence, as follows:  

- Resource management and working conditions directly influence labor productivity, with a regression coefficient of -0.066, a t-

value of -0.580, and a Sig. value of 0.562 (> 0.001). 

- Resource management and working conditions indirectly positively influence labor productivity through motivation creation, 

with a total regression coefficient of 0.191 (0.282*0.680). 

 

4.3.2 Labor management 

 

The test results indicate that lack of manpower skills has the most significant direct positive influence on the structural equation 

model of labor productivity, with a standardized weight of 0.943, explaining 88.90% of the changes in Labor Management. There is 

one direct influence and one indirect influence, as follows: 

- Labor Management directly influences labor productivity, with a regression coefficient weight of -0.049, a t-value of -0.288, and 

a Sig. value of 0.773 (> 0.05). 

- Labor Management indirectly positively influences labor productivity through motivation creation, with a total regression 

coefficient of 0.273 (0.401*0.680). 

 

4.3.3 Equipment/Tool performance 

 

The test results indicate that Suitability or adequacy of equipment/tool has the most significant direct positive influence on the 

structural equation model of labor productivity, with a standardized weight of 0.753, explaining 56.70% of the changes in labor 

management. There is one direct influence and one indirect influence, as follows: 

- Equipment/Tool Performance directly influences labor productivity, with a regression coefficient weight of 0.483, a t-value of 

2.452, and a Sig. value of 0.014 (< 0.05). 

- Equipment/Tool Performance indirectly positively influences labor productivity through motivation creation, with a total 

regression coefficient of 0.081 (0.119*0.680).  
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Table 4 Results of relationship analysis using regression coefficient 

 

 
Factor 

Factor Loading 
R2 

βi S.E. 

In
d

ep
en

d
en

t 
V

ar
ia

b
le

 Resource Management and Working Conditions (X1)    

 V2b - Lack of material 0.792 - 0.746 

 V3b - Insufficient or poor material handling 0.864 0.075 0.627 

Labor Management (X2)    

 V2d - Working for long periods without holiday 0.602 0.093 0.363 

 V3d - Lack of manpower skills 0.943 - 0.889 

Equipment/Tool Performance (X3)       

 V3c - Suitability or adequacy of equipment/tool 0.753 0.133 0.567 

 V4c - Old and Inefficiency of equipment/tool 0.658 - 0.432 

D
ep

en
d

en
t 

V
ar

ia
b

le
 

Motivation (Y1)    

 V3j - Bonus at the end of project or year  0.869 0.048 0.754 

 V4j - Social insurance 0.795 0.046 0.632 

 V7j - Accommodation  0.904 - 0.757 

Labor Productivity (Y2)    

 V1p - Work discipline 0.904 - 0.817 

 V3p - Work satisfaction 0.751 0.051 0.564 

Chi-Square = 9.781 df = 9 Relative Chi-Square = 1.087 p-value = 0.368 RMSEA = 0.016 RMR = 0.009 GFI = 0.995 NFI = 0.996 

TLI = 0.998 CFI = 1.000 

 

Table 5 The relationship between the influence of variables 

 

Dependent 

Variable 
R2 Influence 

Independent Variable Dependent Variable 

X1 X2 X3 Y1 

Y1 

 DE 0.282** 0.401** 0.119 0.000 

0.517 IE 0.000 0.000 0.000 0.000 

 TE 0.282** 0.401** 0.119 0.000 

Y2 

 DE -0.066 -0.049 0.483 0.680** 

0.927 IE 0.191 0.273 0.081 0.000 

 TE 0.125 0.224 0.564 0.680** 
Note: DE = Direct effect, IE = Indirect effect, TE = Total effect 

** indicates P-Value ≤ 0.05 

 

4.3.4 Motivation in work 

 

This aspect consists of three sub-variables: Bonus at the end of project or year, social security, and housing support (providing 

accommodation or a rental subsidy for apartments). Their regression coefficient weights range from 0.795 to 0.904, with multiple 

correlation coefficients between 63.20% and 75.70%. The test results indicate that housing support (providing accommodation or rental 

subsidy) has the most significant direct positive influence on the structural equation model of labor productivity, with a standardized 

weight of 0.904, explaining 75.70% of the changes in motivation in work. 

