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Abstract 

 

Condition-based predictive maintenance of industrial machinery is a key area of research in the present world looking towards Industry 

4.0. Machine learning (ML) techniques can have tremendous impact in this aspect because of their robust predictive modeling 

capabilities. The present paper aims to determine the optimized machine learning technique for the predictive maintenance of an 

industrial milling machine. The data pertaining to the operating parameters and the failure types of the machine is obtained from a 

public dataset with 10,000 data points. Five of the most popular classification ML algorithms namely, Artificial Neural Network 

(ANN), Discriminant Analysis (DA), Naïve Bayes (NB), Support Vector Machine (SVM) and Decision Tree (DT) techniques are 

implemented for the dataset to determine their optimized hyperparameters for an effective prediction of the machine failure type. DT 

and ANN were found to be the two best techniques with overall accuracy of 99.15% and 98.8%, respectively, and superior performance 

metrics of Precision, Recall and F-Measure compared to the other models. The results obtained from the present study may be enriched 

in the future by incorporating deep learning-based models and hybrid ML and intelligent optimization techniques for effective 

predictive maintenance of various industrial systems. The present approach can thus be employed in real-time factory settings to realize 

the targets of Smart Manufacturing and Industry 4.0. 
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1. Introduction 

 

Recently, there has been a huge acceleration in the development of innovative technologies including Internet of things (IoT), cloud 

computing, data analytics, and augmented reality. These innovative technologies have resulted in a radical shift in industrial 

maintenance approaches wherein automated systems are introduced with the capacity to forecast machine failure and increase in the 

longevity of operation [1, 2]. It is imperative to focus on energy optimization especially for production lines in the manufacturing 

segment as the machine’s overall performance depends on its energy utilization efficiency [3, 4]. This has resulted in the research of 

new maintenance strategies such as condition-based maintenance, prognostic, identifying faults in a manufacturing environment, and 

overall health management [5]. Predictive Maintenance (PdM) uses historical data to predict machine behavior and is typically applied 

through prognostic monitoring or condition-based maintenance [6]. 

In a manufacturing process environment, PdM systems play a pivotal role in detecting and scheduling the maintenance activities 

required for ensuring product quality while avoiding early maintenance as well as reducing unnecessary costs due to down time. PdM 

helps in constant monitoring of the machine’s performance and integrity, allowing maintenance only when it is essential. Furthermore, 

PdM systems are built on statistical interpretation methods, integrity variables, historical data, and various engineering approaches for 

early problem detection [7]. There are a variety of techniques for predicting a systems’ health for effective predictive maintenance; for 

instance, the usage of machine learning (ML) techniques such as, Support Vector Machine (SVM), Artificial Neural Networks (ANN), 

Naïve Bayes (NB), Discriminant Analysis (DA) and Decision Trees (DT) [8-13], etc. 

Furthermore, PdM diagnosis methods can help determine fault type by examining the current machine status [12]. PdM strategy 

needs improvement in accuracy in line with its explicitness of prediction for ensuring higher efficacy in industrial applications [13]. 

Industries are rapidly adopting these machine-learning technologies to obtain more precise and accurate predictions required for the 

maintenance of industrial assets [14]. One of the major areas of IoT implementation is the concept of the Industrial Internet of Things 

(IIoT) used in PdM. IIoT serves as the bridge between manufacturing as well as production applications and machines for establishing 

coherent communication between them. These IoT-enabled systems can provide real-time machine data, monitor industrial machines, 

and differentiate the occurrence of wear and tear damage to prevent machine failures resulting in downtime thus ensuring production 

continuity [15]. 

Recently, Heymann and Schmitt [16] developed an ML-based pipeline for effectively predicting the remaining useful lifetime of a 

polymer 3D printing nozzle by integrating sensor data as well as training of a regression model. De Luca et al. [17] designed as PdM 

methodology using deep learning approaches for an intelligent maintenance strategy based on real-time sensorics and IoT data obtained 

from machines in an industrial setup. Karabacak [18] introduced an innovative approach based on ML techniques for tool wear 

prediction of an industrial milling machine. Multiple ML techniques were compared to identify artificial neural networks as the models 
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which to show the best accuracy. It was observed that choosing the key sensor signals can help develop effective ANN models. Gong 

and Chen [19] presented a convolutional neural network (CNN) based deep learning model utilizing the IoT and wireless sensor data 

for the PdM of wind turbine systems. A customized CNN was developed for making robust condition-based monitoring of components 

such as generators, transformers and gearbox during the wind turbine operation. 

