
 

*Corresponding author.  
Email address: boonchana.pu@kmitl.ac.th 

doi: 10.14456/easr.2025.38 

Engineering and Applied Science Research 2025;52(4):430-438                                                                                                                   Research Article 

 

 
                    Engineering and Applied Science Research 

 

  https://www.tci-thaijo.org/index.php/easr/index          
 

                              Published by the Faculty of Engineering, Khon Kaen University, Thailand 
 

 

 

Banana quality classification using lightweight CNN model with microservice integration 

system 

  
Vasutorn Chaowalittawin1), Woranidtha Krungseanmuang1), Posathip Sathaporn1), Fuka Morita2),  

Tuanjai Archevapanich3) and Boonchana Purahong*4) 
 
1)Department of Robotics and Computational Intelligent Systems, School of Engineering, King Mongkut’s Institute of Technology 

Ladkrabang, Bangkok, Thailand 
2)Department of Mechanical and Intelligent Systems Engineering, Faculty of Engineering, The University of Electro-Communications, 

Tokyo, Japan 
3)Department of Electronics and Communication Engineering, Faculty of Engineering and Architecture, Rajamagala University of 

Technology Suvarnabhumi, Nonthaburi, Thailand 
4)Department of Computer Engineering, School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, 

Thailand 

 
Received 13 January 2025 

Revised 8 April 2025 

Accepted 7 May 2025 

 

 

Abstract 

 

Banana sorting has been performed manually, which often leads to human error due to the high volume and diverse characteristics 

involved. This paper presents a banana quality classification system using ConsolutechMobileNetV2 (CST-MobileNetV2) to classify 

banana ripeness into four categories unripe, ripe, overripe, and rotten. A lightweight deep learning model is proposed and integrated 

with a uniquely designed microservice system to optimize performance while minimizing computational demands. A publicly available 

dataset containing 13,478 images was used, and the data split into 56% for training, 14% for validation, and 30% for testing. Image 

normalization and augmentation techniques were applied to enhance the model's robustness. The model's performance was evaluated 

using a confusion matrix, achieving 98% precision, recall, and F1-score. The proposed model was compared with other deep learning 

models to benchmark its performance and deployed in different operating systems to evaluate its flexibility and capabilities. The LINE 

platform was employed as the user interface, enabling practical interaction with users. The system also demonstrated an average 

response time of 9.25 seconds per image, ensuring efficient processing, delivers high accuracy and scalability making it a practical and 

efficient solution for automated banana quality classification. 
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1. Introduction 

 

Bananas are widely recognized for their nutritional benefits, which include high-energy carbohydrates, digestive fiber, and a low-

calorie content. They can be cultivated in a variety of soil types, such as flat, loamy, and sandy loam soils. Bananas thrive particularly 

well in tropical climates, especially in Asia [1] serving as the primary hub for global production and export. A critical component of 

banana cultivation [2], from plant nurturing to harvest, is the quality sorting process, which is currently performed manually. This 

manual approach is lead to human errors and significant effort. In line with modern agricultural practices, extensive research has 

focused on integrating technology to improve this process. Shuprajhaa et al. [3] introduced a deep learning-based non-destructive 

classification method for banana fruits, categorizing them into four groups, achieving an accuracy of 91.25%. Nikhilesh et al. [4] 

developed a deep learning model using the EfficientNet-B7 architecture, which enhanced image augmentation and regularization 

techniques. Saragih and Emanuel [5] compared deep learning models for classifying banana ripeness, finding that MobileNetV2 

outperformed NASNetMobile in both accuracy and speed. Zheng et al. [6] created an efficient, low-complexity detection network 

called Slim-Banana, building on improvements to YOLOv8. Kakati and Das [7] proposed a hybrid classification method using a self-

constructed CNN model (SCCNN) combined with SVM. Rangkuti et al. [8] compared several CNN models across nine classes of 

banana images, totaling 7,936 images, with the EfficientNet model achieving the highest accuracy at 89%, followed by the VGG16 

model at 83.8%. Upadhyay et al. [9] utilized a CNN to classify bananas as raw or ripe, achieving a remarkable accuracy of 98.34%. 

