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Abstract 

 

Accurate identification and classification of medical images are pivotal in recent medical diagnostics. Despite considerable 

advancements in deep learning, current methodologies face challenges in capturing nuanced details, particularly from the perspective 

of interstitial lung diseases (ILDs). Moreover, there is a prominent gap in the investigation of integrating sophisticated image 

enhancement techniques, such as contrast-limited adaptive histogram equalization (CLAHE), and classification strategies leveraging 

convolutional neural networks (CNNs). This study proposes a novel methodology that synergistically combines the MufiNet-DCGAN 

approach to enhance image resolution and refine ILD classification. Through rigorous experimentation, our proposed method achieves 

commendable accuracy (98.75%), precision (98.01%), recall (98.63%), and F1 score (97.99%). These results underscore the potential 

of the proposed approach to advance medical diagnostics by furnishing robust tools for precise disease detection.  

 

Keywords: Contrast limited adaptive histogram equalization (CLAHE), Interstitial lung diseases (ILDs), Convolutional neural network 

(CNN), Deep Learning, MufiNet-DCGAN 

  

 

1. Introduction 

 

In modern clinical practice, acquiring high-quality and high-resolution medical images is essential. However, challenges such as 

recording time and equipment limitations often impact image spatial resolution. To overcome these challenges, super-resolution (SR) 

techniques have emerged as post-processing solutions to enhance medical image quality without incurring additional scanning expenses 

[1]. These techniques employ super-resolving algorithms to generate additional pixels based on low-resolution (LR) images and prior 

knowledge, thereby improving the resolution of LR images, which are considered degraded versions of high-resolution (HR) images. 

SR techniques are commonly classified as Single-Image Super Resolution (SISR) or Multi-Image Super Resolution (MISR), depending 

on the number of input and output images involved. 

In contrast to LR images, HR images exhibit intricate informational structures that are typically captured using sophisticated 

imaging equipment, leading to prolonged acquisition times and reduced signal-to-noise ratios [2]. This study aims to reconstruct HR 

images from LR counterparts using SR methods, thus circumventing the need for costly imaging equipment. Image SR represents a 

method to recover high-frequency information in LR images, thereby simplifying the image retrieval process by relying solely on LR 

images. However, achieving super-resolution remains challenging, particularly in medical imaging, where subtle anatomical details 

can provide valuable diagnostic insights [3]. For instance, in brain MRI scans, the microscopic features surrounding a tumour can 

facilitate the diagnosis of its growth rate and origin [4]. Similarly, in retinal imaging, precise identification of fine vessel structures 

aids in diagnosing vessel swelling, a hallmark of hypertensive retinopathy. Therefore, mitigating artefacts introduced by SR approaches 

is crucial to ensuring accurate medical image interpretation. 

Existing approaches to interstitial lung disease (ILD) classification often struggle to capture subtle features and patterns crucial for 

accurate diagnosis. Moreover, the scarcity of high-resolution medical images impedes precise ILD analysis and interpretation. This 

study addresses these challenges by introducing an integrated framework by merging advanced feature extraction and image generation 

techniques, thus enhancing both ILD classification and image quality. Through the synergistic combination of multiscale fusion 

residual network (MufiNet) and deep convolutional generative adversarial network (DCGAN) architectures, the study overcomes the 

limitations of conventional methods, offering a comprehensive solution for ILD analysis and super-resolution. The primary 

contributions to the proposed work include: 

 Introducing a novel hybrid approach that harnesses the strengths of the MufiNet architecture for feature extraction and the 

DCGAN framework for super-resolution images. 

 Training the generator network on LR images and MufiNet-derived attributes to generate high-quality, realistic HR images. 

