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Abstract

Efficient renewable energy management requires precise solar power forecasting. This study enhances prediction performance by
integrating a Gated Recurrent Unit (GRU) — Long Short-Term Memory (LSTM) encoder-decoder architecture within a Temporal
Fusion Transformer (TFT), enabling more effective modeling of complex temporal dependencies in solar generation data compared to
traditional models. The novel contribution lies in the synergy between GRU’s ability to handle vanishing gradients and LSTM’s
capability of maintaining long-term dependencies, resulting in improved forecasting accuracy. Additionally, we incorporate relevant
meteorological data as supplementary inputs to refine the model's predictive precision. The results using the UNISOLAR and Solcast
weather data reveal that our GRU-LSTM encoder-decoder within TFT (GRU-LSTM) model consistently outperforms the standard
LSTM encoder-decoder within TFT (LSTM) and GRU encoder-decoder within TFT (GRU) models, achieving superior accuracy across
both short-term and long-term forecasting tasks. This GRU-LSTM model exhibits significantly lower Mean Absolute Error (MAE),
Mean Squared Error (MSE), and Root Mean Squared Error (RMSE), particularly during periods of high solar output. In short-term
forecasting, the model achieved an MAE of 2.687, MSE of 15.603, and RMSE of 3.950 for Campus 1, and an MAE of 0.509, MSE of
0.585, and RMSE of 0.978 for Campus 2. Long-term results followed a similar trend, reinforcing the model’s ability to identify
underlying patterns in solar generation data. These findings validate the effectiveness of the proposed GRU-LSTM encoder-decoder
within TFT (GRU-LSTM) model for robust and exact solar power forecasting.
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1. Introduction

The need for dependable and precise forecasting of solar energy generation has gained significance as the global transition to
renewable energy sources accelerates [1, 2]. Precise forecasts are crucial for maintaining grid stability, formulating energy distribution
plans, and incorporating renewable sources into current power systems [3]. The inherent unpredictability and sporadic characteristics
of solar radiation affected by cloud cover, meteorological conditions, and diurnal cycles present substantial obstacles to accurate
forecasting models [4]. Conventional forecasting methodologies, encompassing statistical models [5], have been extensively employed
to anticipate solar energy generation. These models often depend on historical data and linear correlations, rendering them appropriate
for identifying overarching patterns. Nevertheless, the intricate, nonlinear dynamics of solar radiation stemming from interactions
among diverse climatic factors frequently surpass the constraints of conventional models [6]. This has increased interest in machine
learning methodologies [7, 8], especially Recurrent Neural Networks (RNNSs), which exceed at modeling sequential data and capturing
temporal relationships [9].

The effectiveness of Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRUS) in mitigating the vanishing gradient
problem and efficiently capturing long relationships in temporal data has rendered these networks favored selections inside RNNs [10-
13]. Although generally useful, these models may occasionally fail to adequately depict intricate patterns over prolonged durations,
which is crucial for dependable forecasting. Enhancing the modeling of intricate temporal patterns has prompted academics to
investigate more sophisticated structures.

The TFT signifies a notable progression in the domain of time series prediction [14, 15]. TFT possesses a distinctive capability to
consolidate the intricate features of solar energy data, owing to its expertise in handling long-term dependencies and synthesizing
information from diverse sources and timeframes. The self-attention mechanism offers parallel processing of the sequential data,
facilitating the model's focus on the most important time steps and features, thereby enhancing forecast accuracy [16].

In this research, a framework for forecasting models was developed which combines an improved GRU-LSTM encoder-decoder
structure with the TFT architecture to create an improved architecture. In this model, we combined the sequential processing skills of
GRU and LSTM networks with the deep dependency modeling capabilities and interpretive features of TFT. To record short-term and
long-term links the data on solar energy production should incorporate complex formats which increase the accuracy of the forecast.
The proposed GRU-LSTM encoder-decoder model of the TFT raises the efficiency of the prediction of solar energy production.
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2. Related work

Recent studies emphasize the growing utilization of hybrid models that integrate RNNs with transformers to enhance the precision
of solar forecasting. Transformers easily capture long-range correlations through a self-attention mechanism, facilitating rapid
sequential data processing. Recent assessments underscore the substantial outcomes of these models, revealing enhancements in both
accuracy and computational efficiency in solar forecasting through the adept management of intricate solar data throughout an extensive
temporal range [17]. The GRU-Transformer model has shown significant enhancements in short-term solar energy prediction by
combining the temporal advantages of GRU with the global attention features of Transformers [18]. These developments suggest that
Transformers, especially when combined with RNNSs, provide a strong and efficient alternative to conventional methods for addressing
the issues of solar energy forecasting.

