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Abstract 

 

Accurate non-destructive assessment of biomass energy properties is essential for optimizing its use as an alternative fuel. In this study, 

200 biomass samples were used to determine higher heating value (HHV) and 120 biomass samples for analyzing ultimate analysis 

parameters using near-infrared spectroscopy within the full wavenumber range of 12489.48 – 3594.87 cm-1. The samples were 

grounded, and five different types of partial least squares regression (PLSR) models were developed using traditional preprocessing, 

multi-preprocessing (MP) with 5 range, MP with 3 range, genetic algorithm, and successive projection algorithm. Limit of detection 

(LOD) and quantification (LOQ) were calculated using the best-performing model among five different PLSR models for HHV in 

kJ/kg, as well as the weight percentage (wt.%) of carbon (C), oxygen (O), hydrogen (H), and nitrogen (N). The LOD and LOQ for 

HHV were calculated as 622.42 kJ/kg and 1886.13 kJ/kg, respectively. Additionally, LOD and LOQ for ultimate analysis parameters, 

including C, O, H, and N were calculated as: 3.24 weight percentage (wt.%) and 9.81 wt.% for C, 2.04 wt.% and 6.18 wt.% for O, 0.35 

wt.% and 1.05 wt.% for H, and 0.22 wt.% and 0.68 wt.% for N. The LOD and LOQ values for HHV, C, O, and H were lower than the 

minimum reference values used for model development, demonstrating the models’ high sensitivity and potential to reliably detect and 

precisely quantify these parameters. However, the LOD and LOQ values exceeded the minimum reference value used during model 

development for the N, indicating that the selected models have certain limitations in assessing the N content in biomass. The sample 

range should be expanded for wt.% of N to enhance the model’s performance, surpassing the LOD and LOQ values. This will improve 

the overall sensitivity of the model for reliable detection and quantification of N content in biomass samples. 
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Abbreviations 

 

% Percentage O Oxygen 

A Ash content PLSR Partial least squares regression 

C Carbon R2
C Coefficient of determination of training set 

FT Fourier transform R2
P Coefficient of determination of testing set 

GA Genetic algorithm RPD Ratio of prediction to deviation 

H Hydrogen S Sulfur 

HHV Higher heating value SD Standard deviation 

LOD Limit of detection Sc Slope of the regression line from training set 

LOQ Limit of quantification RMSEC Root mean square error of training set 

LVs Number of latent variables RMSEP Root mean square error of testing set 

Mean Average SNV Standard normal variate 

MSC Multiplicative scatter correction SPA Successive projection algorithm 

MP Multi-preprocessing sd1 First derivative 

N Nitrogen sd2 Second derivative 

Nc Number of sample in training set σC  Standard deviation of residual of training set 

NIRS Near infrared spectroscopy wt.% Weight percentage 
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1. Introduction 

 

Biomass, derived from organic matter such as wood, crops, and waste, is a renewable energy source with the potential to mitigate 

greenhouse gas emissions and enhance energy security [1]. Due to its ability to be replenished relatively quickly, biomass is considered 

a sustainable energy source [2]. In recent years, biomass has gained significant attention as a renewable energy option, offering 

extensive applications in cooking, heating, electricity generation, transportation, agriculture waste management, and industrial 

processes [3, 4]. However, biomass can be challenging to handle due to its energy properties, including HHV, proximate analysis 

parameters (moisture content, volatile matter, fixed carbon, ash content), and ultimate analysis parameters C, H, N, S and O [5], which 

can vary based on factors such as biomass type, harvesting conditions, storage conditions, and during transportation [6]. The fluctuating 

quality of biomass feedstocks can significantly affect their suitability for efficient energy conversion [7].  

The HHV is a crucial characteristic of biomass fuel as it is mainly used to calculate combustion efficiency and the amount of energy 

that can be generated by the fuel [8]. Carbon, the primary component of biomass, serves as the main energy source during combustion. 