 Employing a comprehensive set of performance metrics, including precision, accuracy, F1-score, recall, structural similarity 

index (SSIM), peak signal-to-noise ratio (PSNR), and mean-square error (MSE), to evaluate both the ILD classification model 

and the quality of SR images. 
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2. Background of the study 

 

2.1 Super-Resolution 

 

Super-resolution (SR) techniques aim to enhance the resolution of low-resolution (LR) images to produce high-resolution (HR) 

versions [5]. While LR images can be derived from downsampling HR images [6], restoring LR images to HR quality poses challenges, 

particularly in preserving fine details and sharp edges. Convolutional neural networks (CNNs) with deep learning have emerged as a 

promising approach for SR due to their capacity to model complex transformations [7]. Recent advancements in SR predominantly 

rely on CNNs for image and video enhancement [8]. However, current CNN-based SR methods often face issues related to perceptual 

quality and feature loss during training. Many exercise pixel-wise loss functions such as l2 to curtail mean squared error (MSE) and 

improve peak signal-to-noise ratio (PSNR) [9]. Nonetheless, these metrics may not adequately consider aesthetic quality, leading to 

visually inferior and blurred images. Generative adversarial networks (GANs), inspired by CNNs, have indicated remarkable 

performance in various computer vision tasks [10]. 

 

2.2 Generative Adversarial Networks (GANs) 

 

GANs play a pivotal role in the SR of medical images, leveraging LR-HR image pairs for training [11]. A typical GAN comprises 

a generator (G) and a discriminator (D). The generator learns to produce realistic images to deceive the discriminator and to distinguish 

between real and fake images. As training progresses, the generator improves output to fool the discriminator, resulting in realistic 

image generation [12]. This adversarial process leads to the generator producing images closely resembling real data, while the 

discriminator struggles to differentiate between real and generated samples. Figure 1 illustrates the architecture of a GAN. 

 

 
 

Figure 1 Architecture of GAN [13] 

 

Formula (1) shows the expression for the training of GAN  

 

minimax (D, G) = 𝔼x∼pdata(x)  [logD(x)] + 𝔼z−𝑝𝑧(𝑧)  [log (1 – D(G(z)))]                                                                                                (1) 

 

where x is the initial image, z is a vector of random values in d dimensions, and 𝑝𝑑𝑎𝑡𝑎(𝑥)and pz(z) are the probability distributions of 

x and z, respectively. The likelihood that the input is an image formed from pdata(x) is given by D(x) and the likelihood that it is 

generated from pz(z) is given by (1- D(G(z)). G is trained to fool D by decreasing log (1 – D(G(z)), while D is trained to raise the 

correct response. 

 

2.3 Deep Convolutional Generative Adversarial Network (DCGAN) 

 

In 2015, Radford et al. introduced DCGAN, an extension of GAN that utilizes CNNs for unsupervised training [14]. DCGAN 

enhances the training of the generator network by leveraging CNN's feature extraction capabilities. The generator network comprises 

several layers, including 2D transposed convolutional layers (fractionally-strided convolutions) to up-sample the noise vector into a 

recognizable image. Batch normalization is applied to each layer for training stability, except for the output layer. The discriminator, 

exposed to both real and fake images during training, learns to differentiate between them, driving the generator to produce more 

realistic outputs over time. Figure 2 showcases the architecture of the DCGAN generator, and Figure 3 depicts the architecture of the 

DCGAN discriminator. 

 

 
 

Figure 2 Architecture of DCGAN Generator [14, 15] 
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Figure 3 DCGAN Discriminator Architecture [14] 

 

2.4 Super-Resolution Convolutional Neural Network (SRCNN) 

 

SRCNN [16] was the first deep learning approach introduced for single-image super-resolution (SR). It employs a straightforward 

three-layer convolutional neural network to establish a direct mapping between low-resolution (LR) and high-resolution (HR) images. 

The input image undergoes bicubic interpolation before entering the network to match the HR image size. The first layer extracts small 

patches and image features, the second layer applies a non-linear transformation to these features, and the final layer reconstructs the 

high-resolution output. However, increasing the number of layers does not necessarily enhance performance due to the gradient 

vanishing issue. 

 

2.5 Fast Super-Resolution Convolutional Neural Network (FSRCNN) 

 

FSRCNN [17] builds upon SRCNN by eliminating the bicubic interpolation step, thereby reducing computational cost and 

improving processing speed. The network is structured into five main components: feature extraction, shrinking, mapping, expanding, 

and deconvolution. The shrinking layer before the mapping step compresses the feature dimensions to simplify processing, while the 

expanding layer afterward refines details for improved HR image generation. A key improvement in FSRCNN is the deconvolution 

layer, which allows direct learning of the transformation from LR to HR without resizing the input first. This results in both faster 

processing and enhanced image quality compared to SRCNN. 

