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Abstract

Banana sorting has been performed manually, which often leads to human error due to the high volume and diverse characteristics
involved. This paper presents a banana quality classification system using ConsolutechMobileNetV2 (CST-MobileNetV?2) to classify
banana ripeness into four categories unripe, ripe, overripe, and rotten. A lightweight deep learning model is proposed and integrated
with a uniquely designed microservice system to optimize performance while minimizing computational demands. A publicly available
dataset containing 13,478 images was used, and the data split into 56% for training, 14% for validation, and 30% for testing. Image
normalization and augmentation techniques were applied to enhance the model's robustness. The model's performance was evaluated
using a confusion matrix, achieving 98% precision, recall, and F1-score. The proposed model was compared with other deep learning
models to benchmark its performance and deployed in different operating systems to evaluate its flexibility and capabilities. The LINE
platform was employed as the user interface, enabling practical interaction with users. The system also demonstrated an average
response time of 9.25 seconds per image, ensuring efficient processing, delivers high accuracy and scalability making it a practical and
efficient solution for automated banana quality classification.
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1. Introduction

Bananas are widely recognized for their nutritional benefits, which include high-energy carbohydrates, digestive fiber, and a low-
calorie content. They can be cultivated in a variety of soil types, such as flat, loamy, and sandy loam soils. Bananas thrive particularly
well in tropical climates, especially in Asia [1] serving as the primary hub for global production and export. A critical component of
banana cultivation [2], from plant nurturing to harvest, is the quality sorting process, which is currently performed manually. This
manual approach is lead to human errors and significant effort. In line with modern agricultural practices, extensive research has
focused on integrating technology to improve this process. Shuprajhaa et al. [3] introduced a deep learning-based non-destructive
classification method for banana fruits, categorizing them into four groups, achieving an accuracy of 91.25%. Nikhilesh et al. [4]
developed a deep learning model using the EfficientNet-B7 architecture, which enhanced image augmentation and regularization
techniques. Saragih and Emanuel [5] compared deep learning models for classifying banana ripeness, finding that MobileNetV2
outperformed NASNetMobile in both accuracy and speed. Zheng et al. [6] created an efficient, low-complexity detection network
called Slim-Banana, building on improvements to YOLOV8. Kakati and Das [7] proposed a hybrid classification method using a self-
constructed CNN model (SCCNN) combined with SVM. Rangkuti et al. [8] compared several CNN models across nine classes of
banana images, totaling 7,936 images, with the EfficientNet model achieving the highest accuracy at 89%, followed by the VGG16
model at 83.8%. Upadhyay et al. [9] utilized a CNN to classify bananas as raw or ripe, achieving a remarkable accuracy of 98.34%.
Arunima et al. [10] developed a CNN model using a dataset of 4,320 images, achieving 95% accuracy. Sangeetha et al. [11] advanced
a fruit classification model, marking a significant milestone in food quality assessment through the use of convolutional neural
networks. Christian et al. [12] presented MobileNet as a resource for deep learning by comparing four optimizers: Gradient Descent,
Adagrad, RMSProp, and Adam. Chompookham and Surinta [13] proposed ensemble methods using deep convolutional neural
networks (CNNs) for plant leaf recognition. They compared five CNN models to select the best base model. The results showed that
the 3-Ensemble CNNs (3-EnsCNNSs) performed better on plant leaf disease datasets, while the 5-Ensemble CNNs (5-EnsCNNs)
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outperformed others on the mulberry leaf dataset. Puangsuwan and Surinta [14] enhanced plant leaf disease classification using a
snapshot ensemble convolutional neural network. This study proposed a deep learning approach to address real-world challenges
present in the PlantDoc dataset. The experimental results showed that DenseNet201, when trained with the snapshot ensemble method
(4-cycle), achieved an accuracy of 69.51%. Arampongsanuwat and Chaowalit [15] implemented deep convolutional neural networks
for mangosteen ripeness classification. The experimental results showed that ResNet50 achieved the highest validation accuracy of
79%. Gatchalee et al. [16] conducted a Thai text classification experiment using CNN and transformer models for timely and timeless
content marketing. The research demonstrated good results with a small dataset consisting of 600 articles, each containing at least 250
words. Recent trends indicate a growing integration of computer vision and deep learning to optimize agricultural productivity [17,
18]. Many researchers have applied these technologies to address various business and manufacturing needs [19, 20], extending to
other applications [21]. Yang et al. [22] developed an automated, image-based fire detection and alarm system utilizing edge computing
and a cloud platform, effectively minimizing latency for enhanced accuracy. Sithiyopasakul et al. [23] presented an inventory
management system based on loT and microservices architecture, facilitating synchronization between loT devices and web
applications. Roh et al. [24] introduced the Al and loT-enabled MRIoT/Al Convergence Platform, applicable across fields such as
disaster response and military surveillance. Mehmood et al. [25] proposed a multilevel fusion method for fruit disease identification
and classification, incorporating intensive pre-processing and customized image kernels for feature extraction using state-of-the-art
deep learning methods. Lee and Shin [26] utilized the Faster R-CNN for object detection, implementing it in automatic detection and
monitoring systems for unexpected events in tunnels. Liu et al. [27] proposed an improved Faster R-CNN model for vehicle detection
and human action recognition at night using infrared thermal imaging and transfer learning. The performance evaluation showed that
the proposed method achieved a mean average precision (mAP) of 0.97. Kanjanasurat et al. [28] presented a personal identification
method using Delaunay triangles and optic disc retinal vascular patterns. The vascular extraction algorithm, applied to the DRIVE
database, achieved an average accuracy of approximately 94.1%. Anisuzzaman et al. [29] developed an automated wound localization
system using a deep neural network, integrating a comprehensive wound diagnostic mobile application. Estonilo and Festijo [30]
created a deep learning-based mobile application for predicting diabetes mellitus using TensorFlow. Antony et al. [31] proposed the
Dipper Throat Optimization Algorithm with Deep Learning for food crop classification, leveraging remote sensing imaging for
agricultural resource management.