Most PdM studies focus on implementing ML models but do not systematically investigate hyperparameter optimization for 

improved performance [16-19]. Certain studies have focused on deep learning, which can be computationally expensive for real-time 

industrial applications [17, 19]. While deep learning-based methods such as Transformers and Kernel Attention Networks (KAN) have 

been introduced in recent years [20-22], classical machine learning models continue to be widely used in predictive maintenance due 

to their interpretability, lower computational cost, and ease of deployment in industrial settings. This study focuses on optimizing and 

benchmarking five well-established ML models for predictive maintenance applications. Unlike prior works, this study systematically 

evaluates and optimizes hyperparameters for five well-established ML models (ANN, DA, NB, SVM, DT) to achieve the best 

classification performance. The results provide a practical framework for selecting and fine-tuning ML models for PdM applications 

in Industry 4.0 settings. 

 

 
 

Figure 1 General structure of the proposed predictive maintenance model 

 

In this manuscript, a labelled PdM dataset pertaining to the machine failure modes of an industrial milling machine is employed to 

develop the predictive model using ML algorithms. The dataset consists of 10,000 data points. There are 5 classes of machine failure 

modes that are classified (no failure, power failure, tool wear failure, overstrain failure, random failure, and heat dissipation failure). 

The failure class is dependent on the combination of input parameters such as, Air temperature [K], Process temperature [K], Rotational 

speed (rpm), Torque [Nm], and Tool wear [min]. The methodology of ML approach implemented for failure classification is shown in 

Figure 1. 

Despite these advancements, several key challenges persist in the field of predictive maintenance, particularly for industrial 

machining systems: 

 Many existing studies focus on model implementation but overlook systematic hyperparameter optimization, which is essential 

for maximizing model accuracy and reliability. 

 Complex deep learning approaches, while powerful, often have high computational costs and limited interpretability, making 

them less suitable for real-time industrial deployment. 

 The issue of class imbalance, where failure events are rare compared to normal operation, often leads to misleadingly high 

accuracy while minority failure classes remain poorly predicted. 

 There is also a lack of clear comparative studies that systematically benchmark classical ML techniques under realistic 

industrial data scenarios. 

While recent studies have explored the application of deep learning architectures such as Convolutional Neural Networks (CNN), 

Long Short-Term Memory (LSTM) networks, and Transformer-based models for predictive maintenance, these approaches often 

require significantly higher computational resources and may lack the interpretability required for deployment in resource-constrained 

or safety-critical industrial environments. In this context, the present study focuses on classical, interpretable machine learning models 

as a practical benchmarking foundation. These models are widely used in industry due to their ease of deployment, lower training 

requirements, and transparent decision-making processes. 

To address these limitations, the present study makes the following targeted contributions: 

1. A comprehensive benchmarking of five widely used and interpretable ML classifiers — Artificial Neural Network (ANN), 

Discriminant Analysis (DA), Naïve Bayes (NB), Support Vector Machine (SVM), and Decision Tree (DT) — applied to a 

publicly available PdM dataset for an industrial milling machine. 

2. Systematic hyperparameter tuning for each model to optimize their classification performance. 

3. Evaluation of model performance across multiple metrics (accuracy, precision, recall, F1-score) to provide a holistic assessment 

beyond overall accuracy. 

4. Feature importance analysis using ANOVA, providing insights into the most critical operational parameters influencing 

machine failures. 

5. Practical assessment of training and inference times, highlighting the feasibility of these models for real-time deployment in 

industrial environments. 
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A summary of key related works, their contributions, limitations, and how the present study addresses identified gaps is provided 

in Table 1. 

 

Table 1 Research background and literature review summary 

 

Author & Year Approach Findings Limitations 
How Present Study 

Addresses Gap 

Heymann & 
Schmitt (2023) [16] 

ML pipeline for PdM 

in polymer 3D 

printing 

Effective prediction of 

remaining useful life using 

sensor integration 

Focus on regression; limited to 

specific polymer application 

Broad PdM application using 

classification of failure types 

De Luca et al. 

(2023) [17] 

Deep learning (DL) 
for intelligent PdM 

strategy 

DL models enhance real-time 
PdM using sensor and IoT 

data 

High computational 
complexity for real-time 

industrial deployment 

Emphasis on interpretable, 
low-cost classical ML models 

Karabacak (2024) 

[18] 

ML-based tool wear 

prediction for milling 
machine 

Identified ANN as best 

model for tool wear 
prediction 

Limited to single failure type 

(tool wear) 

Multi-class failure type 

classification for milling 
machines 

Gong & Chen 
(2024) [19] 

CNN-based PdM for 

wind turbines 

CNN and IoT integration 

improve condition 

monitoring 

Application-specific; deep 

models with limited 

interpretability 

Focus on generalizable, 

interpretable ML approaches 

Efeoğlu & Tuna 

(2022) [23] 

SVM for PdM on 
AI4I 2020 dataset 

Achieved high accuracy 
(~99%) 

Poor performance on random 
failures, limited model 

comparison 

Systematic comparison of 5 
ML models with robust 

evaluation 

Sengupta et al. 