The carbon content can vary depending on the biomass type, but it typically ranges around 50% [9]. Oxygen, the second most prevalent 

element in biomass, plays a significant role in the combustion process [10]. The oxygen content in biomass can vary, but it is typically 

around 40%. Hydrogen, the third most prevalent element in biomass, is an important component of many biofuels. In addition to its 

clean-burning properties, hydrogen can be utilized for heat and electricity generation. Evaluating the feasibility of hydrogen production 

from biomass requires determining the hydrogen content within the biomass [11]. The amount of hydrogen in biomass varies depending 

on the type but is typically around 6%. Nitrogen, despite being a minor component in biomass, has an impact on both combustion 

efficiency and emissions during combustion. The nitrogen content in biomass can vary, typically ranging between 1% and 2% [12]. 

Biomass also contains sulfur (S) in quantities less than 1%. Even in small amounts, sulfur can contribute to emissions such as sulfur 

dioxide [13]. Therefore, the fast and precise prediction of biomass energy properties is crucial for the effective and efficient utilization 

of biomass resources.  

NIRS, a fast, reliable, and non-invasive method, has been widely utilized for quality control purposes in various biomass 

applications. It enables the rapid and accurate  assessment of important parameters such as HHV, proximate and ultimate analysis 

parameters [14]. This technique offers improved prediction accuracy models, thereby facilitating efficient and precise characterization 

of biomass properties.  

In our prior research, we conducted a thorough evaluation of ground biomass characteristics for energy applications. We employed 

NIRS and spectral multi-preprocessing methods to enhance the performance of a PLSR model, specifically focusing on predicting 

HHV and parameters related to ultimate analysis [15]. However, to comprehensively evaluate the sensitivity of the selected NIR-based 

models, it is essential to assess two key parameters: the LOD and the LOQ [16]. In NIRS, the calculation of LOD and LOQ is influenced 

by factors such as the type of analyte, the instrument used, and the employed method [17]. These parameters are important in NIR 

modeling as they determine the minimum detectable and quantifiable concentration of the substance being measured, ensuring reliable 

predictions. LOD and LOQ play a vital role in regression analysis by ensuring the validity of analysis findings [18]. They enhance the 

model’s reliability by minimizing false positives and negatives, enabling effective comparison of results across various analyses. 

Additionally, LOD and LOQ ensure data quality by establishing limits for allowable substance concentrations in samples. This further 

improves the usefulness of these measures in selecting the optimal training range. 

To our knowledge, no research has been reported regarding the calculation of LOD and LOQ for HHV and the ultimate analysis 

parameter of ground biomass. Therefore, the main objectives of this research were to assess the LOD and LOQ based on the 

performance of the best training model for HHV and the ultimate analysis parameters to improve the model sensitivity.  

 

2. Materials and methods 

 

2.1 Samples 

 

The commonly used biomass samples from fast-growing trees (5) and agricultural residues (5) were collected from various 

locations in Nepal. The samples included: 1) Alnus nepalensis, 2) Pinux roxiburghii,  3) Bombusa vulagris, 4) Bombax ceiba,  5) 

Eucalyptus camaldulensis, 6) Zea mays (cob), 7) Zea mays (Shell), 8) Zea mays (stover), 9) Oryza sativa, and 10) Saccharum 

officinarun. In this study, 200 biomass samples were used to develop a PLSR-based models for HHV, while 120 biomass samples were 

used for the ultimate analysis parameters [15]. Each sample varieties were grounded and scanned using FT-NIRS, and its HHV was 

measured using bomb calorimeter. Similarly, the ultimate analysis parameters, wt.% of C, H, N, and S, were measured using the 

CHNS/O analyzer. The wt.% of O was calculate as a difference from wt.% of C, H, N, S and A [19]. Here, the wt.% of A is measured 

employing a thermogravimetric analyzer (TG 209 F3 Tarsus, Netzsch, Bavaria, Germany).  

 

2.2 Instrument 

 

FT-NIRS (MPA, Bruker, Ettlingen, Germany) was used to log the spectral absorbance data of ground biomass samples in 

transflectance mode within a wavenumber range of 12489.48 – 3594.87 cm-1 [15]. Figure 1 illustrates the representative particle size 

distribution of the ground biomass, covering a range from 0.01 to 3080 µm. The ground biomass was placed up to a height of 10 mm 

inside a glass vial with a diameter of 20 mm and a height of 48 mm for scanning the samples in a controlled laboratory environment at 

25±2 oC. Although the amount of ground biomass sample used for scanning in the tranflectance mode is small, the variation of the 

constituent is less, and light is diffuse in the homogenous ground biomass, allowing for better penetration and diffusion to obtain high-

quality spectra. Each sample underwent two scans, and the resulting average value was used for the model development.  
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Figure 1 Representative particle size distribution of the ground biomass ranging from 0.01 to 3080 µm. 

