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Abstract

Thailand faces persistent challenges in its labor market, notably low and declining labor productivity, labor shortages, and skill
mismatches in the construction sector. Over the past decade, national development has focused more on capital investment and labor
quantity than on productivity improvement. This study aims to address this gap by developing and validating a Structural Equation
Model (SEM) to examine relationships among key labor productivity indicators in Thailand’s construction industry, particularly large-
scale high-rise projects. Data were collected from 600 construction workers employed in residential projects across Bangkok and
surrounding provinces, representing a population of 1,125,400 workers (2013—-2019). The SEM incorporated nine latent constructs:
Materials, Equipment/Tools, Labor, Safety, Construction Methods, Rework, Weather, Motivation, and Productivity that capture both
resource-related and human-factor dimensions. The validated model demonstrated a good fit with empirical data, with all observed
variable correlations significant at the 0.05 level. Motivation was identified as the most influential factor on labor productivity (total
effect = 0.680), followed by Equipment/Tool performance (0.483), Labor Management (—0.049), and Resource Management/Working
Conditions (—0.066). Collectively, these factors explained 92.7% of the variance in productivity. Indirect effects through Motivation
accounted for 51.7% of its variation. Findings underscore the crucial role of worker motivation in improving productivity. Housing
support had the most substantial positive influence on Motivation, explaining 75.7% of its variance. Construction managers should
prioritize motivational strategies, particularly housing support, project-end bonuses, and social insurance, to enhance workforce
satisfaction and productivity in Thailand’s construction sector.
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1. Introduction

The construction industry plays a vital role in the economic development of every country, particularly in developing nations [1].
Almost all industries rely on construction as part of their business investments. The sector contributes approximately 15-20% of a
country's Gross Domestic Product (GDP) [2-4]. Given the high investment involved, the construction industry significantly impacts
national economies. Consequently, improving productivity in construction remains a critical concern for both developed and
developing nations [5]. Developed countries emphasize economic growth and social welfare through cost savings and efficient resource
utilization. In contrast, developing nations, facing challenges such as unemployment, inflation, and resource shortages, aim to maximize
resource efficiency to drive economic progress and enhance citizens' quality of life [6].

Labor productivity is a key indicator of performance in the construction sector, as this industry is labor-intensive [7, 8]. Labor costs
account for approximately 30-50% of total project expenses. Low labor productivity leads to cost overruns and project delays. However,
research suggests that productivity growth in construction is lower than in other industries [4, 9]. Additionally, both labor shortages
and skill gaps present significant challenges. While advanced technology and efficient management are crucial for improving outputs,
they cannot replace the necessity of skilled labor [10, 11]. Ensuring high labor productivity at every project stage is essential for
construction success. Despite extensive research on labor productivity, no universal improvement strategies or standardized
performance metrics have been established [12, 13]. To enhance productivity, stakeholders must collaborate effectively, including
public and private sector entities, contractors, project managers, skilled workers, and laborers.

While prior studies have broadly discussed construction labor productivity [14], this study focuses explicitly on large-scale high-
rise building construction projects, which are resource-intensive, complex, and involve unique challenges such as vertical logistics,
specialized equipment, and large, diverse workforces that differentiate them from other construction types. Understanding labor
productivity in this context requires a tailored investigation of factors that directly affect on-site efficiency and workforce performance
[15]. Although many factors influencing labor productivity have been identified globally, a gap remains in empirically validated models
for large-scale high-rise projects in Thailand [16]. This study addresses that gap by developing a structural equation model (SEM) to
examine the relationships between labor productivity indicators and empirical data within this specific construction context [17],
thereby building upon existing knowledge while providing insights tailored to the particular challenges of high-rise construction.
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This study aims to identify key factors influencing labor productivity in the construction industry, evaluate the validity of the
measurement model, and determine the significance of each observed variable on the latent variables affecting labor productivity
decline. Structural equation modeling (SEM) is employed to analyze these relationships, offering insights into enhancing work force
efficiency in large-scale, high-rise construction projects.

2. Review of previous studies

Labor is a critical resource in construction projects, both in terms of workforce quantity and associated costs. A project's success
heavily depends on worker productivity, making labor efficiency a key factor in a company's competitiveness within the construction
industry [18]. However, the declining trend in labor productivity remains a significant concern [19, 20]. Despite extensive research on
this topic, there is still no consensus among academics and industry practitioners regarding the definition and measurement of
construction effectiveness.

High labor productivity in the construction sector is often reflected through several key characteristics, including strong job
security, competitive wage levels, good work discipline, and high job satisfaction among workers. Job security represents a stable
employment environment that supports employees’ commitment, motivation, and long-term performance focus [21]. Competitive
wages indicate an organization’s ability to attract and retain skilled labor, thereby reducing turnover and sustaining consistent work
quality, consistent with human capital theory and expectancy theory [22]. Likewise, work discipline reflects adherence to established
procedures, schedules, and quality standards, which contributes to efficient and error-free performance [23]. Furthermore, high job
satisfaction signifies a positive psychological state among workers, leading to greater commitment and reduced absenteeism and
turnover conditions that typify productive labor forces, as supported by the Human Relations Movement and Herzberg’s Two-Factor
Theory [24, 25].