In order to enhance efficiency and reduce production costs, the Consolutech-MobileNetV2 (CST-MobileNetV2), a Lightweight
model designed to apply during a banana cultivation workflow, especially for quality classification of sorting/grading process. This
model aims to enhance accuracy and efficiency while reducing model size and computational cost, ensuring compatibility with mobile,
cloud, and edge computing environments.

The methodology began with the development of CST-MobileNetV2 by customized head of MobileNetV2, the classification head
was modified with a fully connected (Dense) layer of 128 neurons with ReLU activation, followed by a dropout layer with a rate of
0.2, and a final Dense layer with 4 neurons using Softmax activation for multi-class classification. Followed by the creation of a
microservice system to enable seamless integration and deployment in modern applications. This system offers flexibility and ease of
integrity with mobile, web applications or 10T devices, empowering farmers to leverage modern and edge computing technologies. By
this approach, the solution not only enhances operational efficiency but also significantly improves the entire banana supply chain
process, ensuring better quality management and reduced wastage.

2. Materials and methods
2.1 Data sets

The data preparation process began with the utilization of images from a public dataset [32], comprising a total of 13,478 images.
These included 2,179 images of unripe bananas, 4,015 ripe bananas, 2,691 overripe bananas, and 4,593 rotten bananas, as shown in
Figure 1. The dataset was divided into three subsets: 56% for training (8,114 images), 14% for validation (1,320 images), and 30% for
testing (4,044 images), with each image having dimensions of 416 x 416 x 3. Subsequently, the images were augmented using the
ImageDataGenerator with the following parameters: rotation, zoom, width shift range (0.5), height shift range (0.5), shear range (0.12),
horizontal flipping, and a fill mode set to nearest. Finally, the augmented images were resized to 224 x 224 x 3 to prepare them for
model training.

rotten

overripe

unripe

ripe

Figure 1 Type of banana
2.2 Normalization

Normalization in CST-MobileNetV2 is a crucial preprocessing step that involves adjusting pixel values from a scale of 0 to 255 to
a range between -1 and 1. The transformation uses the formula (1):

X
Xnormalized = 1275 1 1)

where X is the original pixel intensity. This approach is crucial for stabilizing the training process since centering the data around
zero enhances learning efficiency. It ensures gradients behave consistently, making the model's training faster and more stable. By
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converting pixel values to the -1 to 1 range, CST-MobileNetV2 gains better numerical stability and avoids biases linked to features
with larger value scales, ultimately improving the model's performance.