TFT has become an effective architecture for time series forecasting by combining the strengths of RNNs and Transformers. TFT
is specifically designed to handle both static and time-varying covariates, integrating LSTM layers for temporal encoding and multi-
head attention mechanisms to capture long-range dependencies. Recent research indicates that TFT is successful in forecasting energy
demand and renewable energy output. A case study illustrated the application of TFT alongside a spectral clustering technique for
elucidative energy consumption forecasting in buildings, markedly enhancing both the precision and clarity of the forecasts [19]. In
the renewable energy domain, TFT has been utilized for daily forecasts of wind power within the renewable energy sector and
demonstrated superior performance over conventional approaches [20]. These studies indicate that TFT is an effective instrument for
enhancing energy forecasting in many areas, especially in multi-horizon contexts.

This advanced TFT model, combining the strengths of RNNs and Transformers, improves forecasting precision and enables real-
time management of air conditioning systems, hence increasing energy efficiency [21]. Different research utilized an advanced TFT
model that integrated uncertainty in the forecasts for probabilistic mid-term hourly load forecasting. Employing this probabilistic
approach, the model effectively reflected fluctuations in energy demand, hence improving decision-making in power system
management [22]. A hybrid GRU-TFT model, incorporating a DILATE loss function, was created for solar power forecasting,
significantly improving multi-horizon forecasting accuracy. More recently, an improved TFT was created by replacing the LSTM
encoder-decoder with a GRU-based architecture and incorporating the DILATE loss function, which further improves the prediction
performance [23]. Collectively, these studies highlight the adaptability and robustness of TFT across various energy forecasting
applications, further confirming its potential to enhance energy systems.

Although there is progress in TFT for energy forecasting, specific constraints persist, especially in effectively handling both
immediate and long-range time dependencies in highly dynamic datasets. We present an improved model that expands upon the TFT
by using a GRU-LSTM encoder-decoder framework. The proposed method integrates the strengths of both GRU and LSTM encoder-
decoders, enabling it to forecast both short-term and long-term data, manage the high volatility of solar generation data, and forecast
solar power generation efficiently.

3. Methodology
3.1 The datasets

In this study, we utilized two datasets. The first dataset, UNISOLAR [24], offers extensive data on solar power generation from
photovoltaic cells, collected over a 2.5-year period at 15-minute intervals. The data was gathered from several campuses of La Trobe
University in Victoria, Australia, and includes not only solar generation data but also associated meteorological variables. The second
dataset comprises weather-related data obtained from Solcast [25], a reliable provider of high-resolution solar irradiance and
atmospheric data. This dataset includes variables such as temperature, clear sky irradiance, global horizontal irradiance (GHI), direct
normal irradiance (DNI), and global tilted irradiance (GTI), which are essential for improving the accuracy of solar energy forecasting
models. The integration of these two data sources enables a more comprehensive representation of solar generation dynamics and
enhances the forecasting performance of the proposed framework.

3.2 Data preprocessing

The datasets used for machine learning are mostly raw data collected from various sources. Therefore, it is crucial to follow certain
steps in data preparation first. The model requires the data to be suitable for further training. In this study, we selected solar site 27
from Campus 1 (Bundoora) and solar site 1 from Campus 2 (Wodonga), combining these with meteorological data from Solcast for
experimentation. However, to overcome missing solar generation data, possibly caused by weather conditions, cloud cover, or
equipment malfunctions, we employed the Multilayer Perceptron (MLP) technique to impute missing values [26]. This process was
crucial for enhancing the dataset and ensuring its readiness for model training in subsequent stages, ultimately improving data quality
for further analysis and prediction.

