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Abstract

Accurate non-destructive assessment of biomass energy properties is essential for optimizing its use as an alternative fuel. In this study,
200 biomass samples were used to determine higher heating value (HHV) and 120 biomass samples for analyzing ultimate analysis
parameters using near-infrared spectroscopy within the full wavenumber range of 12489.48 — 3594.87 cm. The samples were
grounded, and five different types of partial least squares regression (PLSR) models were developed using traditional preprocessing,
multi-preprocessing (MP) with 5 range, MP with 3 range, genetic algorithm, and successive projection algorithm. Limit of detection
(LOD) and quantification (LOQ) were calculated using the best-performing model among five different PLSR models for HHV in
kJ/kg, as well as the weight percentage (wt.%) of carbon (C), oxygen (O), hydrogen (H), and nitrogen (N). The LOD and LOQ for
HHYV were calculated as 622.42 kJ/kg and 1886.13 kJ/kg, respectively. Additionally, LOD and LOQ for ultimate analysis parameters,
including C, O, H, and N were calculated as: 3.24 weight percentage (wt.%) and 9.81 wt.% for C, 2.04 wt.% and 6.18 wt.% for O, 0.35
wt.% and 1.05 wt.% for H, and 0.22 wt.% and 0.68 wt.% for N. The LOD and LOQ values for HHV, C, O, and H were lower than the
minimum reference values used for model development, demonstrating the models’ high sensitivity and potential to reliably detect and
precisely quantify these parameters. However, the LOD and LOQ values exceeded the minimum reference value used during model
development for the N, indicating that the selected models have certain limitations in assessing the N content in biomass. The sample
range should be expanded for wt.% of N to enhance the model’s performance, surpassing the LOD and LOQ values. This will improve
the overall sensitivity of the model for reliable detection and quantification of N content in biomass samples.
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HHV Higher heating value SD Standard deviation

LOD Limit of detection Sc Slope of the regression line from training set
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Mean Average SNV Standard normal variate

MSC Multiplicative scatter correction SPA Successive projection algorithm

MP Multi-preprocessing sd1 First derivative

N Nitrogen sd2 Second derivative
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1. Introduction

Biomass, derived from organic matter such as wood, crops, and waste, is a renewable energy source with the potential to mitigate
greenhouse gas emissions and enhance energy security [1]. Due to its ability to be replenished relatively quickly, biomass is considered
a sustainable energy source [2]. In recent years, biomass has gained significant attention as a renewable energy option, offering
extensive applications in cooking, heating, electricity generation, transportation, agriculture waste management, and industrial
processes [3, 4]. However, biomass can be challenging to handle due to its energy properties, including HHV, proximate analysis
parameters (moisture content, volatile matter, fixed carbon, ash content), and ultimate analysis parameters C, H, N, S and O [5], which
can vary based on factors such as biomass type, harvesting conditions, storage conditions, and during transportation [6]. The fluctuating
quality of biomass feedstocks can significantly affect their suitability for efficient energy conversion [7].

The HHV is a crucial characteristic of biomass fuel as it is mainly used to calculate combustion efficiency and the amount of energy
that can be generated by the fuel [8]. Carbon, the primary component of biomass, serves as the main energy source during combustion.
The carbon content can vary depending on the biomass type, but it typically ranges around 50% [9]. Oxygen, the second most prevalent
element in biomass, plays a significant role in the combustion process [10]. The oxygen content in biomass can vary, but it is typically
around 40%. Hydrogen, the third most prevalent element in biomass, is an important component of many biofuels. In addition to its
clean-burning properties, hydrogen can be utilized for heat and electricity generation. Evaluating the feasibility of hydrogen production
from biomass requires determining the hydrogen content within the biomass [11]. The amount of hydrogen in biomass varies depending
on the type but is typically around 6%. Nitrogen, despite being a minor component in biomass, has an impact on both combustion
efficiency and emissions during combustion. The nitrogen content in biomass can vary, typically ranging between 1% and 2% [12].
Biomass also contains sulfur (S) in quantities less than 1%. Even in small amounts, sulfur can contribute to emissions such as sulfur
dioxide [13]. Therefore, the fast and precise prediction of biomass energy properties is crucial for the effective and efficient utilization
of biomass resources.

NIRS, a fast, reliable, and non-invasive method, has been widely utilized for quality control purposes in various biomass
applications. It enables the rapid and accurate assessment of important parameters such as HHV, proximate and ultimate analysis
parameters [14]. This technique offers improved prediction accuracy models, thereby facilitating efficient and precise characterization
of biomass properties.