 

A bomb calorimeter (IKA C 200, Germany) was used to measure the HHV, and the CHNS/O elemental analyzer (Thermo 

ScientificTM FLASH 2000) was used to measure wt.% of the ultimate analysis parameters. The HHV was measured in kJ/kg, while 

the ultimate analysis parameters were measured as wt.%. The reference parameters for each biomass sample were measured twice, and 

their average were regarded as the reference values for the model development. The CHNS/O elemental analyzer did not detect the S 

content in the grounded biomass samples. Therefore, the sulfur content has not been taken into account for the calculation of LOD and 

LOQ in this study.  

 

2.3. Spectral preprocessing and model development 

 

 After logging spectral data (independent variable) and their respective reference data (dependent variable), the total data set for 

each evaluating parameter is prepared to develop a training model. First, outliers were calculated from the entire dataset as follows: 

 
(Xi−X̅)

SD
≥ | ± 3|                                                                                                                                                                   (1) 

 

Where Xi represents the measured value of sample i, while X̅ and SD denote the average and standard deviation of the measured 

values of all samples [20]. 

If equation (i) is satisfied, a sample is considered an outlier and is removed from the dataset. After the removal of outliers, the total 

dataset is manually divided into a training set (80%) and a testing set (20%) to develop a model. The training set includes samples 

incorporating both the highest and lowest reference values to facilitate model development.  

PLSR, recognized as a leading regression technique for NIR data analysis, is highly effective in developing calibration models due 

to its ability to handle the data’s multi-collinearity and high dimensionality [21-25]. Therefore, this study developed five different types 

of PLSR-based models, which are as follows: 

1. Full wavenumber-PLSR  

2. MP-PLSR – 3 range method 

3. MP-PLSR – 5 range method 

4. GA-PLSR  

5. SPA-PLSR  

Full wavenumber PLSR is a conventional approach for developing PLSR models. It involves preprocessing the spectra using a 

single preprocessing technique applied across the entire wavelength range. Before model development, the spectral data were pretreated 

using following preprocessing techniques, and individual models were developed for each technique: 1) sd1, 2) sd2, 3) constant offset, 

4) SNV, 5) MSC, 6) vector normalization, 7) min-max normalization, 8) mean centering, 9) sd1 + vector normalization, and 10) sd1 + 

MSC. The training model is then developed using raw spectra and each preprocessing technique and is validated using a testing set. In 

contrast, the MP technique, a new approach [15], divides the full wavelength range into distinct sections. For example, in the five-

range method, the full wavenumber range is divided into five segments, and in the three-range method, it is divided into three segments. 

Each section is subjected to preprocessing using a combination set of 5 for the 5 range method and 3 for the 3 range method from 7 

different preprocessing methods (codes: 0 = empty (all the absorbance values = 0), 1 = raw spectra, 2 = SNV, 3= MSC, 4= sd1, 5= sd2, 

and 6 = constant offset). For example, the combination set 3, 0, 1, 0, and 1 which corresponds to MSC, empty, raw, empty, raw for 5 

range method, signifies segmenting the entire spectral range into 5 equal segmentations and preprocessing them as follows: MSC from 

3625.72–5392.30 cm−1, empty from 5400.02–7166.59 cm−1, raw spectra from 7174.31–8940.89 cm−1, empty from 8948.60–10,715 

cm−1, and raw spectra10,722.9–12,489.48 cm−1. Similarly, for 3 range method, if the combination set is 4, 4, and 4 (i.e., sd1, sd1, and 

sd1), it signifies that the spectral spectrum is segmented into three segments and subjected to preprocessing using the sd1 for the 

segments 3594.87–5492.59 cm−1, 7498.31–5500.30 cm−1, and 7506.02–12,489.48 cm−1 [15]. Based on this combination set of 

preprocessing techniques, PLSR model were developed.  This approach aims to enhance model performance by incorporating various 

preprocessing techniques and their combinations across different wavelength regions. By leveraging this diverse preprocessing 

approach, the MP-PLSR model strives to create a more robust model. GA and SPA are two different optimization techniques that can 

effectively capture important wavenumbers while avoiding collinearity issues. GA-PLSR leverages the strengths of both GAs (ensuring 

maximum fitness) and PLSR (maximizing covariance between absorbance values and the target of interest) [26, 27]. On the other hand, 