This study uses solar generation data from Campus 1 and Campus 2 for the years 2020-2021. The dataset is split into two subsets,
each of which is further subdivided into training (80%), validation (10%), and tests (10%). As shown in Figure 1, the model is trained
using the training set, its hyperparameters are optimized using the validation set, and its performance on unseen data is evaluated using
the test set.

3.2.1 Feature engineering

To identify variables correlated with solar generation, we computed Pearson correlation coefficients and selected features with
values greater than 0.3. This threshold was chosen based on commonly accepted interpretations in statistical literature, where
coefficients above 0.3 indicate at least a moderate but meaningful linear relationship [27, 28]. By applying this criterion, we aimed to
exclude variables with negligible correlation while retaining those that may contribute useful predictive signals to the forecasting
model. Pearson correlation was chosen because both solar generation and irradiance-related variables are continuous and tend to exhibit
approximately linear relationships under normal conditions.
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Figure 1 Training set, Validation set, Testing set

The solar power generation of Campus 1 and Campus 2 is strongly influenced by irradiance variables, particularly GHI, DNI, and
GTI, with all showing high positive correlations (above 0.85) in both campuses. Campus 2 exhibits slightly stronger correlations with
GHI (0.97) and GTI (0.96) compared to Campus 1, indicating potentially greater efficiency in converting solar radiation to power. In
contrast, both campuses show moderate correlations with air temperature (0.46), suggesting that while temperature has some impact,
irradiance is the dominant factor in solar power generation. The slightly lower correlation between solar power and clear sky irradiance
on Campus 2 could reflect local environmental variability or infrastructural differences, which could affect performance under optimal
conditions. These insights, as illustrated by the correlation matrices in Figure 2, where Campus 1 is shown on the left (a) and Campus
2 on the right (b), are crucial for improving solar power forecasting models and optimizing energy output on both campuses.
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Figure 2 Correlation Metrix for Campus 1 (a) and 2 (b)
3.2.2 Decomposition

The process of decomposing a time series involves dividing it into three main parts: (i) the trend, which shows the long-term
movement; (ii) the seasonal component, which records regular short-term cycles (daily, weekly, or annual); and (iv) the residual, which
shows the variation that remains after trend and seasonality have been taken into consideration. This procedure improves
comprehension of the unique trends impacting data throughout time.

Figure 3 illustrates the time series decomposition of solar power generation at Campus 1 and Campus 2 (2020-2021), revealing key
patterns across four components: observed data, trend, seasonal, and residuals. Seasonal fluctuations are evident, with peaks in summer
and troughs in winter, reflecting typical solar irradiance cycles. The trend shows a gradual increase in generation during summer,
followed by a decline in winter, influenced by daylight hours and solar angles. The seasonal component emphasizes the diurnal cycle,
while residuals highlight short-term variability driven by unpredictable factors like weather. This decomposition provides valuable
insights for improving forecasting models, such as the enhanced GRU-LSTM encoder-decoder TFT model, for more accurate solar
power generation predictions.
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Figure 3 Decomposition of daily solar generation for Campus 1 and 2

3.3 The framework proposed in the research

As mentioned earlier, this study introduces a key modification to the encoder-decoder structure of the TFT architecture [29],
replacing the traditional LSTM encoder-decoder with an enhanced GRU-LSTM encoder-decoder. This improved approach leverages
the strengths of both GRU and LSTM cells for better handling of sequential time-series data. In the modified framework, the improved
GRU-LSTM encoder-decoder processes each time step's past and known future inputs, in conjunction with variable selection and static

enrichment layers.
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Figure 4 The framework proposes an improved GRU-LSTM encoder-decoder TFT model

The architecture includes Temporal Self-Attention and Masked Interpretable Multi-Head Attention for improved interpretability
and focus on relevant time steps. Additionally, the Gated Residual Network (GRN) is used to enhance non-linear relationships between
variables, while the overall output generates Quantile Forecasts for probabilistic prediction, as shown in Figure 4. This modification is
aimed at improving the model's forecasting performance and flexibility in handling complex temporal patterns. The improved GRU-
LSTM encoder-decoder structure illustrates how both GRU and LSTM components work together in the encoding and decoding

process, as shown in Figure 5.
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The GRU (Gated Recurrent Unit) encoder processes input at each time step ¢ through a series of gates. The update gate z; (Equation
1) controls how much of the previously hidden state h,_, is carried forward, while the reset gate . (Equation 2) determines how much
of h,_, should be ignored when calculating the new candidate's hidden state.