Attar et al. [26] examined factors affecting labor productivity in India and categorized them into 15 groups: design, planning,
materials, equipment, labor, health and safety, supervision, working time, project quality, finance, leadership, organization, and external
influences. Similarly, Soekiman et al. [27] identified 113 variables impacting construction labor productivity, grouping them into the
same 15 categories. Shashank et al. [28] analyzed key factors influencing labor productivity changes in construction projects,
categorizing them into eight groups with 34 specific factors. Material-related factors ranked among the top three, aligning with Gerges
et al. [29], who studied labor productivity improvement in Egypt's construction sector. Their classification included labor, management,
environmental conditions, motivation, materials/equipment, scheduling, safety, and work quality. In Zimbabwe, a study identified the
top five factors affecting labor productivity: material availability, delayed salary payments, project suitability, equipment shortages,
supervisory capability, and worker skills. These factors were grouped into construction site conditions, equipment, materials,
management, labor, motivation, and technical aspects [13].

Over the years, research has identified numerous factors influencing labor productivity, forming the basis for questionnaire
development in construction industry studies. These factors apply to both developed countries, such as Canada [30], the UK [31], and
New Zealand [32], as well as developing nations like Nigeria [33, 34], Malaysia [35], Palestine [6], Kuwait [36], Sri Lanka [37], Turkey
[38], Trinidad and Tobago [39], Yemen [40], Zimbabwe [13], and Uganda [41]. Labor productivity is affected by both external and
internal elements, totaling 103 factors classified into 12 categories.

3. Method
3.1 Identifying population and sampling

The population in this research consists of construction workers classified by industry from 2013 to 2019 throughout Thailand,
totaling 1,125,400 people [42].

The determination of the sample size for this study was based on Yamane’s [43] formula, with additional units reserved to
compensate for potential incomplete responses. To ensure statistical rigor, the guidelines proposed by Krejcie and Morgan [44] were
also applied, using a 95% confidence level and a 5% margin of error. This calculation yielded an initial required sample size of
approximately 400 respondents. However, to strengthen the reliability of the study and address issues related to incorrect or incomplete
responses, the sample size was further increased to 600 units [45]. In terms of sampling approach, the distribution of questionnaires
initially adopted a non-probability convenience sampling method, which facilitated practical data collection. Following the completion
of data collection, purposive sampling was employed to refine and select the final set of usable questionnaires, ensuring that the data
aligned with the objectives of the study. The response rate obtained from the survey was 56%, corresponding to 336 valid questionnaires
returned. According to Babbie’s criterion, a response rate above 50% is deemed acceptable for social research, and thus the achieved
response rate in this study was considered suitable for subsequent analysis and interpretation [46].

3.2 Questionnaire design and measurement scales

Prior to field administration, the questionnaires underwent a rigorous development and validation process to ensure their validity,
relevance, and reliability. The validity of the instrument was examined through the Index of Item-Objective Congruence (I0C),
evaluated by a panel of five experts. The overall IOC score was 0.81, which indicates strong alignment between the questionnaire items
and the research objectives. To further confirm the reliability of the instrument, a pilot test was conducted with a group of 30
respondents possessing characteristics similar to those of the target population. The analysis produced a Cronbach’s Alpha [47]
coefficient of 0.961, significantly exceeding the generally accepted threshold of 0.7, thereby demonstrating excellent internal
consistency. The final questionnaire employed an interval-level measurement using a five-point Likert-type rating scale, specifically
designed to capture the degree of perceived impact of various factors on labor productivity [48].

3.3 Data collection
Data were collected through questionnaires administered to construction workers engaged in residential housing projects located

in Bangkok and its surrounding provinces. These projects were characterized by standardized housing units with uniform or nearly
identical design features. The selection of construction workers as respondents was appropriate, as their direct involvement in these
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projects enables them to reliably assess the practical impact of various factors on labor productivity. Their daily work experience
provided the foundation for their perceptions and evaluations of these linkages.

3.4 Variable reduction and analytical procedures

The researcher developed a measurement model to systematically extract and refine relevant variables for analyzing labor
productivity factors in construction projects. The process began with a comprehensive literature review, which established the
theoretical relationships between observed and latent variables, ensuring that the model was grounded in both empirical evidence and
conceptual foundations. To verify the reliability and validity of the constructs, composite reliability (CR) values were required to
exceed 0.70, indicating internal consistency, while the average variance extracted (AVE) values were expected to surpass 0.50,
confirming adequate convergent validity. Furthermore, individual observed variables were required to demonstrate standardized factor
loadings between 0.50 and 1.00, ensuring that each indicator made a significant contribution to its corresponding latent construct [49].

Following this rigorous variable extraction and validation process, nine latent variables were identified and retained, representing
key domains influencing construction labor productivity: (1) Materials, (2) Equipment/Tools, (3) Labor, (4) Safety, (5) Construction
Methods, (6) Rework, (7) Weather, (8) Motivation, and (9) Productivity. These latent variables serve as the study's foundational
theoretical constructs, capturing both resource-related and human-factor dimensions critical to productivity analysis. From the initial
pool of factors, 57 observed sub-components were retained, as summarized in Table 1. These observed variables not only satisfied the
statistical criteria for inclusion but also aligned with findings from previous studies, thereby reinforcing the theoretical robustness and
validity of the measurement model.