2.3 Consolutech-MobileNetV2 (CST-MobileNetV2)

The CST-MobileNetV2 was developed by customizing the MobileNetV2 [33] base model at the classification head. MobileNetV2
has a layer of convolution containing 32 filters, 19 residual congestion layers, and it is based on an inverted residual structure. However,
CST-MobileNetV2, A Dense layer with 128 units and the ReLU activation function were added. It is calculated as (2). Then, a dropout
layer with a 0.2 dropout rate was introduced to reduce overfitting. Subsequently, a Dense layer with 4 units was added in the output
layer, utilizing the Softmax function to support multi-class classification, as illustrated in Figure 2. It is calculated as (3). With these
customizations, the model delivered high performance and proved to be well-suited for integration with mobile applications.

0forx <0

ReLU(x) = max(0,x) = { x for x>0 (2

0(2) = s forj =1,..,K @3)

K
Yk=1

Customizing the classification head of MobileNetV2 for a small custom dataset offers several advantages, particularly for mobile
applications. By leveraging the pre-trained feature extractor of MobileNetV2, which is optimized for speed and efficiency, the model
requires less computational power while maintaining high performance. This approach minimizes the risk of overfitting, especially
with limited data, as only the final layers are retrained to adapt to the specific classification task. Furthermore, the Lightweight
architecture of MobileNetV2 ensures the model remains suitable for deployment on resource-constrained devices, enabling integration
into mobile applications while preserving accuracy and responsiveness.

MobileNetV2

Customized Head

I I I Avg. Pooling  Dense (ReLU) Dropout ~ Dense

P02 (Softmax)

Bottle residual block

Deptwise Conv. Conv.2D

ReLu Linear

Figure 2 CST-MobileNetV2 Customization
2.4 Microservice architecture

We’ve designed a unique system that capable to integrate a light weight model with mobile applications which decomposes the
functionality into independent container services. The infrastructure is divided into three components: the Application Service (Line
Platform), the Web Server Service, and the Deep Learning Al Model Service. The core infrastructure is hosted on AWS cloud
computing, with integration to the Line application to provide an intuitive user interface, as illustrated in Figure 3.
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Figure 3 Proposed Microservice Architecture
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2.4.1 Line platform

LINE Platform has been selected for the application layer due to its widespread use as a mobile messaging platform in Asia,
particularly in Thailand and Japan. However, LINE provides the LINE Messaging API (Application Programming Interface), which
enables uninteruptted integration with external applications. In this development, LINE is utilized to acquire images from mobile
devices. These images are automatically distorted by the platform, reducing the original image quality by 86.34%, before being
transferred to the CST-MobileNetV2 model via an API.

2.4.2 Web server service

A Docker container has been set up as the backend system on an Amazon EC2 server, with Node.js installed to serve as the web
server for this solution. Node.js is chosen due to its open-source nature and its efficient interface for interacting with LINE APIs, such
as sending and receiving messages and managing events like message exchanges. Acting as middleware, Node.js processes images
received through the API via the line/bot-sdk library, ensuring that the images are properly formatted before being sent to the Deep
Learning Model Service for further analysis and processing. This makes Node.js an ideal choice for building scalable, event-driven
applications that require real-time data processing with minimal latency.

2.4.3 Al classification service

The CST-MobileNetVV2 model will be deployed within a Docker container built on the Django framework, utilizing the Python
programming language. First, a virtual environment will be set up to install all necessary dependencies, including package version
control, the Python interpreter, and libraries such as TensorFlow and Keras. Next, the system will receive an image via URL from a
web service middleware, after which the image will be preprocessed to a size of 224x224x3. Finally, the processed image will be
passed through the pre-trained model, and the result will be returned to the user via the Line application interface. Figure 4 shows the
system flow.

Start —>{ Server Service Through
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Processing in Al Model
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Figure 4 System flow

This ensures that the system operates swiftly and meets user demands in various scenarios. Furthermore, the design prioritizes
flexibility for future development and enhancements, enabling the system to scale and accommodate new technologies seamlessly over
time.