Arunima et al. [10] developed a CNN model using a dataset of 4,320 images, achieving 95% accuracy. Sangeetha et al. [11] advanced 

a fruit classification model, marking a significant milestone in food quality assessment through the use of convolutional neural 

networks. Christian et al. [12] presented MobileNet as a resource for deep learning by comparing four optimizers: Gradient Descent, 

Adagrad, RMSProp, and Adam. Chompookham and Surinta [13] proposed ensemble methods using deep convolutional neural 

networks (CNNs) for plant leaf recognition. They compared five CNN models to select the best base model. The results showed that 

the 3-Ensemble CNNs (3-EnsCNNs) performed better on plant leaf disease datasets, while the 5-Ensemble CNNs (5-EnsCNNs) 
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outperformed others on the mulberry leaf dataset. Puangsuwan and Surinta [14] enhanced plant leaf disease classification using a 

snapshot ensemble convolutional neural network. This study proposed a deep learning approach to address real-world challenges 

present in the PlantDoc dataset. The experimental results showed that DenseNet201, when trained with the snapshot ensemble method 

(4-cycle), achieved an accuracy of 69.51%. Arampongsanuwat and Chaowalit [15] implemented deep convolutional neural networks 

for mangosteen ripeness classification. The experimental results showed that ResNet50 achieved the highest validation accuracy of 

79%. Gatchalee et al. [16] conducted a Thai text classification experiment using CNN and transformer models for timely and timeless 

content marketing. The research demonstrated good results with a small dataset consisting of 600 articles, each containing at least 250 

words. Recent trends indicate a growing integration of computer vision and deep learning to optimize agricultural productivity [17, 

18]. Many researchers have applied these technologies to address various business and manufacturing needs [19, 20], extending to 

other applications [21]. Yang et al. [22] developed an automated, image-based fire detection and alarm system utilizing edge computing 

and a cloud platform, effectively minimizing latency for enhanced accuracy. Sithiyopasakul et al. [23] presented an inventory 

management system based on IoT and microservices architecture, facilitating synchronization between IoT devices and web 

applications. Roh et al. [24] introduced the AI and IoT-enabled MRIoT/AI Convergence Platform, applicable across fields such as 

disaster response and military surveillance. Mehmood et al. [25] proposed a multilevel fusion method for fruit disease identification 

and classification, incorporating intensive pre-processing and customized image kernels for feature extraction using state-of-the-art 

deep learning methods. Lee and Shin [26] utilized the Faster R-CNN for object detection, implementing it in automatic detection and 

monitoring systems for unexpected events in tunnels. Liu et al. [27] proposed an improved Faster R-CNN model for vehicle detection 

and human action recognition at night using infrared thermal imaging and transfer learning. The performance evaluation showed that 

the proposed method achieved a mean average precision (mAP) of 0.97. Kanjanasurat et al. [28] presented a personal identification 

method using Delaunay triangles and optic disc retinal vascular patterns. The vascular extraction algorithm, applied to the DRIVE 

database, achieved an average accuracy of approximately 94.1%. Anisuzzaman et al. [29] developed an automated wound localization 

system using a deep neural network, integrating a comprehensive wound diagnostic mobile application. Estonilo and Festijo [30] 

created a deep learning-based mobile application for predicting diabetes mellitus using TensorFlow. Antony et al. [31] proposed the 

Dipper Throat Optimization Algorithm with Deep Learning for food crop classification, leveraging remote sensing imaging for 

agricultural resource management.  

In order to enhance efficiency and reduce production costs, the Consolutech-MobileNetV2 (CST-MobileNetV2), a Lightweight 

model designed to apply during a banana cultivation workflow, especially for quality classification of sorting/grading process. This 

model aims to enhance accuracy and efficiency while reducing model size and computational cost, ensuring compatibility with mobile, 

cloud, and edge computing environments. 