The candidate's hidden state /1, (Equation 3) is computed using the reset gate. Finally, the hidden state SRV (Equation 4) is updated
as a combination of h,_; and &, weighted by the update gate.

7t = o(Wyxy + Ughe_y) 1)
e = o(Wpxe + Uphy_y) )
he = tanh(Wx, + U(ry © hy_y)) (3)
hRY = (1= 2) Q heoy + 2. O Iy @)

Here, x; represents the input at time step t, and the weight matrices W,, W,. and W are applied to the input, while U,, U,. and U are
applied to the previous hidden state. The activation functions ¢ and tanh represent the sigmoid and hyperbolic tangent, respectively,
and © denotes element-wise multiplication.

The LSTM encoder processes the GRU output hSRY by using gates to control the flow of information. The forget gate f, (Equation
5) determines how much of the previous cell state C,_; should be retained. The input gate i, (Equation 6) controls how much of the
candidate cell state C, should be incorporated into the current cell state (Equation 7). The updated cell state C, (Equation 8) combines
C,_, and C;, weighted by the forget and input gates. The output gate o, regulates how much of the cell state is exposed to the hidden
state (Equation 9), resulting in the final hidden state h}S™ (Equation 10).

fe = o(WrhRY + UshESTM + by) (5)
i = o(W;hZRY + U;RESTM + b)) (6)
C; = tanh(W:hERY + U hES™ + b)) (7
Co=fOC,+i,OC (8)
0y = a(W,h¢RY + U,hES™ + b,) ©)
h%STM = 0, © tanh(C;) (10)

In these equations, f;, i;, and o, represent the forget, input, and output gates. C, is the candidate cell state, and C, is the updated
cell state. The weight matrices Wy, W;, W, and W are applied to the GRU output hERY while the matrices Ur, U;, U, and U are
applied to the previous hidden state h>T™. The bias terms by, b;, b, and b adjust the gates' activations.

The GRU decoder processes each input y, at time step t by applying gates that control the flow of information from the previous
hidden state hRgRU-4¢¢, The update gate zJ*® determines the amount of information to carry forward from hSRU-4¢ (Equation 11). The
reset gate r2° regulates how much of the previous hidden state should be ignored in the computation of the candidate's hidden state
hdec (Equation 12). This candidate hidden state incorporates the reset gate's influence to decide the update amount for the new hidden

state (Equation 13). The final hidden state ASRV-9¢ is obtained by combining the previous hidden state and the candidate hidden state,
controlled by the update gate (Equation 14).
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zdec = g(Wecy, + Udec hgRU-dec) (11)
rdec = g(Wydecy, + Udec RgRU-dec’) (12)
hi = tanh (Wéey, + Uéee(rie © hgR)) (13)
htGRU—dec — (1 _ Zgzec) 0 hgelU-dec + Zgzec 0 h“?;c (14)

Here, y, represents the input at each step (e.g., actual target data during training or prior predictions during inference). The weight
matrices W3¢, W, and W apply to y,, while Uge, Udee and U9 apply to the previous hidden state.

In the final decoding stage, an LSTM decoder processes the output from the GRU decoder. First, the forget gate £, decides how
much of the previous cell state C-STM-9¢¢ tg retain (Equation 15). Then, the input gate i determines the extent to which the candidate
cell state c}d“ec will influence the current cell state (Equation 16). The candidate's cell state C;‘Iéc is calculated from the current GRU
output and previous LSTM hidden state, serving as a potential update to the cell state (Equation 17). The updated cell state CX° is
obtained by combining the outputs of the forget and input gates (Equation 18). The output gate oge then controls how much of the cell

state will contribute to the hidden state at the current time step (Equation 19). Finally, using the hidden state AFS™-4¢ for the LSTM
decoder, the output gate is calculated by applying it to the updated cell state (Equation 20).