 

4.3.5 Labor productivity as a dependent variable in the structural model 

 

In this study, Labor Productivity (Y2) was conceptualized as a latent construct reflecting both behavioral and psychological 

dimensions of individual performance in construction projects. It was measured by four observed indicators: Job Security (V1p), Wages 

Level for Labor (V2p), Work Discipline (V3p), and Work Satisfaction (V4p). The selection of these indicators was theoretically 

grounded. Job Security represents stability of employment, which encourages workers to maintain consistent performance and reduce 

turnover intentions [24, 64]. Wage level denotes the degree to which compensation meets workers’ expectations, a key extrinsic 

motivator that enhances productivity [65]. Work Discipline captures punctuality, adherence to safety and quality standards, and self-

regulation, core behavioral aspects of productive work [24]. Finally, Work Satisfaction reflects intrinsic contentment and morale, which 

have been consistently linked to higher labor productivity in the construction sector [66]. 

Labor Productivity (Y2) is conceptualized as a latent dependent variable representing the overall efficiency and performance of 

skilled construction workers in achieving desired outputs relative to input resources. In this study, it is measured by two observed 

indicators: work discipline (V1p) and job satisfaction (V3p). Work discipline (0.904) reflects an employee’s adherence to 

organizational rules, punctuality, and consistent engagement in task execution. It captures the behavioral dimension of productivity, 

emphasizing structured, reliable, and goal-oriented work performance. Job satisfaction (0.751), on the other hand, represents the 

attitudinal dimension of productivity, reflecting how employees’ sense of fulfillment and positive perceptions of their job environment 

contribute to enhanced performance. High satisfaction often leads to increased commitment, lower turnover intentions, and sustained 

productivity.  

Empirically, both indicators demonstrated strong factor loadings, confirming their robust reflection of the underlying latent  

construct. Furthermore, both loadings were statistically significant at the 0.05 level, providing evidence of measurement validity and 

supporting their suitability as key indicators of labor productivity. Together, these two measures provide a comprehensive 

representation of labor productivity, integrating both behavioral and psychological aspects of worker performance. 

The structural equation model demonstrates an excellent fit to the data, with all key indices meeting accepted criteria. Specifically, 

it states: relative Chi-square = 1.087 (<2), RMSEA = 0.016, RMR = 0.009 (<0.05), GFI = 0.995, NFI = 0.996, and CFI = 1.000 (>0.95), 

confirming the model's validity and robustness [67]. 
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5. Discussion 

 

Exploratory Factor Analysis (EFA) and SEM ensured the validity and robustness of your findings. EFA was crucial for empirically 

confirming and refining the theoretical structure of latent variables, preventing poor model fit that could arise from relying solely on 

theoretical groupings. The SEM model demonstrated an excellent fit to the data, with all key indices meeting the accepted criteria for 

model fit. 

 

5.1 Impact of motivation on labor productivity 

 

The analysis revealed that Motivation was the most influential factor affecting labor productivity, with an overall influence 

coefficient of 0.680, followed by Equipment/Tool Performance (0.483), Labor Management (-0.049), and Resource Management and 

Working Conditions (-0.066). Collectively, these variables accounted for 92.7% (R² = 0.927) of the variations in Labor Productivity 

(Y2). Furthermore, the R² value for Motivation (Y1) was 0.517, indicating that the independent variables included in the model 

explained 51.7% of the variance in Motivation. This suggests that, while Motivation was the most significant predictor of labor 

productivity, it was itself moderately explained by the antecedent factors incorporated into the model. Motivation, treated as a latent 

construct within the SEM framework, was measured through a set of observed variables representing inherently positive motivational 

attributes. These included a Bonus at the end of the project or year (V3j), with a regression coefficient of 0.869 and an R² of 75.4% for 

Motivation, representing a direct financial incentive. Social Insurance (V4j) was another key factor, with a regression coefficient of 

0.795, explaining 63.2% of the variance, highlighting the role of security and welfare in sustaining worker motivation. Accommodation 

(V7j), representing housing support, exerted the most potent positive effect on Motivation, with a standardized weight of 0.904 and 

accounting for 75.7% of the variance. The provision of housing support was shown to significantly enhance morale and efficiency, 

aligning with Herzberg’s Two-Factor Theory [24], which posits that hygiene factors such as welfare and job security play a crucial 

role in fostering positive Motivation.  

Research by Jarkas and Bitar [36] found that appropriate welfare support, including housing assistance, positively impacts job 

satisfaction and work engagement among construction workers in developing countries. This, in turn, helps reduce turnover rates and 

enhances productivity. Similarly, Dai and Goodrum [68] emphasized that worker well-being, such as providing accommodation near 

construction sites or housing subsidies, helps reduce commuting fatigue and promotes efficient work performance. Therefore, project 

managers and stakeholders should prioritize housing support as a key motivational strategy to improve construction project labor 

productivity and job satisfaction. 