The methodology began with the development of CST-MobileNetV2 by customized head of MobileNetV2, the classification head 

was modified with a fully connected (Dense) layer of 128 neurons with ReLU activation, followed by a dropout layer with a rate of 

0.2, and a final Dense layer with 4 neurons using Softmax activation for multi-class classification. Followed by the creation of a 

microservice system to enable seamless integration and deployment in modern applications. This system offers flexibility and ease of 

integrity with mobile, web applications or IoT devices, empowering farmers to leverage modern and edge computing technologies. By 

this approach, the solution not only enhances operational efficiency but also significantly improves the entire banana supply chain 

process, ensuring better quality management and reduced wastage. 

 

2. Materials and methods 

 

2.1 Data sets 

 

The data preparation process began with the utilization of images from a public dataset [32], comprising a total of 13,478 images. 

These included 2,179 images of unripe bananas, 4,015 ripe bananas, 2,691 overripe bananas, and 4,593 rotten bananas, as shown in 

Figure 1. The dataset was divided into three subsets: 56% for training (8,114 images), 14% for validation (1,320 images), and 30% for 

testing (4,044 images), with each image having dimensions of 416 × 416 × 3. Subsequently, the images were augmented using the 

ImageDataGenerator with the following parameters: rotation, zoom, width shift range (0.5), height shift range (0.5), shear range (0.12), 

horizontal flipping, and a fill mode set to nearest. Finally, the augmented images were resized to 224 × 224 × 3 to prepare them for 

model training. 

 

 
 

Figure 1 Type of banana 

 

2.2 Normalization 

 

Normalization in CST-MobileNetV2 is a crucial preprocessing step that involves adjusting pixel values from a scale of 0 to 255 to 

a range between -1 and 1. The transformation uses the formula (1): 

 

𝑋𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑋

127.5
− 1                                                                                       (1) 

 

where X is the original pixel intensity. This approach is crucial for stabilizing the training process since centering the data around 

zero enhances learning efficiency. It ensures gradients behave consistently, making the model's training faster and more stable. By 

rotten                                         overripe                                         unripe                                             ripe 
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converting pixel values to the -1 to 1 range, CST-MobileNetV2 gains better numerical stability and avoids biases linked to features 

with larger value scales, ultimately improving the model's performance. 

 

2.3 Consolutech-MobileNetV2 (CST-MobileNetV2) 

 

The CST-MobileNetV2 was developed by customizing the MobileNetV2 [33] base model at the classification head. MobileNetV2 

has a layer of convolution containing 32 filters, 19 residual congestion layers, and it is based on an inverted residual structure. However, 

CST-MobileNetV2, A Dense layer with 128 units and the ReLU activation function were added. It is calculated as (2). Then, a dropout 

layer with a 0.2 dropout rate was introduced to reduce overfitting. Subsequently, a Dense layer with 4 units was added in the output 

layer, utilizing the Softmax function to support multi-class classification, as illustrated in Figure 2. It is calculated as (3). With these 

customizations, the model delivered high performance and proved to be well-suited for integration with mobile applications.   

 

ReLU(x) =  max(0, x) =  {
 0 𝑓𝑜𝑟 𝑥 ≤  0
𝑥 𝑓𝑜𝑟 𝑥 > 0

                                                                                                    (2) 

 

𝜎(𝑧) =  
𝑒

𝑧𝑗

∑ 𝑒𝑧𝑘𝐾
𝑘=1

 𝑓𝑜𝑟 𝑗 = 1, … , 𝐾                                                                                                     (3) 

 

Customizing the classification head of MobileNetV2 for a small custom dataset offers several advantages, particularly for mobile 

applications. By leveraging the pre-trained feature extractor of MobileNetV2, which is optimized for speed and efficiency, the model 

requires less computational power while maintaining high performance. This approach minimizes the risk of overfitting, especially 

with limited data, as only the final layers are retrained to adapt to the specific classification task. Furthermore, the Lightweight 

architecture of MobileNetV2 ensures the model remains suitable for deployment on resource-constrained devices, enabling integration 

into mobile applications while preserving accuracy and responsiveness. 