 

2.6 Very Deep Super-Resolution Convolutional Networks (VDSR) 

 

VDSR [18] takes a different approach by significantly increasing network depth, using a 20-layer structure with small convolutional 

filters to expand the receptive field. Training deep networks can be challenging due to slow convergence, so VDSR incorporates 

residual learning, where the network focuses on predicting the difference between LR and HR images. This approach allows for faster 

training with higher learning rates. The input images require bicubic interpolation, and zero-padding ensures that feature maps remain 

the same size, leading to better performance, particularly at image edges. Experiments indicate that using 12 filters per layer is adequate 

for reconstructing images of space objects. 

 

2.7 Deeply-Recursive Convolutional Networks (DRCN) 

 

DRCN [19] introduces the concept of deep recursive layers to improve SR performance while maintaining a relatively low number 

of parameters. Unlike traditional deep networks, where each layer has its own parameters, DRCN shares parameters across multiple 

recursive layers, making the model more efficient. The final output is derived from a weighted combination of multiple recursive 

layers. Similar to VDSR, bicubic interpolation is applied before inputting the image into the network. While deeper recursion can lead 

to better results, experiments suggest that using more than five recursive layers provides little additional improvement when 

reconstructing space object images. 

 

3. Literature review 

 

The study conducted by Hwang et al. [20] aimed to improve the accuracy and consistency of ILD evaluation through computed 

tomography (CT) image conversion using a routable generative adversarial network (RouteGAN). They assessed the impact of CT 

image conversion on ILD quantification across various scan settings and manufacturers. The study included ILD patients who 

underwent thin-section CT scans, and a RouteGAN was utilized to standardize CT images from different acquisition conditions. The 

results showed that CT conversion using RouteGAN enhanced accuracy and consistency in quantifying ILD, particularly for total 

abnormalities and specific features like fibrosis score, honeycombing, and reticulation. 

Shamrat et al. [21] proposed a novel approach for diagnosing various lung diseases using a neural network algorithm. They focused 

on classifying 14 lung conditions from the ChestX-ray14 dataset and employed a fine-tuned MobileLungNetV2 framework. Pre-

processing techniques such as CLAHE for contrast enhancement and Gaussian Filter for denoising were applied. The study achieved 

an exceptional classification accuracy of 96.97% with MobileLungNetV2, demonstrating high precision, recall, and specificity scores. 

Pawar and Talbar [22] introduced a unique two-stage hybrid method for ILD classification using high-resolution computed tomography 

(HRCT) images. Their approach integrated a conditional generative adversarial network (c-GAN) with multiscale features for accurate 

lung segmentation and a pre-trained ResNet50 for feature extraction. This led to significant enhancements in accuracy without manual 

region of interest (ROI) extraction. The study achieved impressive results, including a peak accuracy of 94.65% for healthy cases and 

an accuracy of 84.12% for the consolidation class. 

Teramoto et al. [23] presented an innovative deep-learning approach for classifying various idiopathic interstitial pneumonia (IIP) 

types, emphasizing the distinction between idiopathic pulmonary fibrosis (IPF) and other pneumonia types [19]. They utilized a two-

step training strategy with a progressive growth generative adversarial network (PGGAN) to generate synthetic IIP images alongside 

real ones, achieving promising results in IPF detection with different CNN models. David et al. [24] proposed a hybridized method 
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combining local binary pattern (LBP) and histogram of oriented gradients (HOG) feature extraction with a CNN for accurate 

classification of medical images, particularly for diseases like COVID-19. They achieved high accuracy, precision, and recall rates, 

highlighting the potential of GANs in generating high-resolution medical images for accurate diagnosis. 

Chao et al. [25] addressed the need for high-resolution medical imaging through a novel approach of fusing two orthogonal CT 

planes and employing SR modelling on a third plane. Their method consistently outperformed other resolution enhancement methods, 

demonstrating potential clinical and research applications for improving image quality for CT scans. Ma et al. [26] emphasized the 

significance of early detection of lung diseases through medical imaging using artificial intelligence and deep learning techniques. 