Table 1 Compilation of labor productivity factors affecting construction projects

Criteria Factors Symbol Reference
1.1 Materials have not arrived onsite yet Vib* [13,40]
1.2 Lack of material V2b [11,50,51]
1. Materials 1.3 Insufficient or poor material handling V3b  [13,52]
1.4 Unsuitability of materials storage location V4b  [28, 51]
1.5 Low quality of raw materials V5b  [6, 28, 40]
2.1 Lack of proper tools and equipment on-site Vic* [6,11,51]
2. Equipment/ 2.2 There are frequent tools/equipment breakdowns due to aging or poor maintenance V2c [13,50]
Tools 2.3 Suitability or adequacy of equipment/tools V3c [13,40]
2.4 Old and Inefficiency of equipment/tools V4c  [28,50, 51]
3.1 High absenteeism of labor Vid [18,28,51]
3.2 Working for long periods without holiday v2d [13,53]
3.3 Lack of manpower skills V3d [5, 52, 54]
3.4 Lack of labor experience V4d  [55, 56]
3.5 Inappropriate use of skills Vsd [13]
3 Labor 3.6 Crew size inefficiency ved [13]
’ 3.7 Use of alcohol and drugs Vid [27,41]
3.8 Worker turnover and changing crewmember V8d [54, 56]
3.9 Labor disloyalty Vvod* [53,55]
3.10 Labour dissatisfaction Vi1od [6,52]
3.11 Misunderstanding among labor V1ld [6, 53]
3.12 Lack of training Vi2d [28]
4.1 Accidents Vie* [28,41,55]
4.2 Violation of safety precautions V2e* [6, 28, 55]
4.3 Management does not support safety planning V3e* [50]
4. Safety 4.4 Lack of site safety resources V4e* [56]
’ 4.5 No safety engineer in site VS5e* [28]
4.6 Working at high places V8e* [28, 50]
4.7 Insufficient lighting Voe* [28, 41, 50]
4.8 Bad ventilation V10e* [6,41, 55]
5.1 The site is slippery or steep imposing terrible conditions Vift  [50]
5.3 Delay in responding to requests for information V3t [39]
5.4 The extent of variation/change orders during execution VAatt  [5, 39, 54]
5. Construction 5.5 Improper construction method Vof*  [56]
method 5.6 Stringent inspection by the engineer V10f* [5, 39]
5.7 Ease of processing and preparation of materials for the work (cutting/ chopping) VI11if* [40]
5.8 Quantity of work available every day (daily workloads) VI13f* [40]
5.9 Specialized nature of the work V14f*  [40]
6.1 The work needs to be redone due to the damage after the work was complete Vsg*  [50]
6. Rework 6.2 The works need to be redone because it fails quality control inspection or testing Veg* [50]
6.3 The work needs to be redone due to changes in design, drawings or specifications V8g* [50,57]
7.1 Cold, Humidity V1h*
7. Weather 7.2 Rain V2h*  [5, 39, 58]
7.3 High Temperature V3h*

*Factors with eigenvalues less than 1 were eliminated.
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Table 1 (continue) Compilation of labor productivity factors affecting construction projects

Criteria Factors Symbol Reference
8.1 Proportion of labor's salary and responsibility V1j  [59]
8.2 Delay in salary payment V2j  [37,53,59]
8.3 Bonus at the end of project or year V3j  [13,36,40]
8.4 Social insurance V4j  [36,40,41]
8.5 Canteen for employee (Good food for free or at a reduced price) V5j  [6,37,53]
8. Motivation 8.6 Medical care (Having a particular hospital to attend in case of illness or subsidizing .
. . Vej  [13,37,40]
the cost of hospital bills)
8.7 Accommodation (Provision of physical accommodation) V7i  [28,37]
8.8 Working hours (working 8 hours per day) V8  [40]
8.9 Wages level for labor V9 [13,37,41]
8.10 Public holidays V10; [40]
9.1 Job security Vip [37,59]
.. 9.2 Wages level for labor V2p [13,38,40]
9. Productivity 9.3 Work discipline V3p [38]
9.4 Work satisfaction V4p  [38]

*Factors with eigenvalues less than 1 were eliminated.
3.5 Exploratory Factor Analysis (EFA)

Exploratory Factor Analysis (EFA) was employed as a preliminary and essential step within the Structural Equation Modeling
(SEM) framework to validate and refine the theoretical structure of latent variables empirically. By identifying underlying latent
constructs from a broad set of observed variables, EFA consolidated a large number of factors into a more parsimonious and
theoretically meaningful measurement model. This process ensured that the latent variables incorporated into the SEM were both
empirically supported and reflective of the actual relationships in the dataset, thereby establishing a robust foundation for subsequent
analyses. In contrast, relying solely on theoretically derived groupings without empirical validation would risk poor model fit and
undermine the accuracy of the study’s findings. Based on a review of previous research, seven principal components were initially
identified: (1) Materials, (2) Equipment/Tools, (3) Labor, (4) Safety, (5) Construction Methods, (6) Rework, and (7) Weather. These
components were further decomposed into 43 observed variables [47].

EFA was a critical step in the SEM process, as it provided empirical confirmation and refinement of the theoretical structure
established through the literature review. While prior studies offered a foundation for identifying potential latent variables, EFA was
necessary to ensure that the observed variables were appropriately grouped and represented distinct underlying constructs within the
specific context of this study [60]. Through this process, the researchers were able to determine the appropriate number of latent factors
that best explained the variance in the observed variables. This data-driven validation ensured that the latent variables incorporated into
the subsequent SEM were empirically supported and reflected the actual relationships present within the dataset. Furthermore, the use
of EFA prevented the risk of poor model fit that might arise if theoretically derived latent variables were applied directly without
empirical validation [61].

The EFA procedure involved several systematic stages to ensure the validity and reliability of the measurement model. The process
comprised the following key steps

3.5.1 Data suitability assessment

Prior to factor extraction, the adequacy of the dataset for factor analysis was evaluated using two statistical tests:

- The Kaiser-Meyer-Olkin (KMO) Measure of Sampling Adequacy, where values between 0.6 and 1.0 indicate acceptable sampling
adequacy.

- Bartlett’s Test of Sphericity, where a significance value (p < 0.05) confirms that the observed variables are sufficiently correlated
for factor analysis.