 

 
 

Figure 2 CST-MobileNetV2 Customization 

 

2.4 Microservice architecture 

 

We’ve designed a unique system that capable to integrate a light weight model with mobile applications which decomposes the 

functionality into independent container services. The infrastructure is divided into three components: the Application Service (Line 

Platform), the Web Server Service, and the Deep Learning AI Model Service. The core infrastructure is hosted on AWS cloud 

computing, with integration to the Line application to provide an intuitive user interface, as illustrated in Figure 3. 

 

 
 

Figure 3 Proposed Microservice Architecture 
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2.4.1 Line platform 

 

LINE Platform has been selected for the application layer due to its widespread use as a mobile messaging platform in Asia, 

particularly in Thailand and Japan. However, LINE provides the LINE Messaging API (Application Programming Interface), which 

enables uninteruptted integration with external applications. In this development, LINE is utilized to acquire images from mobile 

devices. These images are automatically distorted by the platform, reducing the original image quality by 86.34%, before being 

transferred to the CST-MobileNetV2 model via an API. 

 

2.4.2 Web server service 

 

 A Docker container has been set up as the backend system on an Amazon EC2 server, with Node.js installed to serve as the web 

server for this solution. Node.js is chosen due to its open-source nature and its efficient interface for interacting with LINE APIs, such 

as sending and receiving messages and managing events like message exchanges. Acting as middleware, Node.js processes images 

received through the API via the line/bot-sdk library, ensuring that the images are properly formatted before being sent to the Deep 

Learning Model Service for further analysis and processing. This makes Node.js an ideal choice for building scalable, event-driven 

applications that require real-time data processing with minimal latency. 

 

2.4.3 AI classification service 

 

 The CST-MobileNetV2 model will be deployed within a Docker container built on the Django framework, utilizing the Python 

programming language. First, a virtual environment will be set up to install all necessary dependencies, including package version 

control, the Python interpreter, and libraries such as TensorFlow and Keras. Next, the system will receive an image via URL from a 

web service middleware, after which the image will be preprocessed to a size of 224x224x3. Finally, the processed image will be 

passed through the pre-trained model, and the result will be returned to the user via the Line application interface. Figure 4 shows the 

system flow. 

 

 
 

Figure 4 System flow 

 

 This ensures that the system operates swiftly and meets user demands in various scenarios. Furthermore, the design prioritizes 

flexibility for future development and enhancements, enabling the system to scale and accommodate new technologies seamlessly over 

time. 

 

2.5 Experimental environment settings and model evaluation indicator 

 

 The proposed model was implemented using Python 3.10 on Ubuntu 22.04 LTS OS, Intel(R) Xeon(R) CPU@ 2.20GHz, RAM 53 

GB, GPU RAM 22.5 GB. The performance of the model is measured by using confusion matrix, f1-score, accuracy, precision and 

recall. 

 A confusion matrix is a visual tool that helps assess the effectiveness of a classification model. It presents a summary of the actual 

versus predicted classifications, making it easier to identify how well the model is performing for each class. The matrix includes four 

key components as a below. 

 •  True Positive (TP): The count of instances correctly identified as positive. 

 •  True Negative (TN): The count of instances correctly identified as negative. 

 •  False Positive (FP): The count of instances incorrectly identified as positive (also referred to as Type I error). 

 •  False Negative (FN): The count of instances incorrectly identified as negative (known as Type II error). 

Accuracy is a straightforward metric that reflects the proportion of correct predictions (both true positives and true negatives) 

relative to the total number of instances evaluated. It can be calculated using the formula as (4). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =   
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
                                                                                                     (4) 

 

 Precision, often called positive predictive value, measures how many of the instances predicted as positive are actually positive. It 

is calculated as (5). 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =   
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
                                                                                                      (5) 
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 Recall, or sensitivity, evaluates how many actual positive instances were correctly predicted by the model. It is calculated as (6). 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =   
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
                                                                                                                      (6) 

 

    The F1-score is a composite metric that combines precision and recall into a single value, reflecting the balance between the two. 