They discussed the application of deep learning approaches for diagnosing various lung infections, highlighting the potential of artificial 

intelligence (AI) in enhancing accuracy in detecting and classifying lung infections. Wang et al. [27] proposed a three-phase automated 

system for pneumonia diagnosis using chest X-rays, demonstrating improved accuracy and potential for further enhancements. Gu et 

al. [28] introduced a deep learning-based approach, named Medical Images SR using GANs Adversarial Networks (MedSRGAN), for 

medical image SR, showcasing improved texture preservation and realism in SR images. Kim et al. [29] explored the potential of 

DCGANs for generating high-resolution medical images from low-resolution ones, demonstrating improved image quality and lesion 

complexity in breast MRI. Deepak and Ameer [30] utilized deep learning techniques for brain tumour characterization in a computer-

aided diagnosis (CAD) system, demonstrating improved performance of classifiers to balance accuracy scores. Baur et al. [31] 

successfully generated high-resolution, realistic images of skin lesions using GANs, addressing the class imbalance in skin lesion 

classification through synthesized high-resolution melanoma samples.  

Han et al. [32] demonstrated the capability of GANs to generate realistic medical images, particularly multi-sequence brain 

magnetic resonance (MR) images, showcasing the potential clinical applications of GAN-based image generation in medical imaging. 

Chen and Tong [33] investigated the application of Wasserstein distance as a training objective for GANs, particularly focusing on 

Single Image Super-Resolution (SISR), and highlighted the stability and effectiveness of Wasserstein GAN in training progress 

assessment. 

The work by Al-Mekhlafi and Liu [34] in single image super-resolution (SISR) has been driven by deep learning, particularly 

CNNs, which effectively reconstruct high-resolution images. The team also analysed the role of Generative Adversarial Networks 

(GANs) and attention mechanisms in improving image quality by capturing finer details. Other major findings of the work include the 

significance of knowledge distillation techniques in helping to optimize SR models, making them more efficient without losing 

accuracy, the important applications of SISR in medical imaging, satellite imagery, and security monitoring, where high-resolution 

images are essential. However, challenges like preserving high-frequency details and reducing computational complexity remain.  

 

4. Materials and methods 

 

The proposed methodology, outlined in Figure 4, delineates a systematic workflow for accurate diagnosis of ILDs leveraging a 

fusion of computational techniques. Initiating with low-resolution CT images, the process traverses through an integrated architecture 

combining MufiNet and DCGAN. Within this architectural framework, the initial low-resolution images undergo a transformative 

journey culminating in the generation of high-resolution CT counterparts. The sophisticated MufiNet-DCGAN architecture facilitates 

this pivotal enhancement step. Subsequently, the high-resolution CT images are subjected to feature extraction leveraging the prowess 

of ResNet-50, a pre-trained convolutional neural network (CNN) esteemed for its feature extraction capabilities. 

The output of ResNet-50 manifests as a feature vector, encapsulating intricate attributes extracted from the high-resolution images. 

This feature vector is a bridge, facilitating seamless integration between the enhanced image data and the subsequent ILD classification 

task. The classification is executed precisely through a support vector machine (SVM) classifier compared with the other classifier, 

thereby enabling accurate diagnosis of ILD conditions. In the SVM classifier, kernel functions help transform the input data into a 

higher-dimensional space, making it easier to separate classes using a straight line or hyperplane. To analyse complex patterns, the 

common kernel functions considered in this study, are the polynomial kernel and radial basis function (RBF) kernel functions. The 

other parameters of SVM that are considered in this work are regularization parameter, kernel coefficient (gamma) for polynomial & 

RBF kernels, degree and tolerance. 

 

 
 

Figure 4 Architecture of the proposed approach 
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4.1 Dataset overview 

 

The database contains lung CT scan images, collected from KIMS Hospital in Thiruvananthapuram, Kerala, India. It focuses mainly 

on treating interstitial lung diseases, including idiopathic pulmonary fibrosis, sarcoidosis, lymphangioleiomyomatosis, and 

hypersensitivity pneumonitis. The data were collected from July 2023 to December 2023 and included the scanning of 500 patients 

between the ages of 18 and 85 years; there was an approximately equal representation of about 60% male and 40% female among the 

patient population, typical of the region's diverse ethnic representation. Additionally, to ensure robust model evaluation, a standard 9:1 

split is applied to divide the dataset into training and testing subsets. 