(2023) [24] 

Ensemble model for 

PdM of armored 
vehicles 

Improved fault prediction 

using ensemble approach 

Application-specific, ensemble 

complexity 

Focus on milling machine 

PdM with interpretable ML 
models 

Ghasemkhani et al. 
(2023) [25] 

Balanced K-Star for 

PdM with IoT-

enabled data 

Improved explainability and 

performance for PdM 

Specific to IoT-enabled 

systems; limited 

hyperparameter tuning 

Comprehensive 

hyperparameter optimization 

of ML models 

Present study 

ML pipeline for PdM 
in polymer 3D 

printing 

Effective prediction of 
remaining useful life using 

sensor integration 

Focus on regression; limited to 
specific polymer application 

Broad PdM application using 
classification of failure types 

 

By addressing these gaps, this work provides a practical and transparent framework for developing effective predictive maintenance 

solutions aligned with the goals of Industry 4.0. 

 

2. Materials and methods 

 

This section outlines the dataset used in the present study followed by a description of the ML techniques adopted and the metrics 

of measuring their predictive performance (available at: https://archive.ics.uci.edu/ml/datasets/AI4I+2020+Predictive+Maintenance 

+Dataset). 

 

2.1 Description of the dataset  

 

The chosen dataset from the University of California, Irvine – Machine Learning Repository, “AI4I 2020” has 10,000 data points, 

which is based on working of an actual industrial-grade milling machine. This is a synthetic dataset designed to reflect real predictive 

maintenance data encountered in industry. It encompasses a synthetic milling process for classification and explainable artificial 

intelligence (XAI). The dataset consists of the following operational parameters: 

1. Air temperature [K] around 300 K with a standard deviation of 2 K. 

2. Process temperature [K] around 310 K with a standard deviation of 1 K. 

3. Rotational speed [rpm] computed for power output of 2860 W. 

4. Torque [Nm] distributed normally around 40 Nm, with a standard deviation of 10 Nm. 

5. Tool wear [min] indicating the minutes of process-related tool wear to the employed tool. 

 

For each datapoint with a particular set of input parameters listed above, the machine condition or type of failure is labelled as:  

1. No Failure: Indicates normal operation without any faults. 

2. Power Failure: Occurs when the power output deviates significantly from the expected operational range, either due to system 

overload or power disruption. 

3. Tool Wear Failure: Triggered when tool wear exceeds its permissible limit, leading to poor machining quality and potential 

breakdowns. 

4. Overstrain Failure: Results from excessive torque combined with prolonged tool wear, typically when processing hard materials 

under high loads. 

5. Random Failures: Represents unanticipated or stochastic breakdowns without clear precursor patterns, possibly due to material 

inconsistencies or electronic malfunctions. 

6. Heat Dissipation Failure: Happens when thermal limits are breached due to insufficient cooling or excessive heat accumulation 

in the tool or workpiece. 

 

The five input parameters are used to predict the type of failure or whether the machine is working properly or not using ML 

methods discussed subsequently. The size distribution of different failure types is presented in Figure 2.  

To aid better understanding of the data structure, a few representative entries from the dataset are presented in Table 2. Each row 

represents a snapshot of the machine’s operational condition defined by five input parameters and a corresponding machine failure 

label. 
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Figure 2 Size distribution of different failure categories 

 

Table 2 Representative examples from the predictive maintenance dataset 

 

Air Temp (K) Process Temp (K) Rotational Speed (rpm) Tool wear (min) Torque (Nm) Failure Type 

303.5 312.2 1511 27 37.1 No Failure 

301.5 311.1 1731 101 27.9 No Failure 

300.8 310.1 1405 189 61.2 Power Failure 

298 308.7 1268 189 69.4 Power Failure 

302.6 311.6 1227 187 68.2 Overstrain Failure 

298.4 308.2 1282 216 60.7 Overstrain Failure 

297 308.3 1399 132 46.4 Random Failures 

298.6 309.8 1505 144 45.7 Random Failures 

297.1 308.5 1323 207 44.4 Tool Wear Failure 

300.8 310.6 1577 227 37.9 Tool Wear Failure 

301.7 309.9 1317 187 49 Heat Dissipation Failure 

302.5 310.2 1307 86 54 Heat Dissipation Failure 

 

2.2 ML Classifiers  

 

Five well-established ML classification models, viz., Artificial Neural Networks (ANN), Discriminant Analysis (DA), Naïve Bayes 

(NB), Support Vector Machine (SVM) and Decision Trees (DT) are employed in the present study to investigate their effectiveness in 

predicting the classification problem for PdM. The dataset was split into 90% for training and 10% for testing. The models were 

implemented using the Classification Learner Toolbox of MATLAB 2022a®. The process flowchart adopted in the present work to 

implement the different ML classifiers, the list of hyperparameters optimized and their assessment is described in Figure 3. 
 