dec — U(Wfdec RGRU-dec 4 U]gec RESTM-dec bff_lec) (15)
jdec = O.(M/idechtGRU-dec + Ul_dec RLSTM-dec 4 b;iec) (16)
C’tggc -t anh(WCdec htGRU-dec + Ugec h%fll"M—dec + bgec) a7)
Clec = fec @) CLSTM-dec | jdec () C’Ei?zc (18)
ofec = g(WglecpGRU-dec 4 jdec pLSTM-dec . pdec) (19)
RESTMdee — gdec @ tanh(CE) (20)

Here, the GRU decoder's output RFRU-de¢ serves as the input to the LSTM decoder. Weight matrices Wfd“, Wl-d“, wdee and wee
are applied to this GRU output, while U;iec, Ugdee, ydee and U apply to the previous LSTM hidden state. Sigmoid and tanh are the
activation functions, with element-wise multiplication represented by ©.

3.4 Configuration options for hyperparameter tuning

To identify optimal hyperparameter configurations, we employed Optuna, an open-source framework for automated
hyperparameter tuning [30]. In this study, the Tree-structured Parzen Estimator (TPE) [31], a Bayesian optimization algorithm, was
employed as the sampling method, formulating the optimization process as a probabilistic model. This method enables efficient
exploration and exploitation of the hyperparameter space.

The optimization begins with the definition of the parameters search space, followed by an initial phase where predefined number
of initial trials (denoted by n_startup_trials) randomly generate primary parameter sets. Each parameter set was used to fit the TFT
model to acquire a validation loss value, which was then fed to the TPE model later. This stage serves to collect sufficient preliminary
data for the probabilistic modeling process. Once enough data have been gathered, the algorithm transitions into a model-based search
phase. Rather than directly modeling the objective function, TPE constructs two conditional probability density functions:

lx)=pxly<y) (21)
gx)=pkxly=y") (22)

where x denotes a candidate hyperparameter configuration, y represents the corresponding objective value (e.g., validation loss), and
y™* is typically selected as a quantile (e.g., the 15th percentile) of observed objective values. These two densities separate high-
performing configurations (I(x)) (Equation 21) from those associated with poorer performance (g(x)) (Equation 22). To determine
the next configuration to evaluate, TPE selects the candidate x* that maximizes the expected improvement, defined as (Equation 23):

1(x)

This acquisition function biases the search toward regions with a higher likelihood of outperforming the current best configuration,
thereby accelerating convergence to an optimal solution. Each trial trains the TFT model using a proposed set of hyperparameters, with
validation loss serving as the objective value. Trials proceed until a predefined number or time limit is reached, and the configuration
yielding the lowest validation loss is selected as optimal.
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In Figure 6, the optimization search history is presented and analyzed, showing a consistent decline in validation loss over trials.
This analysis demonstrates the stable convergence behavior and effective performance of the optimizer during hyperparameter tuning.
Early stopping and pruning were also employed to improve efficiency by terminating unpromising trials early.

In this study, the hyperparameter optimization problem was defined as follows: The objective function to minimize was the
validation loss. The design variables, along with their respective constraints (search ranges), included: batch size (fixed at 64), hidden
size (10-320), hidden continuous size (10-320), attention head size (1-4), learning rate (0.00001-0.0001), and dropout (0.1-0.9) [29].
The optimization process was constrained by a total of 20 trials (n_trials = 20), with the TFT model fitting in each trial limited to 100
epochs.

Importantly, all models (LSTM, GRU, and proposed model) were tuned using a consistent Optuna-based procedure explained
above. The selection of these optimal values was meticulously based on the performance metrics, as detailed in Tables 1 and 2. This
consistent methodology ensures a fair and robust comparison across different model architectures.