It is calculated as (7). 

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =    2
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗ 𝑅𝑒𝑐𝑎𝑙𝑙) 

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
                                                                                                     (7) 

 

3. Results  

 

In this section of the research, we present a comprehensive analysis of all outcomes, including model training results, encountered 

challenges, and implemented solutions. Additionally, we discuss advancements in system development and the integration of the model 

into the overall system framework. 

 

3.1 Model training results 

 

A comparison of the models is required to identify the most suitable option to serve as the base model. Table 1 shows the 

performance of different models after 5 epochs of training. The decision to limit training to 5 epochs per model was to ensure a fair 

and efficient comparison among the five models. Since the goal was to identify the most suitable model rather than fully optimize each 

one, a small number of epochs was sufficient to observe initial performance trends without excessive training time. Based on the results, 

considering validation accuracy and training time, MobileNetV2 performs the best overall. Therefore, MobileNetV2 has been chosen 

as the base model for this transfer learning task. 

 

Table 1 Performance of different models after 5 epochs of training. 

 

No. Model Train accuracy (%) Validation accuracy (%) Training Time (s) 

1 ResNet152V2 96.74 96.55 166.06 

2 Xception 95.56 95.23 115.45 

3 InceptionV3 95.01 94.64 127.08 

4 VGG19 92.55 91.57 170.94 

5 EfficientNetB7 34.18 33.51 340.61 

6 MobileNetV2 96.69 96.71 112.61 

 

 
 

Figure 5 (A)Training accuracy and validation accuracy of CST-MobilNetV2,  (B) Training loss and validation loss of CST-

MobilNetV2, (C)Training accuracy and validation accuracy of MobilNetV2,  (D) Training loss and validation loss of MobilNetV2 

 

The graph in Figure 5  ( a) shows the accuracy of a model over 1 8  training epochs. The blue line represents the training accuracy, 

while the orange line represents the validation accuracy. At the beginning, both lines start lower, with the training accuracy starting 

around 88% and validation accuracy a bit higher. Over the first few epochs, both lines increase sharply as the model learns and quickly 
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improves. The training accuracy continues to climb steadily, reaching around 98% by the last epoch, while validation accuracy shows 

a similar trend but with slight fluctuations towards the end. The gap between the training and validation accuracy is relatively small, 

indicating that the model is generalizing well on the validation data. The leveling off in both curves towards the end suggests that the 

model has reached a stable level of accuracy, with only minor improvements after epoch 10.  

The graph in Figure 5  (b) shows the loss of a model over 1 8  training epochs, with the blue line representing the training loss and 

the orange line representing the validation loss. At the start, both the training and validation loss are quite high, with the training loss 

beginning around 0.16. However, as the epochs progress, both lines show a steep downward trend, indicating that the model is learning 

effectively and minimizing error. By around the 5th epoch, the loss values have decreased significantly, with both lines nearing a stable 

range. From approximately the 10th epoch onward, the training loss continues to decline steadily, reaching a very low level near 0.02 

by the end. The validation loss, while also low, shows minor fluctuations after epoch 10, hinting at slight variations in performance on 

unseen data. Overall, the close alignment of training and validation loss throughout suggests that the model is not overfitting and is 

likely generalizing well.  

The upward trend and the halt at epoch 1 8  result from the implementation of a callback function known as early stopping, which 

focuses on the validation loss. This function is configured to terminate training immediately if the validation loss does not decrease 

within 3 epochs. Consequently, the use of early stopping helps maintain the model's accuracy and prevents overfitting.  

Early stopping is a technique that prevents overfitting by stopping the training process when the model's performance on validation 

data stops improving. In this setup, training will monitor the validation loss, and if it increases for more than three consecutive epochs, 

training halts immediately. This approach saves resources and helps ensure the model stops at its best generalization point, avoiding 

the risk of fitting to noise in the data.         