2.5 Experimental environment settings and model evaluation indicator

The proposed model was implemented using Python 3.10 on Ubuntu 22.04 LTS OS, Intel(R) Xeon(R) CPU@ 2.20GHz, RAM 53
GB, GPU RAM 22.5 GB. The performance of the model is measured by using confusion matrix, fl1-score, accuracy, precision and
recall.

A confusion matrix is a visual tool that helps assess the effectiveness of a classification model. It presents a summary of the actual
versus predicted classifications, making it easier to identify how well the model is performing for each class. The matrix includes four
key components as a below.

« True Positive (TP): The count of instances correctly identified as positive.

« True Negative (TN): The count of instances correctly identified as negative.

« False Positive (FP): The count of instances incorrectly identified as positive (also referred to as Type | error).

« False Negative (FN): The count of instances incorrectly identified as negative (known as Type Il error).

Accuracy is a straightforward metric that reflects the proportion of correct predictions (both true positives and true negatives)
relative to the total number of instances evaluated. It can be calculated using the formula as (4).

(TP+TN)
(TP+TN+FP+FN)

Accuracy = 4
Precision, often called positive predictive value, measures how many of the instances predicted as positive are actually positive. It

is calculated as (5).

TP
(TP+FP)

Precision =

®)



434 Engineering and Applied Science Research 2025;52(4)

Recall, or sensitivity, evaluates how many actual positive instances were correctly predicted by the model. It is calculated as (6).

TP
Recall = (TTFN) (6)
The F1-score is a composite metric that combines precision and recall into a single value, reflecting the balance between the two.
It is calculated as (7).

F1score = 2 Erecision: Recall) i

(Precision + Recall)
3. Results

In this section of the research, we present a comprehensive analysis of all outcomes, including model training results, encountered
challenges, and implemented solutions. Additionally, we discuss advancements in system development and the integration of the model
into the overall system framework.

3.1 Model training results

A comparison of the models is required to identify the most suitable option to serve as the base model. Table 1 shows the
performance of different models after 5 epochs of training. The decision to limit training to 5 epochs per model was to ensure a fair
and efficient comparison among the five models. Since the goal was to identify the most suitable model rather than fully optimize each
one, a small number of epochs was sufficient to observe initial performance trends without excessive training time. Based on the results,
considering validation accuracy and training time, MobileNetV2 performs the best overall. Therefore, MobileNetV2 has been chosen
as the base model for this transfer learning task.

Table 1 Performance of different models after 5 epochs of training.

No. Model Train accuracy (%) Validation accuracy (%) Training Time (s)
1 ResNet152V2 96.74 96.55 166.06
2 Xception 95.56 95.23 115.45
3 InceptionV3 95.01 94.64 127.08
4 VGG19 92.55 91.57 170.94
5 EfficientNetB7 34.18 3351 340.61
6 MobileNetV2 96.69 96.71 112.61
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Figure 5 (A)Training accuracy and validation accuracy of CST-MobilNetV2, (B) Training loss and validation loss of CST-
MobilNetV2, (C)Training accuracy and validation accuracy of MobilNetV2, (D) Training loss and validation loss of MobilNetV2

The graph in Figure 5 (a) shows the accuracy of a model over 18 training epochs. The blue line represents the training accuracy,
while the orange line represents the validation accuracy. At the beginning, both lines start lower, with the training accuracy starting
around 88% and validation accuracy a bit higher. Over the first few epochs, both lines increase sharply as the model learns and quickly
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improves. The training accuracy continues to climb steadily, reaching around 98% by the last epoch, while validation accuracy shows
a similar trend but with slight fluctuations towards the end. The gap between the training and validation accuracy is relatively small,
indicating that the model is generalizing well on the validation data. The leveling off in both curves towards the end suggests that the
model has reached a stable level of accuracy, with only minor improvements after epoch 10.

The graph in Figure 5 (b) shows the loss of a model over 18 training epochs, with the blue line representing the training loss and
the orange line representing the validation loss. At the start, both the training and validation loss are quite high, with the training loss
beginning around 0.16. However, as the epochs progress, both lines show a steep downward trend, indicating that the model is learning
effectively and minimizing error. By around the 5th epoch, the loss values have decreased significantly, with both lines nearing a stable
range. From approximately the 10th epoch onward, the training loss continues to decline steadily, reaching a very low level near 0.02
by the end. The validation loss, while also low, shows minor fluctuations after epoch 10, hinting at slight variations in performance on
unseen data. Overall, the close alignment of training and validation loss throughout suggests that the model is not overfitting and is
likely generalizing well.