3.5.2 Factor extraction

The extraction of factors was performed using the Principal Component Analysis (PCA) technique. The number of factors to be
retained was determined based on the following selection criteria:

- Eigenvalues (Kaiser’s Criterion): Only factors with eigenvalues greater than 1 were retained, as these explain more variance than
a single observed variable.

- Scree Plot Analysis: A scree plot was examined to identify the “elbow point,” representing the optimal number of factors before
the curve levels off.

- Cumulative Variance: The total variance explained by the extracted factors was considered adequate when exceeding 60%,
ensuring sufficient representation of the original dataset.

- Component Validity: Each retained factor was required to include at least three observed variables with significant loadings.

3.5.3 Factor rotation
To facilitate interpretability and ensure that extracted factors remain uncorrelated, Varimax orthogonal rotation was applied. This

rotation method simplifies the factor structure by maximizing the variance of squared loadings within each factor, making it easier to
identify which observed variables load most strongly on specific factors.
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3.5.4 Interpretation and model validation

After rotation, the pattern of factor loadings was examined to ensure conceptual coherence and theoretical consistency among the
grouped variables. Observed variables with low loadings (below 0.50) or cross-loadings on multiple factors were eliminated to maintain
construct validity. The retained factors were interpreted and labeled according to the theoretical framework derived from the literature
review.

Discriminant validity was assessed using the Fornell-Larcker criterion [62] to verify the distinctiveness of the latent constructs in
the measurement model. The analysis compared the square root of the Average Variance Extracted for each construct with the inter-
construct correlations. The results indicated that the AVE values for each latent construct Resource Management (X1) = 0.816, Labor
Management (X2) = 0.629, Equipment/Tool Performance (X3) = 0.651, Motivation (Y1) = 0.625, and Labor Productivity (Y2) =0.774
were greater than their highest inter-construct correlations, which ranged between 0.001 and 0.609. According to the Fornell-Larcker
criterion, discriminant validity is achieved when the AVE of each construct exceeds its correlations with other constructs. The findings,
therefore, confirm that all latent constructs are empirically distinct and conceptually independent, indicating that the measurement
model possesses satisfactory discriminant validity before structural model analysis.

3.6 Structural Equation Modeling (SEM) process

Structural Equation Modeling (SEM) was employed to examine the structural relationships among latent and observed variables,
integrating both the measurement and structural components within a single analytical framework. This method allows simultaneous
evaluation of multiple dependency relationships, thereby providing a comprehensive understanding of how latent constructs interact
within the proposed theoretical model. The SEM process in this study consisted of three primary stages: model specification, parameter
estimation, and model evaluation.

3.6.1 Model specification

Model specification involves developing a conceptual framework that defines the hypothesized relationships between latent and
observed variables. This step includes identifying:

- Exogenous variables, which represent independent latent constructs, and

- Endogenous variables, which are dependent constructs influenced by other variables in the model.

Each latent variable was linked to its respective observed indicators based on theoretical foundations and prior empirical studies.
The structural relationships among the latent constructs were then represented through directional paths, forming the hypothesized
model to be tested.

3.6.2 Measurement model validation

Before testing the structural relationships, Confirmatory Factor Analysis (CFA) was conducted to assess the measurement validity
of the latent constructs. CFA evaluates how well the observed variables represent their respective latent variables by examining factor
loadings, reliability, and convergent validity. Items with low factor loadings (below 0.50) or significant cross-loadings were considered
for elimination to enhance construct validity. To ensure the robustness of the measurement model, a rigorous validation process was
applied following established SEM guidelines [17, 61]. The results demonstrated that all retained items exhibited satisfactory
standardized factor loadings (> 0.50), composite reliability (CR > 0.70), and average variance extracted (AVE > 0.50), confirming both
reliability and convergent validity. This comprehensive validation procedure ensures that each latent construct is measured accurately
and consistently, providing a sound empirical foundation for subsequent SEM analysis.

3.6.3 Model identification and parameter estimation

In the model estimation stage, model identification was performed first to ensure the dataset contained sufficient information to
estimate all parameters uniquely. Once the model was identified, parameter estimation was conducted using the Maximum Likelihood
(ML) and Generalized Least Squares (GLS) methods. These estimation techniques were selected for their robustness in handling large
samples and their ability to produce efficient, unbiased parameter estimates. During the estimation process, the model’s parameters,
including path coefficients, variances, and covariances, were computed to assess the strength and direction of the hypothesized
relationships among the latent and observed variables. Non-significant paths or parameters inconsistent with theoretical expectations
were subsequently examined and considered for revision in later stages of model refinement.

3.6.4 Model fit evaluation

Model fit was assessed using a combination of absolute, incremental, and parsimonious fit indices, which were explicitly applied
as a critical step in evaluating the quality of the proposed SEM. The following criteria were used to ensure the adequacy and overall
appropriateness of the model.

- Chi-square () and its associated p-value, to test overall model discrepancy;

- Root Mean Square Error of Approximation (RMSEA), with values below 0.08 indicating acceptable fit;

- Comparative Fit Index (CFI) and Tucker-Lewis Index (TLI), where values above 0.90 reflect good model fit; and

- Goodness of Fit Index (GFI) and Adjusted Goodness of Fit Index (AGFI) as complementary measures of model adequacy.

When the model did not meet these fit criteria, modification indices (MIs) were examined to identify potential areas for
improvement. Adjustments such as correlating error terms or removing weak indicators were made only when they aligned with
theoretical justifications, maintaining the model’s conceptual integrity.