The CT scans were acquired on a Siemens SOMATOM Definition AS scanner, using a tube voltage of 120 kVp, tube current of 

200 mA, and slice thickness of 1 mm. Images were reconstructed using an iterative reconstruction algorithm, with a field of view 

(FOV) set at 350 mm. All relevant scans are in digital imaging and communications in medicine (DICOM) format and stored in the 

picture archiving and communication system (PACS). The annotations were carried out by the team of radiologists and pulmonologists 

from KIMS Hospital diligently, using home-developed software compatible with DICOM. 

This clinical research maximally respects ethical considerations. Informed written consents were obtained from the patients and, 

wherever applicable, had patient-identifiable particulars and images expunged to protect their privacy. It was first approved by the 

hospital's Institutional Review Board: KIMS Hospital.  

 

4.2 Preprocessing and data augmentation 

 

Preprocessing of the collected CT images precedes their utilization in the model. This preprocessing involves the application of 

CLAHE to enhance contrast and detail within the images. Additionally, cropping techniques are employed to isolate and focus on the 

relevant lung regions affected by ILD. These preprocessing steps aim to enhance the discriminatory features within the images, thus 

facilitating more effective training of the subsequent classification model. Furthermore, to augment the diversity and robustness of the 

dataset, various augmentation techniques are applied. These techniques encompass operations such as flipping, scaling, and rotating 

the images. However, to maintain the integrity of ILD characteristics, transformations that may distort the shape of the images, such 

as shearing, are deliberately excluded. Figure 5 and Figure 6 provide the visualisation of proposed preprocessed and augmented images 

respectively. By amalgamating these preprocessing and augmentation techniques, the dataset is meticulously prepared to ensure optimal 

training efficacy and robustness of the subsequent ILD classification model. 

 

4.3 Proposed methodology 

 

The integration of MufiNet and DCGAN in this study introduces innovative advancements in image processing, particularly in 

enhancing the quality of medical images for the diagnosis of ILDs. The overall framework of the proposed MufiNet-DCGAN network 

is illustrated in Figure 7. 

 

4.3.1 Architecture of the MufiNet DCGAN 

 

MufiNet serves as a crucial component in the fusion of LR and HR CT images [35]. LR CT images provide information about the 

overall lung structure, while HR CT images offer details about fine lung structures. The fusion process in MufiNet integrates these 

complementary sources of information to generate super-resolved CT images that preserve both overall structure and fine details. 

 

 
 

Figure 5 Preprocessed images 

Original CT               Original CT               Original CT                Original CT               Original CT                Original CT 

Enhanced CT             Enhanced CT            Enhanced CT             Enhanced CT             Enhanced CT             Enhanced CT 

Cropped                     Cropped                      Cropped                     Cropped                    Cropped                     Cropped 

Enhanced &               Enhanced &               Enhanced &               Enhanced &              Enhanced &              Enhanced & 
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Figure 6 Augmented images 

 

 
 

Figure 7 Architecture of the MufiNet – DCGAN 

 

MufiNet comprises two main modules: the feature fusion module and the residual learning module. The feature fusion module 

extracts feature from both LR and HR images and merges them through concatenation and fully connected layers. This merged feature 

set retains crucial details from both sources, enhancing the diagnostic potential of ILD images. Meanwhile, the residual learning 

module, presented in Figure 8, enhances the quality of reconstructed images by learning the difference between LR and HR images. 

Through a series of convolutional layers, this module removes noise and artefacts, contributing to the generation of high-quality 

reconstructed images.  

For the classification of ILD, SR CT lung images serve as input, and the output is the corresponding ILD class label [36]. The 

process involves enhancing lung regions within HR CT images and extracting features for classification using a memory-efficient 

classifier. ResNet50, a pre-trained CNN, effectively extracts deep features from SR images, aiding in classification tasks. 