The upward trend and the halt at epoch 18 result from the implementation of a callback function known as early stopping, which
focuses on the validation loss. This function is configured to terminate training immediately if the validation loss does not decrease
within 3 epochs. Consequently, the use of early stopping helps maintain the model's accuracy and prevents overfitting.

Early stopping is a technique that prevents overfitting by stopping the training process when the model's performance on validation
data stops improving. In this setup, training will monitor the validation loss, and if it increases for more than three consecutive epochs,
training halts immediately. This approach saves resources and helps ensure the model stops at its best generalization point, avoiding
the risk of fitting to noise in the data.

Normalized Confusion Matrix
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Figure 6 Normalized Confusion Matrix of CST-MobileNetV2

Figure 6 shows the result and can be described as below:

- Overripe: TP = 0.98. The FN results for overripe are 53% in ripe and 47% in rotten, but it does not predict unripe at all.

- Ripe: TP =0.98. The FN results for ripe are 13% in ripe and 87% in rotten, but it does not fall into unripe at all.

- Rotten: TP = 0.98. The FN results are distributed across all classes, with 41% in overripe, 45% in ripe, and 14% in unripe.

- Unripe: TP = 0.99. All FN results fall into rotten, which is 100%.

From the confusion matrix result, it can be seen that the class most similar to other classes is rotten, while the class that is distinctly
different from others is unripe.

Table 2 shows the performance of the proposed model in terms of precision, recall, F1-score and support. The "Unripe" class
exhibits the highest values for precision, recall, and F1-score, all at 0.99. This exceptional performance is attributed to the distinct color
characteristics of the Unripe class, which clearly differentiate it from the other classes, resulting in higher accuracy, sensitivity, and
balance compared to the others. In contrast, both the "Ripe" and "Rotten" classes have equal precision, recall, and F1-scores of 0.98,
indicating that predictions for these two classes are accurate and well-balanced. For the "Overripe" class, the precision is at 0.96,
suggesting that there are more positive predictions than warranted, leading to a higher incidence of false positives compared to other
classes. The recall for this class stands at 0.98, comparable to the other classes, while the F1-score is 0.97, indicating that this class has
a lower balance between precision and recall than the others. Figure 7 shows examples of misclassified images. Table 3 presents a
comparison of CST-MobileNetV2 with alternative deep learning methods.

Table 2 Performance Evaluation of CST- MobileNetV2

Class Precision Recall F1-Score Support
Overripe 0.96 0.98 0.97 809
Ripe 0.98 0.98 0.98 1232
Rotten 0.98 0.98 0.98 1378
Unripe 0.99 0.99 0.99 625
Accuracy - - 0.98 4044
Macro avg 0.98 0.98 0.98 4044

Weighted avg 0.98 0.98 0.98 4044
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Table 3 Comparison of CST-MobileNetV2 with alternative deep learning methods.

Paper Dataset Classes Method/Model Classification Accuracy
Type (%)

Shuprajhaaetal. [3]  Banana Customized dataset 4 CNN-XgBoost Quality 91.25
Nikhilesh et al. [4] Nendran banana 4 EfficientNet-B7 Quality 95
Saragih et al. [5] [34] 4 MobileNetV2 Quality 96.18
CST-MobileNetV2 Banana Classification [32] 4 Learning based on MobileNetV2 Quality 98.15

Actual Ripe Unripe Overripe

Predicted Overripe Rotten

Figure 7 Examples of the misclassified images.
3.2 Application

We aim to demonstrate the integration of our proposed model with a custom-developed microservice infrastructure based on
containerization. We deployed CST-MobileNetV2 into a containerized environment. This container was then deployed across three
distinct target environments.

These environments were chosen as part of an initiative focused on modern application development. They represent potential
directions for future implementation, including web applications leveraging cloud infrastructure, 10T applications utilizing edge
computing, and mobile applications acting as backend infrastructure for real-world use cases.