 
 

Figure 3 Algorithm of implementation of ML classifiers in the present work 

 

2.2.1 Artificial neural network 

 

ANN involves a computational process of feedforward-backpropagation algorithm to optimize the hyperparameters or unknown 

coefficients of the mathematical model to arrive at accurate predictions of the required output responses [26-29]. Neural networks 

consist of certain centers of computations called neurons and stages of connections between series of neurons called layers. The first 

layer is the list of inputs, and the last layer is the output or the model prediction. In case of classification problems, output layer 

computes a classification score to predict the category of the output response for a particular set of input parameters. In this study, a 

single hidden-layer ANN is optimized with respect to two hyperparameters, viz.: number of neurons between 1 to 100 and the activation 

function (among ReLU, Sigmoid and Tanh), for the best possible accuracy [30]. 

Count 

No Failure 

Overstrain Failure 

Random Failures 

Heat Dissipation Failure 

Power Failure 

Tool Wear Failure 

No Failure, 
9652, 

96.5200% 

Random 
Failure, 18, 

0.1800% 

Tool Wear 
Failure, 45, 

0.4500% 

Power Failure, 
95, 0.9500% 

 

Overstrain 
Failure, 78, 

0.7800% 
Heat 

Dissipation 
Failure, 112, 

1.1200% 

Optimizing 
hyperparameters 

Optimizing 
hyperparameters 

Optimizing 
hyperparameters 

Optimizing 
hyperparameters 

No of neurons 
Activation 
function 

Kernel function 
Distribution 
Kernel type 

Min leaf size 
Max no of splits 
Split criteria 

Discriminant 
type 

Performance 
Evaluation using 
confusion matrix 

Best ML Classifier 
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2.2.2 Discriminant analysis 

 

Discriminant Analysis (DA) is a supervised ML technique commonly used for classification and dimensionality reduction. It is a 

simple and reliable algorithm for classification problems employing Bayesian rule to classify the data space into disjoint subdomains 

using the probability densities [31]. The DA method intelligently optimizes the linear plane to be employed to classify the data space 

by means of intra-class separability (variance within a group) and inter-class separability (variance between groups) [31-33]. Here, the 

only hyperparameter optimized is the type of discriminant used in DA, viz.: linear (all classes have same covariant matrix), quadratic 

(each class can have unique covariant matrix), diaglinear (all classes have same diagonal covariant matrix) and diagquadratic (each 

class can have a unique covariant matrix, which are diagonal) [33]. 

 

2.2.3 Naïve bayes 

 

One of the most straightforward yet efficient supervised classification methods that makes use of the Bayes theorem is the NB 

method [33]. The algorithm used in the Naïve Bayes classification model assumes that each feature's occurrence stands independent 

from the others. A conditional probabilistic technique is used by the classifier to build models from a given amount of data in order to 

learn certain features that belong to a class and make predictions. The model hyperparameters optimized here are the distribution 

(Kernel or Gaussian) and the type of Kernel (Gaussian, Box, Epanechnikov and Triangle) [34]. 

 

2.2.4 Support vector machine 

 

SVM was created in the 1960s, and as it started to gain popularity in the 1990s, it underwent substantial improvements [35]. With 

superior accuracy and little computational power requirements, it is currently regarded as one of the most effective ML algorithms. 

SVM is frequently employed for classification goals, while it can also be used for regression. By looking for the best hyperplane or 

decision boundary (in an N-dimensional space where N is the number of characteristics or input factors), SVM attempts to categorize 

the dataset into classes or categories [36]. The decision hyperplane's dimension depends on the number of control factors. For instance, 

if there exist two input features, the hyperplane turns into a line, and its dimension increases with more features. Here, the hyperpameter 

considered for optimization is the type of Kernel function among Gaussian, Linear, Quadratic and Cubic. 

 

2.2.5 Decision tree 

  

By building a tree-like relationship based on the qualities of the data, decision trees (DT) accomplish categorization of the data. In 

order to build decision-making rules and identify patterns in data, hierarchical structures are used [37]. They are also used to estimate 

the relationship between independent and dependent variables. The minimum leaf size, maximum number of splits, and split criteria 

(which includes Gini’s diversity index, twoing rule and largest deviation reduction) are the hyperparameters for optimization in this 

study. 