 

5.2 Overall labor productivity outcomes 

 

The findings indicate that the latent variable Labor Productivity is strongly reflected by its observed indicators, work discipline, 

and job satisfaction, with high factor loadings (0.904 and 0.751, respectively). These indicators highlight that structured work behavior 

and employee satisfaction are central to efficient performance. This finding is consistent with prior research. Organ [67] emphasized 

that positive workplace behaviors, such as discipline and responsibility, are essential for improving organizational productivity, while 

Judge et al. [66] demonstrated that job satisfaction is directly correlated with work efficiency. Accordingly, this study reinforces the 

view that discipline and job satisfaction are critical determinants of labor productivity in large-scale high-rise construction projects. 

Project managers should therefore foster workplace discipline and create conditions that enhance job satisfaction to improve 

productivity and ensure project success. 

However, these findings differ from some prior studies. For example, Podsakoff et al. [69] argued that job satisfaction primarily 

impacts productivity in specific contexts, such as creative or collaborative work, rather than in structured, task-oriented construction 

work. Additionally, Pinder [70] noted that excessive workplace discipline in rigid environments may reduce flexibility and motivation. 

Given these insights, the effects of discipline and job satisfaction should be carefully assessed based on the nature of the construction 

project and the specific tasks involved. 

  

6. Conclusions 

 

6.1 Direct influences on labor productivity (Y2) 

 

6.1.1 Resource management and working conditions (X1) 

  

The study found that Resource Management and Working Conditions (X1) directly influence labor productivity with a regression 

coefficient of -0.066. The negative coefficient indicates that when workers perceive greater adverse impacts or deficiencies in X1 such 

as low-quality raw materials or insufficient workforce skills labor productivity decreases accordingly. 

 

6.1.2 Labor management (X2) 

 

 Labor Management (X2) also directly influences labor productivity, with a regression coefficient of -0.049. Similar to X1, the 

negative coefficient suggests that inefficiencies in labor management such as inadequate skill levels or frequent workforce turnover 

negatively affect overall efficiency. 

 

6.1.3 Equipment/Tool performance (X3) 

 

 Equipment/Tool Performance (X3) has a positive direct influence on labor productivity, with a regression coefficient of 0.483. This 

positive relationship highlights that well-maintained, high-performing equipment and tools significantly enhance labor efficiency. 
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6.1.4 Motivation (Y1) 

 

Motivation (Y1) emerges as the most influential determinant of labor productivity, with a direct regression coefficient of 0.680. 

This underscores the crucial role of worker motivation in improving performance and mitigating negative effects from other factors. 

 

6.2 Indirect influences on labor productivity (Y2) via motivation (Y1) 

 

6.2.1 Resource management and working conditions (X1) 

 

X1 indirectly influences labor productivity through motivation, with a total regression coefficient of 0.191 (0.282 × 0.680). This 

implies that improvements in resource management positively enhance workforce motivation, which in turn increases productivity. 

        

6.2.2 Labor management (X2) 

 

X2 indirectly influences labor productivity through motivation, with a total regression coefficient of 0.273 (calculated as 0.401 × 

0.680). This suggests that effective labor management practices, such as workforce training, crew scheduling, and retaining skilled 

workers, strengthen motivation and, consequently, improve productivity. 

 

6.2.3 Equipment/Tool performance (X3) 

 

X3 indirectly influences labor productivity through motivation, with a total regression coefficient of 0.081 (0.119 × 0.680). This 

indicates that appropriate and well-functioning equipment can enhance worker motivation, thereby indirectly improving productivity. 

 

6.3 Summary of combined effects 

 

The structural equation for labor productivity (Y2) can be expressed as: Y2 = (-0.066X1) + (-0.049X2) + (0.483X3) + (0.680Y1) 

 

This equation illustrates the combined effects of Resource Management and Working Conditions (X1), Labor Management (X2), 

Equipment/Tool Performance (X3), and Motivation (Y1) on Labor Productivity (Y2). The negative coefficients of X1 and X2 indicate 

that adverse conditions in these areas reduce efficiency, whereas the positive coefficients of X3 and Y1 emphasize their significant 

contributions to productivity improvement. 
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