The original image is first sent to the system. It is then processed and split into two versions: distorted and undistorted, before
entering the prediction phase. In the undistorted case, the original 3000x4000 image is simply resized. In contrast, the distorted version
undergoes a change in proportions before being resized to 224x224 pixels. This process degrades image quality and results in a loss of
detail, making it more difficult for the model to accurately analyze the original features.

The system was tested using 270 images, with 265 correctly classified. The calculated mean accuracy was 0.9815, with a variance
of 0.0182 and a standard deviation of 0.1349.

Table 4 Performance evaluation of the proposed model and microservice system in various environments.

Environment Original Image Process Image Distortion Accuracy Response Time
(Pixels) (Pixels) (%) (%) (s)
Cloud Computing 3000 x 4000 3000 x 4000 0 98.15 4.3
Edge Computing 3000 x 4000 3000 x 4000 0 98.15 3.75
Mobile Computing 3000 x 4000 3000 x 4000 0 98.15 0.3

Table 4 presents the results of an additional experiment in which the model was integrated with the proposed system and deployed
in different environments (Cloud Computing, Edge Computing, and Mobile Computing). The objective was to evaluate the model's
performance across alternative solutions. The results reveal that Mobile Computing is the most efficient environment for the proposed
solution, delivering fast response times. Meanwhile, the other environments also maintained impressive processing speeds under 60
seconds.

The proposed deep learning model demonstrated high consistent accuracy across all environments and tools. Mobile Computing
was chosen as the primary platform for development, as it proved to be the most effective and well-suited to the proposed solution.
Accordingly, the Line application was adopted as the Mobile Computing platform and operational tool for user interactions.

Table 5 Performance evaluation of the proposed model and microservice system in Line Application

Platform/ Original Image Process Image Distortion Accuracy Response Time
Device (Pixels) (Pixels) (%) (%) (s)
Line application 3000 x 4000 960 x 1706 86.34 98.15 9.25

Table 5 presents the performance evaluation of the CST-MobileNetV2 model integrated with the Line application. The assessment
was conducted using key HTTPS protocol metrics, including status codes, error rates, and response times, measured via the Postman
tool.

The results show that the response time is 9.25 seconds, although the image received from LINE was automatically distorted to
86.34%, the model remains applicable and performs with a high accuracy rate of 98.15%. The response is subsequently sent to the
client via the LINE Messaging APl with a status code of 200, confirming that both the model and the application deployment are
reliable and consistently available.
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4. Discussion

This development is divided into two main components. The first focuses on model development for banana classification, while
the second involves designing the system architecture for deployment. In the model development phase, six models were trained and
evaluated to determine the most suitable base model for this dataset. Among these models, MobileNetVV2 demonstrated the best
performance. To enhance its capability, the head of MobileNetV2 was customized for transfer learning, resulting in CST-MobileNetV2,
which achieved an accuracy of 98.15%. In the system architecture phase, the proposed model was integrated into a microservice-based
system and deployed across three different computing environments. Mobile computing yielded the lowest response time at 0.30
seconds, compared to 3.75 seconds on edge computing and 4.30 seconds on cloud computing. Additionally, the model was deployed
through the Line Application to assess its real-world applicability. A key challenge in this setup was image distortion caused by Line’s
compression process. Despite this issue, the model maintained high classification accuracy, demonstrating its robustness in practical
applications.

5. Conclusion

In this development, we implemented a banana quality classification system using CST-MobileNetV2 to categorize banana ripeness
into four stages: unripe, ripe, overripe, and rotten. The proposed Lightweight model achieved an accuracy of 98.15%, outperforming
other evaluated models, as detailed in Table 3. The architecture is designed to operate as an individual service. The proposed solution
was benchmarked against other deep learning models and tested on various operating systems, demonstrating consistent accuracy. It
achieved the best performance on Mobile Computing with a response time of 0.30 seconds, compared to 3.75 seconds and 4.30 seconds
on Edge Computing and Cloud Computing, respectively. Additionally, the model demonstrates an average response time of 9.25
seconds per image when integrated with the LINE application. This architecture is also adaptable and ready for integration with other
mobile applications, web applications, or 10T systems, ensuring practical usability.

Future development will focus on adapting the lightweight model within a microservices framework for broader industrial
applications, including medical, steel, and manufacturing sectors. This expansion enhances the system’s versatility beyond agriculture.
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