 

2.3 Performance evaluation  

  

The confusion matrix is a crucial pictorial representation for the performance assessment of classification models. The confusion 

matrix provides information on the True Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN) values. When 

evaluating an algorithm's accuracy, the True Positive (TP) and True Negative (TN) values reveal how frequently the algorithm labels 

positive data as positive and negative samples as negative. As a gauge of the algorithm's accuracy, the False Positive (FP) value shows 

how frequently the algorithm declares a negative sample to be positive. As a gauge of the algorithm’s Recall capability, the False 

Negative (FN) value shows how frequently the algorithm declares a positive sample to be false. Using the TP, TN, FP, FN results, the 

classification performance of the models are examined using standard metrics of error evaluation. The formulas for the performance 

metrics: Accuracy, Precision, Recall and F-measure (also called F1-score) are provided in Eqs (1-4), respectively [31-36]. 

 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1) 

  

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

  

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

  

 𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

 

Accuracy is nothing but the number of correct predictions (TP+TN) as a ratio of the total number of samples. Precision is the 

probability that the samples (TP+FP) that are predicted to be positive are actually positive. Recall measures the likelihood of the 

samples (TP+FN) to be predicted correctly. Recall is therefore focusing on whether positive predictions are successfully classified or 

not. F-measure combines the values of Precision and Recall to by performing harmonic average to produce a single quantity. It is 

essentially a gauge of a classifier’s effectiveness and is frequently used to compare different algorithms. When the Recall rate is desired 

to be enhanced in most machine learning methods, the Precision value drops as the number of FPs increase. Alternatively, if a higher 

Precision value is needed, a lower Recall rate will result as the FN number rises. When looking for an algorithm that has good Recall 

as well as Precision, the F-measure metric is used. Both values must be high for the F1-score to be high, because when the harmonic 

mean of two numbers, one tiny and the other huge is calculated, the result will be closer to the smaller one. 
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3. Results and discussion 

 

This section presents the comparison of the results obtained using the various ML techniques to arrive at the model with the best 

performance. 

 

3.1 Accuracy of the optimized models 

 

The confusion matrices obtained for ANN, DA, NB, SVM and DT classifier models are shown in Figures 4(a-e), respectively. It 

is found that, ANN model with 10 neurons in the single hidden layer and ReLU (rectified linear unit) activation function shows an 

overall accuracy of 98.8% (refer Figure 4(a)). It did not predict tool wear failures and random failures, seen by 0% and NaN (i.e., not 

a number) values in the diagonal. DA showed a maximum of 97.8% accuracy with the quadratic type of discriminant. But it did not 

correctly predict random failures, which can be seen as 0% in the diagonal entries (refer Figure 4(b)). NB classifier with Gaussian type 

of Kernel and performed with a maximum accuracy of 96.69%. But it was unable to predict both tool wear failure and random failures, 

which is evident from the respective diagonal entries (refer Figure 4(c)). 

 

 
                                                         (a)                                                                                                       (b) 

 

 
                                                         (c)                                                                                                       (d) 

 
                                                                                                                
 

Figure 4 Confusion matrices for (a) ANN, (b) DA, (c) NB, (d) SVM, and (e) DT classifiers 

(e) 
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The SVM classifier showed an overall accuracy of 97.8% with a linear kernel function. But similar to NB, it was unable to predict 

tool wear failure and random failure (refer Figure 4(d)). The DT classifier performed with the best accuracy with a maximum of 99.15% 

with 391 leaf splits and split criterion of maximum deviance reduction. It is observed from the confusion matrix (refer Figure 4(e)) that 

all types of failures were predicted effectively by the decision tree classifier demonstrating its superior applicability to be employed in 

predictive maintenance scenarios and for judicious condition monitoring of industrial milling machines. 

Models like Naïve Bayes, ANN and SVM, which rely on strong probabilistic assumptions and density estimation, struggled to 

learn meaningful patterns for these underrepresented failure types, leading to their misclassification or complete non-detection. 

Consequently, in some cases, the denominator in Precision or Recall calculations became zero, resulting in NaN values. While other 

models exhibited NaN values due to their inability to classify the minority failure types, the Decision Tree model achieved classification 

accuracies ranging from 71.4% to 99.4% for all six failure types, demonstrating its robustness despite class imbalance (Figure 5). 

 
Figure 5 Comparison of accuracy of the optimized models 

 

It is important to note that the predictive maintenance dataset used in this study exhibits a significant class imbalance, with the 

majority of data points corresponding to the “No Failure” condition and relatively fewer instances representing specific failure types. 