  

 
 

Figure 6 Normalized Confusion Matrix of CST-MobileNetV2 

 

Figure 6 shows the result and can be described as below: 

- Overripe: TP = 0.98. The FN results for overripe are 53% in ripe and 47% in rotten, but it does not predict unripe at all. 

- Ripe: TP = 0.98. The FN results for ripe are 13% in ripe and 87% in rotten, but it does not fall into unripe at all. 

- Rotten: TP = 0.98. The FN results are distributed across all classes, with 41% in overripe, 45% in ripe, and 14% in unripe. 

- Unripe: TP = 0.99. All FN results fall into rotten, which is 100%. 

From the confusion matrix result, it can be seen that the class most similar to other classes is rotten, while the class that is distinctly 

different from others is unripe. 

Table 2 shows the performance of the proposed model in terms of precision, recall, F1-score and support. The "Unripe" class 

exhibits the highest values for precision, recall, and F1-score, all at 0.99. This exceptional performance is attributed to the distinct color 

characteristics of the Unripe class, which clearly differentiate it from the other classes, resulting in higher accuracy, sensitivity, and 

balance compared to the others. In contrast, both the "Ripe" and "Rotten" classes have equal precision, recall, and F1-scores of 0.98, 

indicating that predictions for these two classes are accurate and well-balanced. For the "Overripe" class, the precision is at 0.96, 

suggesting that there are more positive predictions than warranted, leading to a higher incidence of false positives compared to other 

classes. The recall for this class stands at 0.98, comparable to the other classes, while the F1-score is 0.97, indicating that this class has 

a lower balance between precision and recall than the others. Figure 7 shows examples of misclassified images. Table 3 presents a 

comparison of CST-MobileNetV2 with alternative deep learning methods. 

 

Table 2 Performance Evaluation of CST- MobileNetV2 

 

Class Precision Recall F1-Score Support 

Overripe 0.96 0.98 0.97 809 

Ripe 0.98 0.98 0.98 1232 

Rotten 0.98 0.98 0.98 1378 

Unripe 0.99 0.99 0.99 625 

Accuracy - - 0.98 4044 

Macro avg 0.98 0.98 0.98 4044 

Weighted avg 0.98 0.98 0.98 4044 
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Table 3 Comparison of CST-MobileNetV2 with alternative deep learning methods. 

 

Paper Dataset Classes Method/Model Classification 

Type 

Accuracy 

(%) 

Shuprajhaa et al. [3] Banana Customized dataset 4 CNN-XgBoost Quality 91.25 

Nikhilesh et al. [4] Nendran banana 4 EfficientNet-B7 Quality 95 

Saragih et al. [5] [34] 4 MobileNetV2 Quality 96.18 

CST-MobileNetV2 Banana Classification [32] 4 Learning based on MobileNetV2 Quality 98.15 

 

 
 

Figure 7 Examples of the misclassified images. 

 

3.2 Application 

 

 We aim to demonstrate the integration of our proposed model with a custom-developed microservice infrastructure based on 

containerization.  We deployed CST-MobileNetV2 into a containerized environment. This container was then deployed across three 

distinct target environments. 

 These environments were chosen as part of an initiative focused on modern application development. They represent potential 

directions for future implementation, including web applications leveraging cloud infrastructure, IoT applications utilizing edge 

computing, and mobile applications acting as backend infrastructure for real-world use cases. 

 The original image is first sent to the system. It is then processed and split into two versions: distorted and undistorted, before 

entering the prediction phase. In the undistorted case, the original 3000×4000 image is simply resized. In contrast, the distorted version 

undergoes a change in proportions before being resized to 224×224 pixels. This process degrades image quality and results in a loss of 

detail, making it more difficult for the model to accurately analyze the original features. 

 The system was tested using 270 images, with 265 correctly classified. The calculated mean accuracy was 0.9815, with a variance 

of 0.0182 and a standard deviation of 0.1349. 

 

Table 4 Performance evaluation of the proposed model and microservice system in various environments. 