Based on the "fit class error-correcting output codes (fitcecoc)" function, the classifier utilizes deep features extracted by ResNet50 

for multi-class error-correcting output. This approach leverages diverse deep features to accurately classify different ILDs, contributing 

to a robust and precise diagnosis. Overall, the integrated MufiNet-DCGAN architecture, coupled with ResNet50 and classifiers, offers 

a comprehensive and efficient framework for enhancing medical images and accurately diagnosing ILDs. 
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Figure 8 Multi-scale fusion residual block 

 

5. Results and discussion 

 

5.1 System specifications 

 

The experiments were conducted on a machine equipped with an Intel Core i7 processor, 16GB RAM, and an NVIDIA GeForce 

GTX 1080Ti GPU. Google Colab, a cloud-based platform, facilitated efficient deep-learning model training by providing access to 

high-performance GPUs. The implementation of the MufiNet-DCGAN architecture was carried out using Python, leveraging popular 

deep-learning libraries such as TensorFlow and Keras.  

Hyperparameters, the essential settings predefined before training a machine learning model, played a pivotal role in guiding the 

learning process. Their values were fixed throughout training and were predefined as shown in Table 1. 

 

Table 1 List of hyperparameters. 

 

Hyperparameters Values 

Batch size 32 

Learning rate 0.001 

Dropout 0.2 

Optimizer Adam 

Epochs 280 

Activation ReLU 

Loss function Categorical cross-entropy 

 

5.2 Data Specifications 

 

The complete acquired dataset consisted of a total of 4100 images, and we have divided it into training and testing sets in a 9:1 

ratio. Thus, there would be 3690 training samples and 410 test samples in the dataset. The distribution of each class among the four 

classes is provided in Table 2. 

 

Table 2 Distribution of samples among train and test sets. 

 

Class Name Train Samples Test Samples 

IPF 909 101 

Sarcoidosis 927 103 

LAM 925 105 

Hypersensitivity Pneumonitis 909 101 

 

5.3 Evaluation protocol 

 

We have utilized different evaluation methods to ensure the effectiveness of our proposed system. We have used performance 

metrics such as accuracy, precision, recall and f-measure to assess the robustness of the proposed classification methodology. 

Additionally, in the case of the SR technique, image comparison techniques such as PSNR, SSIM along MSE have been examined. 

The equations of all metrics used are given in the equations (2)-(8). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
                                                                      (2) 

Input 

Output 

BN 

relu 

3x3 conv 

3x3 conv 

3x3 conv 
1x1 conv 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
                                                                      (3) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
                                                                                      (4) 

 

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =  
2

(1
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⁄ +1

𝑅𝑒𝑐𝑎𝑙𝑙⁄ )
                                                                               (5) 

 

Where true positives are the number of correctly predicted positive samples, true negatives are the number of correctly predicted 

negative samples, false positives are the samples incorrectly predicted as positive and false negatives are the samples incorrectly 

predicted as negative class. 

 

𝑀𝑆𝐸 =  
∑ (𝑥𝑖−𝑦𝑖)2𝑛

𝑖=1

𝑛
                                                                              (6) 

 

𝑃𝑆𝑁𝑅 = 10. 𝑙𝑜𝑔10(
max (𝑥)2

𝑀𝑆𝐸
⁄ )                                                                       (7) 

 

𝑆𝑆𝐼𝑀 =  
(2𝜇𝑥𝜇𝑦+𝑐1)+(2𝜎𝑥𝑦+𝑐2)

(𝜇𝑥
2+𝜇𝑦

2+𝑐1)(𝜎𝑥
2+𝜎𝑦

2+𝑐2)
                                                                              (8) 

 

where x and y are pixel values in their corresponding images, µ refers to the mean value, σ refers to the covariance and c are variables. 

 

5.4 Super-Resolution of images 

 

To deceive the discriminator initially, a matrix of uniform plane values was assigned as presented in Figure 9, establishing a 

baseline for the generator to produce images. As training progressed, the generator refined its ability to create images that successfully 

fooled the discriminator, resulting in more realistic and accurate images. This iterative process enabled the generator to learn and 

capture complex features and patterns specific to ILDs. 