SPA-PLSR carefully selects feature variables to mitigate redundancy and address collinearity issues. These optimization techniques 

are employed to select the important wavenumbers that are then used to develop a PLSR model [15]. 

Figure 2 shows the average raw spectrum of fast-growing trees and agricultural residues of Nepal’s ground biomass logged from 

FT-NIRS within the range of 12489.48 – 3594.87 cm-1. 
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Figure 2 The average raw spectra of the fast-growing trees and agricultural residues of Nepal grounded biomass spanning the range of 

12489.48 – 3594.87 cm-1 [15]. 

 

The accuracy of each model was assessed with the following specific parameters: 1) R2
C, 2) R2

P, 3) RMSEC, 4) RMSEP, 5) RPD, 

and 6) bias. These parameters were employed to evaluated and compare the models’ performance. There are several factors that need 

to be considered to optimize the model’s performance. All the instruments used for measuring the reference data should be regularly 

calibrated to minimize instrumental errors. The laboratory environment, mainly the temperature, should be kept constant throughout 

the NIR scanning of the biomass. Care should be taken to prevent leakage of NIR radiation as it leads to data loss. The sample should 

be as homogeneous as possible, and contamination during sample preparation should be avoided to reduce analysis errors as well. 

Additionally, it is important to properly identify outliers in the data to ensure accurate calibration. Outliers can significantly impact the 

performance of the model and should be carefully addressed and managed during data analysis. 

 

2.4 Limit of detection and limit of quantification  

 

The LOD refers to the lowest concentration of an analyte in a test sample set that can be reliably distinguished from background 

noise, but not necessarily quantified accurately. Similarly, the LOQ represents the lowest concentration of the analyte that can be both 

reliably detected and quantified with an acceptable level of accuracy and precision [28]. In this study, LOD and LOQ are calculated 

based on the standard deviation of the response to slope [29], as follows: 

 

LOD = 3.3 
𝜎𝐶

𝑆𝐶
                                                                                                                                                                                    (2) 

 

LOQ = 10 
𝜎𝐶

𝑆𝐶
                                                                                                                                                                                     (3) 

 

Where, 𝜎𝐶 is the residual standard deviation i.e., the error obtained from measured and predicted values of the training set and 𝑆𝐶 

is the slope of the regression line [30].  

 

3. Results and discussion  

 

In our previous study, we developed five different types of PLSR models for ground biomass and compared their performance to 

select the best model for a comprehensive assessment of  HHV and ultimate analysis parameters [15]. In this study, LOD and LOQ 

values were calculated from the best performance model, based on the standard deviation of the response to slope from the training set.  

Table 1 displays the analysis results of the reference parameters of the grounded biomass [15], providing an assessment of the LOD 

and LOQ for each parameter. The LOD and LOQ values for HHV from GA-PLSR were calculated as 622.42 kJ/kg and 1886.13 kJ/kg, 

respectively. Additionally, LOD and LOQ for ultimate analysis parameters, including C from GA-PLSR, O from the MP-PLSR- 5 

range method, H from GA-PLSR, and N from the MP-PLSR-5 range method were calculated as follows: 3.24 wt.% and 9.81 wt.% for 

C, 2.04 wt.% and 6.18 wt.% for O, 0.35 wt.% and 1.05 wt.% for H, and 0.22 wt.% and 0.68 wt.% for N. These values indicate the 

lowest concentration at which the reference parameters of the biomass can be reliably detected and precisely quantified. It is evident 

that the LOD and LOQ for all reference parameters, except the wt.% of N, are lower than the minimum value used for developing the 

models. This suggests that the selected model i.e., GA-PLSR for HHV, C, and H and the MP-PLSR- 5 range method for O has the 

potential to reliably detect and precisely quantify these parameters based on their corresponding LOD and LOQ values, indicating high 

sensitivity. However, the model predicting the N content, i.e., the MP-PLSR-5 range method in ground biomass, has limitations due to 

higher LOD (0.22) and LOQ (0.68) values compared to the minimum reference values used for model development. Hence, to ensure 

a reliable assessment of wt.% of N, it is essential to incorporate an adequate number of representative samples with predicted wt.% of 