In our prior research, we conducted a thorough evaluation of ground biomass characteristics for energy applications. We employed
NIRS and spectral multi-preprocessing methods to enhance the performance of a PLSR model, specifically focusing on predicting
HHYV and parameters related to ultimate analysis [15]. However, to comprehensively evaluate the sensitivity of the selected NIR-based
models, it is essential to assess two key parameters: the LOD and the LOQ [16]. In NIRS, the calculation of LOD and LOQ is influenced
by factors such as the type of analyte, the instrument used, and the employed method [17]. These parameters are important in NIR
modeling as they determine the minimum detectable and quantifiable concentration of the substance being measured, ensuring reliable
predictions. LOD and LOQ play a vital role in regression analysis by ensuring the validity of analysis findings [18]. They enhance the
model’s reliability by minimizing false positives and negatives, enabling effective comparison of results across various analyses.
Additionally, LOD and LOQ ensure data quality by establishing limits for allowable substance concentrations in samples. This further
improves the usefulness of these measures in selecting the optimal training range.

To our knowledge, no research has been reported regarding the calculation of LOD and LOQ for HHV and the ultimate analysis
parameter of ground biomass. Therefore, the main objectives of this research were to assess the LOD and LOQ based on the
performance of the best training model for HHV and the ultimate analysis parameters to improve the model sensitivity.

2. Materials and methods
2.1 Samples

The commonly used biomass samples from fast-growing trees (5) and agricultural residues (5) were collected from various
locations in Nepal. The samples included: 1) Alnus nepalensis, 2) Pinux roxiburghii, 3) Bombusa vulagris, 4) Bombax ceiba, 5)
Eucalyptus camaldulensis, 6) Zea mays (cob), 7) Zea mays (Shell), 8) Zea mays (stover), 9) Oryza sativa, and 10) Saccharum
officinarun. In this study, 200 biomass samples were used to develop a PLSR-based models for HHV, while 120 biomass samples were
used for the ultimate analysis parameters [15]. Each sample varieties were grounded and scanned using FT-NIRS, and its HHV was
measured using bomb calorimeter. Similarly, the ultimate analysis parameters, wt.% of C, H, N, and S, were measured using the
CHNS/O analyzer. The wt.% of O was calculate as a difference from wt.% of C, H, N, S and A [19]. Here, the wt.% of A is measured
employing a thermogravimetric analyzer (TG 209 F3 Tarsus, Netzsch, Bavaria, Germany).

2.2 Instrument

FT-NIRS (MPA, Bruker, Ettlingen, Germany) was used to log the spectral absorbance data of ground biomass samples in
transflectance mode within a wavenumber range of 12489.48 — 3594.87 cm* [15]. Figure 1 illustrates the representative particle size
distribution of the ground biomass, covering a range from 0.01 to 3080 um. The ground biomass was placed up to a height of 10 mm
inside a glass vial with a diameter of 20 mm and a height of 48 mm for scanning the samples in a controlled laboratory environment at
25+2 °C. Although the amount of ground biomass sample used for scanning in the tranflectance mode is small, the variation of the
constituent is less, and light is diffuse in the homogenous ground biomass, allowing for better penetration and diffusion to obtain high-
quality spectra. Each sample underwent two scans, and the resulting average value was used for the model development.
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Figure 1 Representative particle size distribution of the ground biomass ranging from 0.01 to 3080 pm.

A bomb calorimeter (IKA C 200, Germany) was used to measure the HHV, and the CHNS/O elemental analyzer (Thermo
ScientificTM FLASH 2000) was used to measure wt.% of the ultimate analysis parameters. The HHV was measured in kJ/kg, while
the ultimate analysis parameters were measured as wt.%. The reference parameters for each biomass sample were measured twice, and
their average were regarded as the reference values for the model development. The CHNS/O elemental analyzer did not detect the S
content in the grounded biomass samples. Therefore, the sulfur content has not been taken into account for the calculation of LOD and
LOQ in this study.

2.3. Spectral preprocessing and model development

After logging spectral data (independent variable) and their respective reference data (dependent variable), the total data set for
each evaluating parameter is prepared to develop a training model. First, outliers were calculated from the entire dataset as follows:

Xi-X)
HX 213 @

Where Xi represents the measured value of sample i, while X and SD denote the average and standard deviation of the measured
values of all samples [20].

If equation (i) is satisfied, a sample is considered an outlier and is removed from the dataset. After the removal of outliers, the total
dataset is manually divided into a training set (80%) and a testing set (20%) to develop a model. The training set includes samples
incorporating both the highest and lowest reference values to facilitate model development.