 

 
 

Figure 9 Initial grid of plane values for discriminator deception 

 

Subsequently, the model underwent a training process spanning 280 epochs, with careful monitoring of its progression. At epoch 

1, the generator's loss was typically high, reflecting its struggle to produce coherent and realistic images. The resolution of input at 

epoch 1 is shown in Figure 10. Conversely, the discriminator's loss was lower, indicating its capability to differentiate between real 

and generated images. As training progressed, both losses evolved, ideally converging to equilibrium, where the generator effectively 

produced images that deceived the discriminator with increased proficiency. Figures 11 and 12 present insightful visualizations of the 

evolution of both the generator and discriminator losses at two distinct epochs. 

 

 
 

Figure 10 Resolution of the image at epoch 1 
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Figure 11 Loss of the framework at epoch 1 

 

 
 

Figure 12 Loss of the framework at epoch 280 

 

Figure 13 presents a comparative evaluation of image quality metrics for different images. The results underscored the positive 

impact of the proposed super-resolution technique on image quality. The consistent increase in PSNR and SSIM values, coupled with 

the decrease in MSE values, highlighted the successful enhancement of images, imperative for accurate diagnosis and interpretation of 

ILDs. Table 3 presents a comparison of our methodology against existing models. 

 

 
 

Figure 13 Performance evaluation of super-resolution images 

 

Table 3 Performance comparison 

 

Method PSNR 

MedSRGAN+  31.70 

SRCNN 31.88 

FSRCNN 32.62 

VSDR 32.74 

DRCN 32.91 

DCGAN LR and HR Pre and Post  33.13 

Proposed  34.08 
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5.5 ILD Classification 

 

In the preceding sections, the deployment of deep learning techniques for the super-resolution enhancement of low-resolution CT 

images of ILDs was discussed, enhancing the visual quality and diagnostic potential of the images. Building upon this foundational 

enhancement, the focus shifted to the subsequent step in the study: the classification of ILDs using enriched and enhanced images. The 

loss and accuracy is identified using the training and testing data set as shown in Figure 14.  

 

 
 

Figure 14 Accuracy and loss plots 

 

Additionally, the proposed approach provides the confusion matrix in Figure 15 along with a comparison graph of the obtained 

performance metrics in Figure 16. 

 

 
 

Figure 15 Confusion matrix obtained 

 

 
 

Figure 16 Comparison of different performance metrics. 
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6. Conclusion 

 

The study presents a comprehensive exploration of deep learning methodologies tailored to enhance medical image quality and 

facilitate precise disease diagnosis, specifically focusing on ILDs. By integrating advanced techniques such as super-resolution using 

the MufiNet-DCGAN architecture, the research endeavours to bridge the gap in capturing nuanced details essential for accurate medical 

diagnostics. Through rigorous experimentation and evaluation, the proposed framework demonstrates commendable performance 

metrics, including high accuracy, precision, recall, and F1 score, underscoring its potential to advance medical diagnostics. Overall, 

this research represents a significant stride towards enhancing medical imaging techniques and refining disease classification 

methodologies, thereby furnishing robust tools for precise disease detection and improved patient care.  

 

7. Novelty and Future Enhancement 

 

The novelty of this study lies in proposing the use of SR image generation specifically for ILD classification, which, to our 

knowledge, has not been extensively applied to this particular medical imaging problem. While SR techniques have been utilized in 

other medical image classification problems, their application to ILDs presents a unique challenge and opportunity. Additionally, the 

use of a different GAN and CNN architecture, specifically the MufiNet-DCGAN, distinguishes this work from current methods applied 

for ILD image classification. This innovative approach allows for enhanced image resolution and better feature extraction, which are 

crucial for accurate diagnosis. 

While the current study achieved promising results in super-resolution enhancement and ILD classification, there are opportunities 

for future research and enhancements. Future research can improve the limitations of the proposed methodology, such as high 

computational cost and the risk of overfitting for better outcome and complex diagnosis of ILDs. Further investigation into alternative 

architectures, dataset augmentation techniques, and optimization strategies could potentially enhance the robustness and generalization 

capability of the proposed framework. 
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