N values surpassing the LOD and LOQ values. Additionally, considering alternative modeling methods for evaluating N content in the 

ground biomass would enhance the model sensitivity.  

The Sc of the regression line from the training set was found to be 1 for all the measuring parameters. This suggests the accuracy 

of the prediction of those constituents. A Sc value close to one indicate high accuracy in prediction, while a low σc of residual indicate 

the high precision of the model. A lower value of σc and a higher value of Sc result in the smaller values of LOD and LOQ, indicating 

higher sensitivity of the model.  

The coefficient of determination values obtained from the analysis demonstrate a strong correlation between the independent 

variables and their respective parameters. Specifically, GA-PLSR yielded an R2
C of 0.95 for HHV, 0.79 for C, and 0.88 for H in the 
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training set. The 5 range-PLSR model resulted in an R2
C of 0.89 for O and 0.86 for N in the training set. These findings highlight the 

high degree of relationships between the variables and their corresponding parameters.  

Figure 3 illustrates the comparison between the measured versus predicted values in the training set for various parameters: a) 

HHV (kJ/kg), b) wt.% of C, c) wt.% of O, d) wt.% of H, and e) wt.% of N. 

 

Table 1 Analysis result of the HHV and ultimate analysis parameters of the ground biomass for assessment of LOD and LOQ 

 
Reference value HHV Carbon Oxygen Hydrogen Nitrogen 

Unit kJ/kg wt.% wt.% wt.% wt.% 

Reference value range 14,682 - 18,616 38.4 - 48.0 46.26 - 54.36 4.95 - 6.48 0 - 0.83 

Algorithm GA-PLSR GA-PLSR MP-PLSR-5 range GA-PLSR MP-PLSR-5 range 

Preprocessing technique sd1 sd1 5, 0, 1, 0, 1 SNV 4, 4,4 

Nc 157 87 77 74 76 

Mean 17005 44.62 44.95 5.72 0.30 

SD 842 2.00 2.55 0.30 0.22 

LVs 14 9 14 14 10 

R2
C 0.95 0.79 0.67 0.88 0.86 

R2
P 0.96 0.72 0.63 0.77 0.84 

RMSEC 188.01 0.98 1.45 0.10 0.07 

RMSEP 170.33 0.97 1.53 0.14 0.10 

RPD 4.89 1.93 1.71 2.14 2.65 

bias -21.96 0.19 0.45 -0.0 -0.03 

𝜎𝐶 188.61 0.98 0.62 0.10 0.07 

𝑆𝐶 1.00 1.00 1.00 1.00 1.00 

LOD 622.42 3.24 2.04 0.35 0.22 

LOQ 1886.13 9.81 6.18 1.05 0.68 
 

 
Figure 3 Scatter plot of measured vs predicted values from the training set for: a) HHV, b) wt.% of carbon, c) wt.% of oxygen, d) wt.% 

of hydrogen, and e) wt.% of nitrogen. 
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4. Conclusions 

 

The results of this experiment show that the model has high sensitivity in detecting and quantifying parameters such as HHV in 

kJ/kg, wt.% of C, H, and O in grounded biomass. These results also establish a minimum threshold for detectability and quantifiability 

of these reference parameters. However, the LOD and LOQ for wt.% of N are higher than the minimum range value used during model 

development, indicating the necessity for modification to enhance its sensitivity by improving the prediction accuracy and precision. 

Therefore, to enhance the model’s effectiveness, it is advisable to expand the total dataset by including a wide range of representative 

samples, particularly considering the variations in nitrogen content within the biomass. Additionally, it is crucial to validate the selected 

models using unknown samples to ensure greater acceptance and reliability. These adjustments will contribute to an overall 

improvement in the model’s sensitivity.  
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