Table 1 Hyperparameter tuning for short-term and long-term forecasting for Campus 1

Hyperparameters LSTM GRU GRU-LSTM

short long short long short long
hidden_size 110 53 16 42 120 49
hidden_continuous_size 99 14 15 27 22 21
attention_head_size 2 3 1 2 1 4
learning_rate 1.03x1073 1.28x1073 1.46x1073 2.30x107° 2.04x10° 5.62x10°
dropout 0.328 0.579 0.521 0.797 0.208 0.508

Table 2 Hyperparameter tuning for short-term and long-term forecasting for Campus 2

Hyperparameters LSTM GRU GRU-LSTM

short long short long short long
hidden_size 19 102 98 210 42 112
hidden_continuous_size 16 42 92 59 14 30
attention_head_size 4 1 3 4 2 3
learning_rate 5.61x1073 2.40x107° 3.76x1073 1.89%1073 3.57x10°° 1.21x1073
dropout 0.213 0.114 0.456 0.687 0.467 0.721

3.5 Evaluation metrics

In our study, we first employed the Baseline model from PyTorch Forecasting, which predicts future values by carrying forward
the last observed target value from the encoder sequence, as defined in Equation (24).

Verr Vevzr oo Jean = Ve (24)

Where 911, Veao, -, Yern are the predicted value for future time steps up to a horizon h, and y, denotes the last known value of
the target within the encoder sequence. After generating these predictions, we evaluated their accuracy by calculating the Mean
Absolute Error (MAE)

To evaluate the efficacy of our proposed model relative to others, we utilized three evaluation metrics:

1 P
MAE = - ¥itily: — 3l (25)

MSE = - 31, (i = 9)° (26)

1 P
RMSE = |- ¥, (v — ? @7)
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In Equation (25-27), n represents the total number of data points or observations, y; represents the actual value of the i-th
observation, and ¥, represents the predicted value of the i-th observation.

Mean Absolute Error (MAE), defined in Equation (25), provides the mean of absolute differences between actual and predicted
values, directly measuring average prediction error. This metric treats all errors equally, making it less sensitive to outliers. Lower
MAE values signify improved model accuracy. In contrast, Mean Squared Error (MSE), shown in Equation (26), emphasizes larger
errors by squaring differences, which makes it suitable for contexts where minimizing significant deviations is key. Root Mean Squared
error (RMSE), in Equation (27), takes the square root of MSE, returning error values in the original units and highlighting substantial
deviations. Lower values across these performance metrics demonstrate improved model accuracy and effectiveness.

4, Results

This research improved the encoder-decoder architecture of the Temporal Fusion Transformer (TFT) to enhance the accuracy of
solar power output forecasts using the UNISOLAR dataset across two years (2020-2021). The forecasting tasks were divided into two
categories: short-term forecasting, which predicts one day ahead using data from the previous seven days, and long-term forecasting,
which projects one week ahead based on data from the past four weeks.

A two-phase optimization framework can be conceptualized in terms of exploration and exploitation. In this context,
hyperparameter optimization with Optuna explores the high-dimensional, often discrete parameter space to identify promising
configurations [32], while gradient-based training with Adam exploits these configurations to efficiently converge to local optima. The
Training Aware Sigmoidal Optimizer (TASO) illustrates a similar two-phase strategy: an initial high learning rate rapidly traverses
saddle points, followed by a lower learning rate that refines convergence toward a local minimum [33]. This analogy supports framing
both Bayesian and gradient-based methods through the lens of exploration and exploitation.

Building on this framework, hyperparameter optimization was conducted using Optuna 3.4.0 with the Tree-structured Parzen
Estimator (TPE) [34, 35]. This Bayesian approach embodies the exploration phase, systematically sampling the high-dimensional, non-
smooth, and often discrete hyperparameter space to shrink the search space and locate promising configurations.

Following the identification of optimal hyperparameters, model training was performed using PyTorch Lightning 2.0.2 and
PyTorch Forecasting 1.0.0 with the Adam optimizer [21, 23, 36]. Adam was chosen for its ability to mitigate training instabilities
common in Transformer architectures, support learning rate warmup to avoid divergence, and converge efficiently within the defined
configuration space. During this exploitation phase, gradient-based updates refined continuous model parameters, stabilized through
EarlyStopping and ReduceLROnNPlateau callbacks.