 

Environment Original Image 

(Pixels) 

Process Image  

(Pixels)  

Distortion 

(%) 

Accuracy  

(%) 

Response Time  

(s) 

Cloud Computing   3000 × 4000 3000 × 4000 0 98.15 4.3 

Edge Computing 3000 × 4000 3000 × 4000 0 98.15 3.75 

Mobile Computing 3000 × 4000 3000 × 4000 0 98.15 0.3 

   

 Table 4 presents the results of an additional experiment in which the model was integrated with the proposed system and deployed 

in different environments (Cloud Computing, Edge Computing, and Mobile Computing). The objective was to evaluate the model's 

performance across alternative solutions.  The results reveal that Mobile Computing is the most efficient environment for the proposed 

solution, delivering fast response times. Meanwhile, the other environments also maintained impressive processing speeds under 60 

seconds. 

 The proposed deep learning model demonstrated high consistent accuracy across all environments and tools. Mobile Computing 

was chosen as the primary platform for development, as it proved to be the most effective and well-suited to the proposed solution. 

Accordingly, the Line application was adopted as the Mobile Computing platform and operational tool for user interactions. 

 

Table 5 Performance evaluation of the proposed model and microservice system in Line Application 

 

Platform/ 

Device 

Original Image  

(Pixels) 

Process Image  

(Pixels)  

Distortion 

(%) 

Accuracy 

(%) 

Response Time  

(s) 

Line application 3000 × 4000 960 × 1706 86.34 98.15 9.25 

 

 Table 5 presents the performance evaluation of the CST-MobileNetV2 model integrated with the Line application. The assessment 

was conducted using key HTTPS protocol metrics, including status codes, error rates, and response times, measured via the Postman 

tool.  

 The results show that the response time is 9.25 seconds, although the image received from LINE was automatically distorted to 

86.34%, the model remains applicable and performs with a high accuracy rate of 98.15%. The response is subsequently sent to the 

client via the LINE Messaging API with a status code of 200, confirming that both the model and the application deployment are 

reliable and consistently available. 

 

 

Actual                          Ripe                                                    Unripe                                           Overripe 

Predicted                Overripe                                                 Rotten                                                 Ripe 
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4. Discussion 

 

This development is divided into two main components. The first focuses on model development for banana classification, while 

the second involves designing the system architecture for deployment. In the model development phase, six models were trained and 

evaluated to determine the most suitable base model for this dataset. Among these models, MobileNetV2 demonstrated the best 

performance. To enhance its capability, the head of MobileNetV2 was customized for transfer learning, resulting in CST-MobileNetV2, 

which achieved an accuracy of 98.15%. In the system architecture phase, the proposed model was integrated into a microservice-based 

system and deployed across three different computing environments. Mobile computing yielded the lowest response time at 0.30 

seconds, compared to 3.75 seconds on edge computing and 4.30 seconds on cloud computing. Additionally, the model was deployed 

through the Line Application to assess its real-world applicability. A key challenge in this setup was image distortion caused by Line’s 

compression process. Despite this issue, the model maintained high classification accuracy, demonstrating its robustness in practical 

applications. 

 

5. Conclusion 

 

In this development, we implemented a banana quality classification system using CST-MobileNetV2 to categorize banana ripeness 

into four stages: unripe, ripe, overripe, and rotten. The proposed Lightweight model achieved an accuracy of 98.15%, outperforming 

other evaluated models, as detailed in Table 3. The architecture is designed to operate as an individual service. The proposed solution 

was benchmarked against other deep learning models and tested on various operating systems, demonstrating consistent accuracy. It 

achieved the best performance on Mobile Computing with a response time of 0.30 seconds, compared to 3.75 seconds and 4.30 seconds 

on Edge Computing and Cloud Computing, respectively. Additionally, the model demonstrates an average response time of 9.25 

seconds per image when integrated with the LINE application. This architecture is also adaptable and ready for integration with other 

mobile applications, web applications, or IoT systems, ensuring practical usability.  

Future development will focus on adapting the lightweight model within a microservices framework for broader industrial 

applications, including medical, steel, and manufacturing sectors. This expansion enhances the system’s versatility beyond agriculture. 
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