Such imbalance is common in real-world industrial datasets, where actual machine failures are rare compared to normal operation. 

While high overall accuracy values are observed, this can sometimes mask poor performance on minority classes, as reflected in the 

inability of certain models (e.g., NB, SVM) to accurately predict rare failure categories. 

To mitigate this challenge and provide a more reliable evaluation, future work will explore the use of data balancing techniques, 

such as the Synthetic Minority Over-sampling Technique (SMOTE), cost-sensitive learning, or resampling strategies to create balanced 

training and validation sets. Additionally, confusion matrix evaluations can be performed on balanced validation sets to provide a more 

comprehensive assessment of model robustness, particularly for minority failure types. 

Despite these limitations, the Decision Tree model, as demonstrated in this study, achieved strong classification performance even 

under imbalanced data conditions, correctly predicting all failure types with reasonable accuracy. This highlights its suitability for PdM 

applications where imbalanced data is inevitable. 

 

3.2 Performance metrics 

 

The performance metrics which are defined in Eqs. (1-4) give a better understanding of the predictions in comparison to the 

classification performance of the ML algorithms. From the confusion matrices, the performance parameters, Accuracy, Precision, 

Recall (also called Sensitivity), and F-Measure (also called F1-score) have been calculated and plotted in Figure 6. The comparative 

plot clearly demonstrates that the decision tree model (DT) performs the accurately classifies the type of failure based on the condition 

of the machine and would be able to perform the PdM tasks for condition-based maintenance of the industrial milling machines. 

 

 
 

Figure 6 Comparison of classification prediction performance of the different classifiers 
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Table 3 provides a concise comparative summary of the five machine learning models investigated in this study, combining both 

their quantitative performance (accuracy) and qualitative characteristics (strengths and weaknesses). The table allows for quick 

reference to each model's suitability for predictive maintenance applications based on multiple dimensions: 

 Accuracy (%) reflects each model’s overall classification performance on the test set. 

 The strengths column highlights features such as computational efficiency, interpretability, and robustness to class imbalance. 

 The weaknesses column identifies limitations like poor performance on minority classes, high training time, or difficulty in 

model interpretability. 

 

Table 3 Average training and inference time for each ML model 

 

Model Accuracy (%) Strengths Weaknesses 

Decision Tree 99.15 Highest accuracy, robust to class 

imbalance, interpretable 

Slightly higher training time 

Artificial Neural Network 98.80 High accuracy, flexible Poor on rare classes, less interpretable 

Support Vector Machine 97.80 Good accuracy, robust margin Fails to detect rare classes 

Discriminant Analysis 97.80 Fast, interpretable Lower precision for failures 

Naïve Bayes 96.70 Fastest training/inference Poor classification of failures 

 

From the table, it is evident that the Decision Tree (DT) model stands out as the most balanced and practically deployable choice 

— offering the highest accuracy (99.15%), successful classification across all failure types, and ease of interpretation. The Artificial 

Neural Network (ANN) also performs well but shows reduced reliability for rare failure types and is less transparent. In contrast, 

models like Naïve Bayes (NB) and Discriminant Analysis (DA) are computationally efficient and interpretable but show limitations in 

precision and recall, especially under class imbalance. 

Overall, this comparative summary reinforces the narrative that while multiple classical ML models are viable for predictive 

maintenance tasks, their selection should be informed by specific deployment needs, such as accuracy requirements, interpretability, 

and response time in real-time factory environments. 

 

3.3 Computational efficiency: Training and inference times 

 

In practical predictive maintenance applications, especially those operating under real-time constraints, the computational 

efficiency of machine learning models is of critical importance. To evaluate the feasibility of real-world deployment, the average 

training and inference times of each model were recorded using MATLAB’s tic and toc functions on a standard computing platform 

(Intel® CoreTM i7 processor, 2.90 GHz, 16 GB RAM). Table 4 presents the average time taken by each model for training and prediction 

on the test set (10% of the dataset). 

 

Table 4 Average training and inference time for each ML model 

 

Model Training time (s) Inference time (s) 

Decision Tree 0.67 0.15 

Artificial Neural Network 1.82 0.24 

Support Vector Machine 1.25 0.21 

Discriminant Analysis 0.31 0.06 

Naïve Bayes 0.27 0.05 

 

Naïve Bayes and Discriminant Analysis were found to be extremely fast to train and evaluate, completing both phases in under 

half a second. ANN and SVM, while achieving strong predictive performance, required more time due to their optimization procedures 

and complexity. The Decision Tree model, although slightly more computationally intensive than NB and DA, still completed both 

training and inference under a second, making it a suitable choice for deployment in typical factory settings. Therefore, while high-

performing models such as DT and ANN offer excellent accuracy, simpler models like NB and DA may be considered when ultra-

low-latency deployment is needed with slightly reduced accuracy. 