The rationale for employing distinct optimization strategies is grounded in the fundamentally different nature of these tasks.
Hyperparameter optimization, addressed by Bayesian approaches such as TPE, constitutes a gradient-free global search process tailored
for exploring discrete and high-dimensional configuration spaces. In contrast, model training is inherently a gradient-based process,
wherein algorithms such as Adam are specifically designed to minimize continuous loss functions within a fixed parameter landscape
[37, 38]. This inherent disparity necessitates separate optimization strategies, ensuring that each stage is solved with an algorithm
optimally aligned to its problem domain. This two-phase design not only improves computational efficiency [39, 40] but also aligns
with best practices in machine learning research, wherein exploration of hyperparameters and exploitation of model training dynamics
are optimized by distinct, specialized algorithms.

The LSTM and GRU encoder-decoders used in the TFT architecture were adopted from [19, 29] and [22, 23], respectively, to
leverage their ability to capture temporal dependencies in time series forecasting tasks.

Table 3 The results of short-term forecasting

Campus Baseline (MAE) Model MAE MSE RMSE

1 18.432 LSTM 6.443 89.768 9.475
GRU 5.853 65.224 8.076
GRU-LSTM 2.687 15.603 3.950

2 6.304 LSTM 0.697 1.007 1.004
GRU 0.739 1.251 1.119
GRU-LSTM 0.509 0.585 0.978

Table 4 The result of long-term forecasting

Campus Baseline (MAE) Model MAE MSE RMSE

1 17.325 LSTM 5.967 78.120 8.839
GRU 5.974 67.846 8.237
GRU-LSTM 4.484 49.828 7.059

2 5.205 LSTM 0.671 1.084 1.041
GRU 0.625 1.071 1.035
GRU-LSTM 0.366 0.345 0.588

The evaluation and comparison of predictive outcomes for both short-term (daily) and long-term (weekly) prediction methodologies
presented in Tables 3 and 4 were applied to our dataset, according to the identical experimental framework. The findings were
subsequently compared to the performance of the proposed GRU-LSTM model presented in this work, ensuring a fair and consistent
evaluation across all methodologies utilizing the same dataset and metrics (MAE, MSE, and RMSE).

The short-term forecasting results for LSTM, GRU, and GRU-LSTM models across two campuses are presented in Table 3 and
highlight their performance against baseline MAE values. For Campus 1, all models significantly outperformed the baseline MAE of
18.432, with the GRU-LSTM model achieving the highest accuracy, yielding an MAE of 2.687, an MSE of 15.603, and an RMSE of
3.950. Similarly, for Campus 2, the models surpassed the baseline MAE of 6.304, with the GRU-LSTM model again demonstrating
superior performance, achieving an MAE of 0.509, an MSE of 0.585, and an RMSE of 0.978.
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As shown in Figure 7 (a), for Campus 1, the GRU-LSTM model demonstrated the closest match to the observed solar generation
values across all time steps, particularly around the peak generation period, where the deviation is minimal. The LSTM and GRU
models exhibited slightly higher errors, especially near the peak, indicating they may not effectively capture the intricate characteristics
of the solar generation pattern compared to the GRU-LSTM model.

In Figure 7 (b), for Campus 2, all models demonstrated similar performance, with only minor deviations from the observed values.
However, as seen in Campus 1, the GRU-LSTM model consistently aligned slightly better with the observed data, particularly during
peak generation hours. Notably, the differences between the models are less pronounced than in Campus 1, likely due to the lower
solar generation variability at Campus 2, which indicates a more stable output, or perhaps less complex temporal dynamics in the

dataset. This suggests that the solar generation capabilities between the two campuses differ significantly, impacting the forecasting
performance of the models.
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Figure 7 Comparison of observed and predicted values for short-term forecasting in Campus 1 (a) and 2 (b)

At Campus 2, while all models display comparable performance metrics, the GRU-LSTM model still achieves marginally better
accuracy, which may be attributed to its robustness across varying conditions. The divergent performance results between the two
campuses highlight the adaptability of the GRU-LSTM model, establishing it as a compelling option for reliable short-term solar
forecasting in diverse operational environments.

The long-term forecasting results for the LSTM, GRU, and GRU-LSTM models applied to Campuses 1 and 2 are presented in
Table 4 showing the comparison of their performance against baseline MAE values. For Campus 1, all models showed improved
predictive capabilities over the baseline MAE of 17.325, with the GRU-LSTM model achieving the best performance, registering an
MAE of 4.484, an MSE of 49.828, and an RMSE of 7.059. In Campus 2, the baseline MAE was lower at 5.205, and the GRU-LSTM
model also led with an MAE of 0.366, MSE of 0.345, and RMSE of 0.588.