3.6.5 Model refinement

To enhance model fit and ensure empirical robustness, a systematic refinement process was conducted. This involved:
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- Eliminating low-loading variables (factor loadings < 0.50) to strengthen convergent validity;

- Checking for multicollinearity by identifying observed variables with excessively high intercorrelations (r > 0.85);

- Examining standardized residuals, where residuals beyond +2.58 indicated poor model-data fit at a 99% confidence level; and

- Reviewing modification indices (MIs) to assess potential misfit relationships and determine whether theoretical adjustments were
warranted.

This iterative process ensured that the final model achieved an optimal balance between statistical validity and theoretical
coherence.

3.6.6 Interpretation

Once a satisfactory model fit was achieved, the final stage involved interpreting the results through path coefficients, variances,
and correlations among latent variables. Statistical significance was evaluated to confirm the hypothesized relationships and to assess
the extent to which the empirical findings supported the study's underlying theoretical framework.

4. Research findings and results
4.1 Results of exploratory factor analysis

The analysis was performed using SPSS, employing Principal Component Analysis (PCA) and Varimax rotation. The Kaiser-
Meyer-Olkin (KMO) measure yielded a value of 0.910, indicating the appropriate sample size. Additionally, Bartlett's test of sphericity
produced a significance value (Sig.) < 0.05, verifying the data's suitability for EFA. For the seven principal components Materials,
Equipment/Tools, Safety, Construction Methods, Labor, Rework, and Weather Conditions the following quality assessment criteria
were applied:

- Eigenvalues: Factors with eigenvalues less than 1 were excluded. Three components met the selection criteria, with the lowest
eigenvalue at 1.100.

- Cumulative Variance: The variance explained reached 64.41%, exceeding the 60% threshold.

- Scree Test: Used to confirm the number of components influencing labor productivity.

- Component Validity: Each component required at least 3 observed variables.

Through Exploratory Factor Analysis (EFA), three principal components were extracted based on eigenvalues greater than 1,
representing the key influences on construction labor productivity. These components correspond to Resource Management (X1),
Labor Management (X2), and Equipment/Tool Performance (X3), which serve as the independent latent variables in the model and
play critical roles in large-scale high-rise construction projects. (1) Within Resource Management (X1), challenges such as material
handling, storage locations, and raw material quality are exacerbated by vertical transportation requirements and limited on-site space.
Inadequate material supply and the use of low-quality materials were identified as significant determinants of efficiency in high-rise
projects. (2) Labor Management (X2) encompasses factors including workforce skill levels, worker turnover, and crew changes
elements that are particularly vital given the large and diverse labor forces required for vertical construction tasks. The study highlights
that maintaining high labor productivity at every stage of a construction project is essential to ensure overall project success. Finally,
Equipment/Tool Performance (X3) in terms of suitability, adequacy, and maintenance was found to be of paramount importance in
high-rise construction, where specialized, heavy machinery is indispensable for lifting, hoisting, and working at considerable heights.
Together, these three components provide a comprehensive framework for understanding and enhancing labor productivity in the
complex environment of high-rise building projects, as detailed in Table 2.

Table 2 Result on total variance explained

Extraction Sums of Squared Loading

Criteria No. of items

Total Variance % Cumulative %
1 Resource Management and Working Conditions (X1) 9 7.727 48.635 48.635
2 Labor Management (X2) 6 2.218 21.096 69.731
3 Equipment/Tool Performance (X3) 3 1.479 7.397 77.128
Total 18 11.424 77.128 77.128

The Exploratory Factor Analysis (EFA) resulted in the extraction of three principal components, each representing distinct latent
constructs relevant to construction labor productivity.

Component 1, named Resource Management and Working Conditions (X1), has an Eigenvalue of 7.727, explaining 48.635% of
the total variance. This component comprises nine observed variables, with factor loadings ranging from 0.529 to 0.850. The variable
with the highest factor loading is Low-quality materials (V5b), while the variable with the lowest loading is Misunderstanding among
labor (V11d). These variables can be ranked in descending order according to their factor loadings, reflecting their relative contributions
to the construct of resource management and working conditions.

Component 2, named Labor Management (X2 ), has an Eigenvalue of 2.2 18, accounting for 21.096% of the variance. This
component consists of six observed variables, with factor loadings ranging from 0.509 to 0.789. The variable with the highest factor
loading is Labor turnover and replacement (V8d), while the lowest is Labor dissatisfaction (V10d). As with Component 1, the variables
in this component can be systematically ranked in descending order of factor loadings, indicating their relative significance in shaping
the latent construct of labor management.

Component 3, named Equipment/Tool Performance (X3), has an Eigenvalue of 1.479, explaining 7.397% of the variance. This
component comprises three observed variables, with factor loadings ranging from 0.582 to 0.699. The variable with the highest loading
is Suitability or adequacy of equipment/tool (V3 c), while the lowest loading is associated with Frequent tools/equipment breakdowns
due to aging or poor maintenance (V2 c). These variables may also be arranged in descending order of factor loadings to demonstrate
their relative contributions to the construct of equipment and tool performance, as shown in Table 3.

Each group of variables derived from the review of relevant past research and analyzed through exploratory factor analysis will be
used to develop measurement models for the continuous linear relationship between latent and observed variables. These indicators
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reflect different aspects or dimensions of the primary construct, consisting of a total of 5 models. Then, the relationships are drawn as
a path diagram based on the proposed hypotheses, as shown in Figure 1.

Table 3 The analysis resulted in the extraction of three principal components.