 

3.4 Ranking the influence of input parameters 

 

To assess the relative importance of the different governing factors considering in the present analysis on the condition of the 

milling machine, their comparative influence on the failure type is evaluated against the analysis of variance (ANOVA) algorithm. 

ANOVA is a statistics-based correlational, filtering and selection technique. By performing univariate statistical tests, it determines 

which control factors are having higher influence on the output responses. The association between each control factor and the target 

variable is determined by a one-to-one comparison. Since other features are disregarded while analyzing the relationship between a 

single control factor (or feature) and the target variable (in the present case, the failure types), this technique is known as univariate. 

To determine the test score for features, ANOVA utilizes the F-statistic when the input features are numerical [38, 39]. ANOVA 

determines the test scores for each characteristic and compares them to determine which features are the best. 

Figure 7 shows the ranking of the five process parameters considered in the present study on the condition of the milling machine. 

It is observed that torque, rotational speed, and tool wear have a significant influence on the failure of the machine, while ambient 

temperature and process temperature have marginal effects. This is especially true in the case of large-scale industrial milling machines 

wherein they work in well-controlled ambient environmental conditions, in which fluctuations in temperature are minimal. The effect 

of temperature would become important in situations where the fluctuation in temperature comes into picture [40]. 
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Figure 7 Feature importance ranking using ANOVA 

 

3.5 Comparison with previous studies 

 

To bring forth the contribution of the present study, a literature review was conducted to compare the maximum accuracy of 

classification achieved in other studies in the literature on the same dataset against that obtained in the present study. Table 5 presents 

the comparison of the overall accuracy obtained by other studies along with the best accuracy obtained in this paper. It is clearly 

observed that the Decision Tree model investigated herein achieves the best accuracy with an accuracy of 99.15% (shown in boldface). 

Although the study by Efeoğlu and Tuna [23] (refer Table 4) showed a close accuracy, their model was unable to predict the random 

failures, whereas the DT model predicted all types of failures with reasonable accuracy (see Figure 4(e)). 

 

Table 5 Accuracy of classification obtained by previous studies on the same dataset 

 

Author (Year) Technique Accuracy 

Mota et al. (2023) [41] Gradient boosting 94.55% 

Efeoğlu and Tuna (2022) [23] SVM (linear kernel) 99.00% 

Sengupta et al. (2023) [24] Ensemble model 98.93% 

Ghasemkhani et al. (2023) [25] Balanced K-Star 98.75% 

Present study Decision Tree 99.15% 

 

In manufacturing, analyzing welding defects is an important process. Cruz et al. [42] developed a computer vision system based 

on structured light for welding inspection of liquified petroleum gas (LPG) pressure vessels by using combined digital image processing 

and deep learning techniques. A convolutional neural network (CNN) based method of inspection prior to the welding and laser 

triangulation method for post welding inspection is proposed. The proposed process increased the quality index from 95.0% to 99.5%, 

showing its robustness. Cruz et al. [43] discussed a novel two-step ML approach for dynamic model selection when feedback is not 

available. The results obtained by applying the proposed approach for predicting surface roughness in micro-milling processes 

outperform all the individual models evaluated. Specifically, the selected version of the system, which does not include force signals, 

increased R2 from 0.892 to 0.915 and decreased error from 19.79% to 14.63% when compared to the best individual models’ metrics. 

Beruvides et al. [44] developed a hybrid incremental modeling (HIM) plus simulated annealing (SA) technique applied for predicting 

the surface roughness in milling processes. Two comparative studies to assess the accuracy and overall quality of the proposed strategy 

were carried out. The first comparative demonstrated that the proposed strategy is more accurate than conventional methods for 

predicting surface roughness. The second study also corroborated that hybrid incremental model plus simulated annealing is better than 

Bayesian network and multilayer perceptron methods for correctly predicting the surface roughness. 

Multilayer perceptron (MLP) is one of the most widely applied neural networks at industrial level. However, the main drawback 

of this approach is related to the setting and tuning of network hyperparameters such as number of hidden layers, number of nodes in 

the hidden layers, and form of activation functions. HIM + SA has some interesting features such as simple structure and easy training 

with a few tuning parameters enabled by an optimal setting procedure while outperforming MLP technique [44]. The future scope for 

improving the present work is the application of such hybrid approaches (HIM + SA) and the coupling of SA and/or Genetic Algorithm 

(GA) based optimization techniques with deep neural networks to optimize the network parameters [19, 44]. A limitation of the present 

study is that key techniques such fuzzy systems such as Fuzzy-KNN and neuro-fuzzy systems have not been considered herein. These 

techniques will be taken into account in further investigations. 