Observed vs Predicted - LSTM, GRU, GRU-LSTM (Campus 1)

=== LSTM
§ 80 GRU
X —— GRU-LSTM
.5 60 —— Observed
©
£ 40
U]
o 20
(=3
(%2}
0
0 25 50 75 100 125 150 175
Time Steps
(a)
Observed vs Predicted - LSTM, GRU, GRU-LSTM (Campus 2)
- LST™M
$20 GRU
X —— GRU-LSTM
_6 15 —— Observed
[
£10
O
3 s
o
wn
0
0 25 50 75 100 125 150 175
Time Steps
(b)

Figure 8 Comparison of observed and predicted values for long-term forecasting in Campus 1 (a) and 2 (b)

In Figure 8 (a), showing the long-term forecast for Campus 1, the GRU-LSTM model closely tracks the observed solar generation
values, showing minimal deviation across the time steps. The GRU and LSTM maodels, while still capturing the general trend and
periodicity of solar generation, exhibit larger deviations, particularly around peak solar generation times. The GRU model tends to
slightly overestimate peak values compared to the LSTM model.

Figure 8 (b), for Campus 2, shows the results demonstrating a similar trend. Additionally, the GRU-LSTM model performs better
in terms of accuracy than the GRU and LSTM models, as it follows the observed values with the least error. The GRU model
demonstrates minor overestimation at peak solar generation points, while the LSTM model also shows some divergence from the
observed data, though it performs reasonably well.
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5. Discussion

Accurate forecasting of solar power remains a critical challenge for effective renewable energy integration. While previous studies
have utilized alone GRU or LSTM architectures within Temporal Fusion Transformer (TFT) [19, 22, 23, 29], this study is among the
first to implement a GRU-LSTM hybrid encoder-decoder within a TFT (GRU-LSTM) for solar power forecasting. The GRU-LSTM
model demonstrates a notable advantage in short-term forecasting, particularly at Campus 1, where it closely aligns with observed solar
generation values and effectively minimizes deviations during peak generation periods.

The GRU-LSTM model also consistently outperforms both GRU and LSTM models in long-term forecasting across both
campuses, particularly during periods of high variability such as peak sun hours. This demonstrates its robustness and capacity to model
underlying temporal dynamics in solar generation data over extended time frames.

Our findings suggest that the GRU-LSTM model is more effective at capturing complex temporal patterns than standalone LSTM
[19, 29] or GRU models [22, 23]. This improvement can be attributed to the model's ability to combine GRU’s strength in addressing
vanishing gradients [41-43] with LSTM’s ability to preserve long-term dependencies [3, 44, 45]. Incorporating relevant meteorological
features such as temperature, clear sky irradiance, global horizontal irradiance (GHI), direct normal irradiance (DNI), and global tilted
irradiance (GTI) further improved the model’s performance. Feature importance analysis highlighted solar irradiance and temperature
as the most influential predictors, confirming the value of environmental context in enhancing solar forecast accuracy.

6. Conclusion

This study proposes an enhanced GRU-LSTM encoder-decoder architecture integrated into the TFT model to augment the precision
of solar power generation predictions. By replacing the conventional LSTM with the GRU-LSTM architecture, in conjunction with
weather data, the model can more adeptly distinguish between short-term and long-term trends. The experimental findings indicate that
the enhanced GRU-LSTM regularly surpasses the conventional LSTM and GRU models in the evaluated campus. The model exhibits
enhanced short-term forecasting precision with decreased error metrics (MAE, MSE, RMSE) and sustains exceptional performance in
long-term predictions by accurately identifying cyclical solar power generation patterns and adjusting to times of significant fluctuation.
The enhanced design also augments the model's resilience to changes in solar power generation caused by weather, facilitating the
development of solar power forecasting techniques. Future research may concentrate on enhancing the GRU-LSTM architecture by
integrating supplementary features and examining intricate meteorological factors to maximize its performance across various areas
and temporal contexts.
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