Component Factor Symbol Factor loading
- Low quality of raw materials V5b 0.850
g s Lack of labour experience vad 0.849
g o ) Lack of material V2b 0.724
g = E Insufficient or poor material handling V3b 0.716
S g S High absenteeism of labors Vid 0.701
§ g 'é Use of alcohol and drugs V7d 0.618
5 %8 Unsuitability of materials storage location V4b 0.575
51:3 Lack of training Viad 0.569
Misunderstanding among labor Vild 0.529
- Worker turnover and changing crewmember Vv8d 0.789
5 Working for long periods without holiday vad 0.696
g % Q Crew size inefficiency Véd 0.614
5 g = Lack of manpower skills V3d 0.533
§ Inappropriate use of skills V5d 0.526
Labor dissatisfaction V10d 0.509
£3 g Suitability or adequacy of equipment/tool V3c 0.699
§ ‘é é § c;i Old and Inefficiency of equipment/tool . Véc 0.691
g *g E 8 C Th@re are frequent tools/equipment breakdowns due to aging or poor Ve 0582
maintenance

TEIPRRRY Y

vi1d| [v19d| [ vab | | v7d] [ v1d|[vab || vap | [ vad]| vsb

1 (2) l
a0 | AT
' Ost=n=
| v3p |30
| vap |a—29

1 i
p
1
1
Vic l

C

S
=8

HjH

B

=
—
=
o

RO 0O R
H 5

E

viaj | [ vai | [vsi| [ vai | [ vsi||vei] ]| v7i| ]| vai v9| V10j

0C000066 06

Figure 1 The structural equation model was generated using the AMOS software

4.2 Measurement model results

Enhancing model fit in Structural Equation Modeling (SEM) requires a systematic and rigorous evaluation process. This section
outlines the step by step refinement of the measurement model, focusing on the elimination of variables that failed to meet established
statistical criteria. Such refinement ensures that the final model is both theoretically meaningful and empirically robust. This study
applied the following refinement principles:
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4.2.1 Evaluating factor loadings

According to Hair et al. [17], observed variables with factor loadings below 0.50 should be removed, as they indicate weak
relationships with latent variables and reduce convergent validity. Based on this criterion, 6 variables were eliminated: V5j (0.327),
V10j (0.424), V8j (0.439), V2p (0.202), V2¢ (0.485), and V4d (0.478).

4.2.2 Checking correlation between observed variables

Observed variables with excessively high correlations (above 0.85) can impact model reliability, causing issues such as:

- Regression Weight Instability.

- Fluctuations in regression coefficients or non-significant parameters.

- Inconsistent Relationship Directions - Empirical results may not align with theoretical expectations.

- Increased Standard Errors - Lowering confidence in parameter estimates.

- Poor Model Fit - Reducing overall model accuracy.

- Difficult Impact Differentiation

- This makes it challenging to distinguish individual variable effects, leading to misinterpretation [63].

Based on this analysis, 5 variables were removed: V1j (0.891), V1d (0.917), V4b (0.869), V11d (0.907), and V5d (0.924).

4.2.3 Identifying high residuals

Variables with residuals greater than +£2.58 indicate poor model-data fit at a 99% confidence level. Standardized Residual
Covariances were examined, and variables with high residuals were considered for elimination [61]. 10 variables were removed due to
high residuals: V19d (2.611), V2j (3.039), V6j (3.204), V9j (3.208), V4p (3.692), V5b (3.055), V7d (2.880), V8d (2.663), V6d (3.668),
and V10d (2.783).

4.2.4 Modification Indices (MI) analysis

Modification Indices (MI) were used to assess whether eliminating or adding relationships between specific variables could
enhance model fit. High MI values indicate potential misfit relationships, and removing such variables helps: Reduce residual errors
and improve overall model fit.

4.3 Structural model results

The SEM analysis was conducted to evaluate the appropriateness and accuracy of the structural equation model. The model was
refined by eliminating variables using the Modification Indices method to enhance completeness and ensure statistical values met
acceptable criteria. Further evaluation was performed by analyzing factor loadings and R? values and examining the covariance among
indicators to validate the model's reliability. The results are summarized in Table 4, while Table 5 presents the analysis of relationships
between the variables within the model.

From the standardized score regression coefficients of independent variables, which indicate the influence of variables with
statistical significance at the 0.05 level, the test results are summarized by aspect as follows:

4.3.1 Resource management and working conditions

The test results indicate that insufficient/improper material handling has the most significant direct positive influence on the
structural equation model of labor productivity, with a standardized weight of 0.864, explaining 62.7% of the changes in resource
management and working conditions. There is one direct influence and one indirect influence, as follows:

- Resource management and working conditions directly influence labor productivity, with a regression coefficient of -0.066, a t-
value of -0.580, and a Sig. value of 0.562 (> 0.001).

- Resource management and working conditions indirectly positively influence labor productivity through motivation creation,
with a total regression coefficient of 0.191 (0.282*0.680).

4.3.2 Labor management

The test results indicate that lack of manpower skills has the most significant direct positive influence on the structural equation
model of labor productivity, with a standardized weight of 0.943, explaining 88.90% of the changes in Labor Management. There is
one direct influence and one indirect influence, as follows:

- Labor Management directly influences labor productivity, with a regression coefficient weight of -0.049, a t-value of -0.288, and
a Sig. value of 0.773 (> 0.05).

- Labor Management indirectly positively influences labor productivity through motivation creation, with a total regression
coefficient of 0.273 (0.401*0.680).

4.3.3 Equipment/Tool performance

The test results indicate that Suitability or adequacy of equipment/tool has the most significant direct positive influence on the
structural equation model of labor productivity, with a standardized weight of 0.753, explaining 56.70% of the changes in labor
management. There is one direct influence and one indirect influence, as follows:

- Equipment/Tool Performance directly influences labor productivity, with a regression coefficient weight of 0.483, a t-value of
2.452, and a Sig. value of 0.014 (< 0.05).