One of the key observations in this study is the class imbalance in the dataset, where the majority class (“No Failure”) comprises 

9,652 instances, while the failure categories have significantly fewer samples (ranging from 18 to 112 instances). This imbalance may 

contribute to the higher classification accuracy observed for the “No Failure” category compared to the failure types. However, the 

objective of this study is to evaluate and optimize machine learning models under real-world conditions, where such imbalances are 

common in industrial predictive maintenance datasets. Moreover, our performance evaluation does not solely rely on accuracy but also 

considers Precision, Recall, and F1-score, which provide a more comprehensive assessment of model effectiveness across different 

failure categories. Nevertheless, future work can explore data balancing techniques such as Synthetic Minority Over-sampling 

Technique (SMOTE), cost-sensitive learning, or advanced ensemble methods to further enhance classification performance for the 

minority failure classes [45, 46]. Despite these limitations, the current study provides a practical benchmark for machine learning-

based predictive maintenance in industrial settings. 

Many existing PdM studies focus primarily on overall accuracy without considering the impact of dataset imbalance on minority 

class prediction. This study highlights both the strengths and limitations of classical ML models under imbalanced conditions and 

proposes future research directions to incorporate data balancing techniques for more equitable performance evaluation. 
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The importance of the present work is the attempt in optimizing the hyperparameters of and comparing and assessing five of the 

most popularly used conventional ML models for the effective predictive maintenance (PdM) of an industrial milling machine based 

on its process parameters. Also, a statistical evaluation of the process parameters is carried out to identify their relative importance on 

the machine performance. This study hence can play an important role in the thrust towards smart manufacturing facilities with effective 

integration between AI, sensors, and data-driven industrial machine systems for making intelligent and timely decisions for predictive 

maintenance. 

While the present study focuses on classical machine learning techniques, it is important to acknowledge the increasing role of 

deep learning and hybrid intelligent optimization approaches in predictive maintenance research. Methods such as Convolutional 

Neural Networks (CNN), Long Short-Term Memory (LSTM) networks, and Transformer-based models have demonstrated excellent 

capabilities in fault diagnosis [47-49], remaining useful life prediction, and system health monitoring due to their ability to 

automatically extract complex data patterns. However, these methods often require significant computational resources and large 

training datasets, limiting their suitability for real-time industrial environments where interpretability, low latency, and deployment 

simplicity are critical. 

Furthermore, hybrid approaches, which combine classical ML or deep learning models with intelligent optimization algorithms — 

such as Genetic Algorithms (GA), Particle Swarm Optimization (PSO), or Simulated Annealing (SA) — have shown promise in 

enhancing model accuracy and robustness while optimizing hyperparameters. Notable examples include the use of Hybrid Incremental 

Modeling (HIM) with SA or coupling CNNs with evolutionary algorithms for improved PdM performance [50]. 

Although such advanced methods are not implemented in the present study, the proposed work provides a practical benchmarking 

foundation that can be directly extended by integrating these emerging technologies in future research. This layered approach allows 

industries to balance model complexity with operational requirements based on specific application scenarios. 

 

4. Conclusions 

 

The present study investigated the efficiency of multiple popular classification machine learning techniques in a predictive 

maintenance scenario for an industrial milling machine. The results of the investigation point towards the Decision Tree technique as 

the most suitable algorithm which can be implemented to identify and predict machine failure and aid in preventive actions during 

machine condition maintenance. The results obtained in the present study are also compared with those obtained by other researchers 

to highlight the superior classification accuracy obtained herein. Thus, the results obtained here can serve in building such smart 

predictive maintenance systems utilizing the available maintenance datasets in industries for improving productivity, agility, and 

realizing the goals of Industry 4.0.  

Although this study emphasizes classical machine learning models for their interpretability and computational efficiency, future 

work can extend this framework by incorporating deep learning techniques, such as CNNs, LSTMs, or Transformer-based architectures. 

These methods are capable of automatically learning complex patterns from raw data, potentially improving failure prediction accuracy 

and enabling more advanced prognostic capabilities. However, appropriate strategies to mitigate their higher computational demands 

and ensure explainability must be considered to enable their successful adoption in real-world PdM scenarios. 

Additionally, exploring hybrid models that integrate classical ML or deep learning techniques with intelligent optimization methods 

like GA or SA could further improve model performance, robustness, and adaptability. These directions will enhance the applicability 

of predictive maintenance solutions under diverse industrial scenarios, advancing the goals of smart manufacturing and Industry 4.0. 
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