- Equipment/Tool Performance indirectly positively influences labor productivity through motivation creation, with a total
regression coefficient of 0.081 (0.119*0.680).
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Table 4 Results of relationship analysis using regression coefficient

Factor Loading

Factor b SE. R?

o Resource Management and Working Conditions (X1)
i) V2b - Lack of material 0.792 - 0.746
'g V3b - Insufficient or poor material handling 0.864 0.075 0.627
> Labor Management (X2)
% V2d - Working for long periods without holiday 0.602 0.093 0.363
g V3d - Lack of manpower skills 0.943 - 0.889
& Equipment/Tool Performance (X3)
E V3c - Suitability or adequacy of equipment/tool 0.753 0.133 0.567

V4c - Old and Inefficiency of equipment/tool 0.658 - 0.432

Motivation (Y1)

- V3j - Bonus at the end of project or year 0.869 0.048 0.754
,§ % V4;j - Social insurance 0.795 0.046 0.632
5 -8 V7] - Accommodation 0.904 - 0.757
ﬂg § Labor Productivity (Y2)

Vl1p - Work discipline 0.904 - 0.817

V3p - Work satisfaction 0.751 0.051 0.564

Chi-Square = 9.781 df = 9 Relative Chi-Square = 1.087 p-value = 0.368 RMSEA = 0.016 RMR = 0.009 GFI = 0.995 NFI = 0.996
TLI=0.998 CFI = 1.000

Table 5 The relationship between the influence of variables

Dependent Independent Variable Dependent Variable
Vgriable R’ Influence X1 i X2 X3 P Y1
DE 0.282%* 0.401%** 0.119 0.000
Y1 0.517 IE 0.000 0.000 0.000 0.000
TE 0.282%%* 0.401%** 0.119 0.000
DE -0.066 -0.049 0.483 0.680%*
Y2 0.927 IE 0.191 0.273 0.081 0.000
TE 0.125 0.224 0.564 0.680**

Note: DE = Direct effect, IE = Indirect effect, TE = Total effect
** indicates P-Value <0.05

4.3.4 Motivation in work

This aspect consists of three sub-variables: Bonus at the end of project or year, social security, and housing support (providing
accommodation or a rental subsidy for apartments). Their regression coefficient weights range from 0.795 to 0.904, with multiple
correlation coefficients between 63.20% and 75.70%. The test results indicate that housing support (providing accommodation or rental
subsidy) has the most significant direct positive influence on the structural equation model of labor productivity, with a standardized
weight of 0.904, explaining 75.70% of the changes in motivation in work.

4.3.5 Labor productivity as a dependent variable in the structural model

In this study, Labor Productivity (Y2) was conceptualized as a latent construct reflecting both behavioral and psychological
dimensions of individual performance in construction projects. It was measured by four observed indicators: Job Security (V1p), Wages
Level for Labor (V2p), Work Discipline (V3p), and Work Satisfaction (V4p). The selection of these indicators was theoretically
grounded. Job Security represents stability of employment, which encourages workers to maintain consistent performance and reduce
turnover intentions [24, 64]. Wage level denotes the degree to which compensation meets workers’ expectations, a key extrinsic
motivator that enhances productivity [65]. Work Discipline captures punctuality, adherence to safety and quality standards, and self-
regulation, core behavioral aspects of productive work [24]. Finally, Work Satisfaction reflects intrinsic contentment and morale, which
have been consistently linked to higher labor productivity in the construction sector [66].

Labor Productivity (Y2) is conceptualized as a latent dependent variable representing the overall efficiency and performance of
skilled construction workers in achieving desired outputs relative to input resources. In this study, it is measured by two observed
indicators: work discipline (V1p) and job satisfaction (V3p). Work discipline (0.904) reflects an employee’s adherence to
organizational rules, punctuality, and consistent engagement in task execution. It captures the behavioral dimension of productivity,
emphasizing structured, reliable, and goal-oriented work performance. Job satisfaction (0.751), on the other hand, represents the
attitudinal dimension of productivity, reflecting how employees’ sense of fulfillment and positive perceptions of their job environment
contribute to enhanced performance. High satisfaction often leads to increased commitment, lower turnover intentions, and sustained
productivity.

Empirically, both indicators demonstrated strong factor loadings, confirming their robust reflection of the underlying latent
construct. Furthermore, both loadings were statistically significant at the 0.05 level, providing evidence of measurement validity and
supporting their suitability as key indicators of labor productivity. Together, these two measures provide a comprehensive
representation of labor productivity, integrating both behavioral and psychological aspects of worker performance.

The structural equation model demonstrates an excellent fit to the data, with all key indices meeting accepted criteria. Specifically,
it states: relative Chi-square = 1.087 (<2), RMSEA = 0.016, RMR = 0.009 (<0.05), GFI1 =0.995, NFI =0.996, and CFI=1.000 (>0.95),
confirming the model's validity and robustness [67].
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5. Discussion

Exploratory Factor Analysis (EFA) and SEM ensured the validity and robustness of your findings. EFA was crucial for empirically
confirming and refining the theoretical structure of latent variables, preventing poor model fit that could arise from relying solely on
theoretical groupings. The SEM model demonstrated an excellent fit to the data, with all key indices meeting the accepted criteria for
model fit.

5.1 Impact of motivation on labor productivity

The analysis revealed that Motivation was the most influential factor affecting labor productivity, with an overall influence
coefficient of 0.680, followed by Equipment/Tool Performance (0.483), Labor Management (-0.049), and Resource Management and
Working Conditions (-0.066). Collectively, these variables accounted for 92.7% (R? = 0.927) of the variations in Labor Productivity
(Y2). Furthermore, the R? value for Motivation (Y1) was 0.517, indicating that the independent variables included in the model
explained 51.7% of the variance in Motivation. This suggests that, while Motivation was the most significant predictor of labor
productivity, it was itself moderately explained by the antecedent factors incorporated into the model. Motivation, treated as a latent
construct within the SEM framework, was measured through a set of observed variables representing inherently positive motivational
attributes. These included a Bonus at the end of the project or year (V3]), with a regression coefficient of 0.869 and an R? of 75.4% for
Motivation, representing a direct financial incentive. Social Insurance (V4j) was another key factor, with a regression coefficient of
0.795, explaining 63.2% of the variance, highlighting the role of security and welfare in sustaining worker motivation. Accommodation
(V7)), representing housing support, exerted the most potent positive effect on Motivation, with a standardized weight of 0.904 and
accounting for 75.7% of the variance. The provision of housing support was shown to significantly enhance morale and efficiency,
aligning with Herzberg’s Two-Factor Theory [24], which posits that hygiene factors such as welfare and job security play a crucial
role in fostering positive Motivation.

Research by Jarkas and Bitar [36] found that appropriate welfare support, including housing assistance, positively impacts job
satisfaction and work engagement among construction workers in developing countries. This, in turn, helps reduce turnover rates and
enhances productivity. Similarly, Dai and Goodrum [68] emphasized that worker well-being, such as providing accommodation near
construction sites or housing subsidies, helps reduce commuting fatigue and promotes efficient work performance. Therefore, project
managers and stakeholders should prioritize housing support as a key motivational strategy to improve construction project labor
productivity and job satisfaction.

5.2 Overall labor productivity outcomes

The findings indicate that the latent variable Labor Productivity is strongly reflected by its observed indicators, work discipline,
and job satisfaction, with high factor loadings (0.904 and 0.751, respectively). These indicators highlight that structured work behavior
and employee satisfaction are central to efficient performance. This finding is consistent with prior research. Organ [67] emphasized
that positive workplace behaviors, such as discipline and responsibility, are essential for improving organizational productivity, while
Judge et al. [66] demonstrated that job satisfaction is directly correlated with work efficiency. Accordingly, this study reinforces the
view that discipline and job satisfaction are critical determinants of labor productivity in large-scale high-rise construction projects.
Project managers should therefore foster workplace discipline and create conditions that enhance job satisfaction to improve
productivity and ensure project success.

However, these findings differ from some prior studies. For example, Podsakoff et al. [69] argued that job satisfaction primarily
impacts productivity in specific contexts, such as creative or collaborative work, rather than in structured, task-oriented construction
work. Additionally, Pinder [70] noted that excessive workplace discipline in rigid environments may reduce flexibility and motivation.
Given these insights, the effects of discipline and job satisfaction should be carefully assessed based on the nature of the construction
project and the specific tasks involved.

6. Conclusions
6.1 Direct influences on labor productivity (Y2)
6.1.1 Resource management and working conditions (X1)

The study found that Resource Management and Working Conditions (X1) directly influence labor productivity with a regression
coefficient of -0.066. The negative coefficient indicates that when workers perceive greater adverse impacts or deficiencies in X1 such
as low-quality raw materials or insufficient workforce skills labor productivity decreases accordingly.

6.1.2 Labor management (X2)

Labor Management (X2) also directly influences labor productivity, with a regression coefficient of -0.049. Similar to X1, the
negative coefficient suggests that inefficiencies in labor management such as inadequate skill levels or frequent workforce turnover
negatively affect overall efficiency.

6.1.3 Equipment/Tool performance (X3)

Equipment/Tool Performance (X3) has a positive direct influence on labor productivity, with a regression coefficient of 0.483. This
positive relationship highlights that well-maintained, high-performing equipment and tools significantly enhance labor efficiency.
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6.1.4 Motivation (Y1)

Motivation (Y1) emerges as the most influential determinant of labor productivity, with a direct regression coefticient of 0.680.
This underscores the crucial role of worker motivation in improving performance and mitigating negative effects from other factors.

6.2 Indirect influences on labor productivity (Y2) via motivation (Y1)
6.2.1 Resource management and working conditions (X1)

X1 indirectly influences labor productivity through motivation, with a total regression coefficient of 0.191 (0.282 x 0.680). This
implies that improvements in resource management positively enhance workforce motivation, which in turn increases productivity.

6.2.2 Labor management (X2)

X2 indirectly influences labor productivity through motivation, with a total regression coefficient of 0.273 (calculated as 0.401 %
0.680). This suggests that effective labor management practices, such as workforce training, crew scheduling, and retaining skilled
workers, strengthen motivation and, consequently, improve productivity.

6.2.3 Equipment/Tool performance (X3)

X3 indirectly influences labor productivity through motivation, with a total regression coefficient of 0.081 (0.119 x 0.680). This
indicates that appropriate and well-functioning equipment can enhance worker motivation, thereby indirectly improving productivity.

6.3 Summary of combined effects
The structural equation for labor productivity (Y2) can be expressed as: Y2 = (-0.066X1) + (-0.049X2) + (0.483X3) + (0.680Y1)

This equation illustrates the combined effects of Resource Management and Working Conditions (X1), Labor Management (X2),
Equipment/Tool Performance (X3), and Motivation (Y1) on Labor Productivity (Y2). The negative coefficients of X1 and X2 indicate
that adverse conditions in these areas reduce efficiency, whereas the positive coefficients of X3 and Y1 emphasize their significant
contributions to productivity improvement.
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