PLSR, recognized as a leading regression technique for NIR data analysis, is highly effective in developing calibration models due
to its ability to handle the data’s multi-collinearity and high dimensionality [21-25]. Therefore, this study developed five different types
of PLSR-based models, which are as follows:

1. Full wavenumber-PLSR

2. MP-PLSR - 3 range method

3. MP-PLSR - 5 range method

4. GA-PLSR

5. SPA-PLSR

Full wavenumber PLSR is a conventional approach for developing PLSR models. It involves preprocessing the spectra using a
single preprocessing technique applied across the entire wavelength range. Before model development, the spectral data were pretreated
using following preprocessing techniques, and individual models were developed for each technique: 1) sdi, 2) sd2, 3) constant offset,
4) SNV, 5) MSC, 6) vector normalization, 7) min-max normalization, 8) mean centering, 9) sd1 + vector normalization, and 10) sd1 +
MSC. The training model is then developed using raw spectra and each preprocessing technique and is validated using a testing set. In
contrast, the MP technique, a new approach [15], divides the full wavelength range into distinct sections. For example, in the five-
range method, the full wavenumber range is divided into five segments, and in the three-range method, it is divided into three segments.
Each section is subjected to preprocessing using a combination set of 5 for the 5 range method and 3 for the 3 range method from 7
different preprocessing methods (codes: 0 = empty (all the absorbance values = 0), 1 = raw spectra, 2 = SNV, 3= MSC, 4= sd1, 5= sd2,
and 6 = constant offset). For example, the combination set 3, 0, 1, 0, and 1 which corresponds to MSC, empty, raw, empty, raw for 5
range method, signifies segmenting the entire spectral range into 5 equal segmentations and preprocessing them as follows: MSC from
3625.72-5392.30 cm™L, empty from 5400.02-7166.59 cm™2, raw spectra from 7174.31-8940.89 cm™, empty from 8948.60-10,715
cm™L, and raw spectral0,722.9-12,489.48 cm™. Similarly, for 3 range method, if the combination set is 4, 4, and 4 (i.e., sd1, sd1, and
sd1), it signifies that the spectral spectrum is segmented into three segments and subjected to preprocessing using the sdi for the
segments 3594.87-5492.59 cm™, 7498.31-5500.30 cm™, and 7506.02-12,489.48 cm™ [15]. Based on this combination set of
preprocessing techniques, PLSR model were developed. This approach aims to enhance model performance by incorporating various
preprocessing techniques and their combinations across different wavelength regions. By leveraging this diverse preprocessing
approach, the MP-PLSR model strives to create a more robust model. GA and SPA are two different optimization techniques that can
effectively capture important wavenumbers while avoiding collinearity issues. GA-PLSR leverages the strengths of both GAs (ensuring
maximum fitness) and PLSR (maximizing covariance between absorbance values and the target of interest) [26, 27]. On the other hand,
SPA-PLSR carefully selects feature variables to mitigate redundancy and address collinearity issues. These optimization techniques
are employed to select the important wavenumbers that are then used to develop a PLSR model [15].

Figure 2 shows the average raw spectrum of fast-growing trees and agricultural residues of Nepal’s ground biomass logged from
FT-NIRS within the range of 12489.48 — 3594.87 cm'L.
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Figure 2 The average raw spectra of the fast-growing trees and agricultural residues of Nepal grounded biomass spanning the range of
12489.48 — 3594.87 cm [15].

The accuracy of each model was assessed with the following specific parameters: 1) R%c, 2) R%, 3) RMSEC, 4) RMSEP, 5) RPD,
and 6) bias. These parameters were employed to evaluated and compare the models’ performance. There are several factors that need
to be considered to optimize the model’s performance. All the instruments used for measuring the reference data should be regularly
calibrated to minimize instrumental errors. The laboratory environment, mainly the temperature, should be kept constant throughout
the NIR scanning of the biomass. Care should be taken to prevent leakage of NIR radiation as it leads to data loss. The sample should
be as homogeneous as possible, and contamination during sample preparation should be avoided to reduce analysis errors as well.
Additionally, it is important to properly identify outliers in the data to ensure accurate calibration. Outliers can significantly impact the
performance of the model and should be carefully addressed and managed during data analysis.

2.4 Limit of detection and limit of quantification

The LOD refers to the lowest concentration of an analyte in a test sample set that can be reliably distinguished from background
noise, but not necessarily quantified accurately. Similarly, the LOQ represents the lowest concentration of the analyte that can be both
reliably detected and quantified with an acceptable level of accuracy and precision [28]. In this study, LOD and LOQ are calculated
based on the standard deviation of the response to slope [29], as follows:

LOD =33 X )
Sc

LOQ = 10 % (3)
Cc

Where, o is the residual standard deviation i.e., the error obtained from measured and predicted values of the training set and S
is the slope of the regression line [30].

3. Results and discussion

In our previous study, we developed five different types of PLSR models for ground biomass and compared their performance to
select the best model for a comprehensive assessment of HHV and ultimate analysis parameters [15]. In this study, LOD and LOQ
values were calculated from the best performance model, based on the standard deviation of the response to slope from the training set.

Table 1 displays the analysis results of the reference parameters of the grounded biomass [15], providing an assessment of the LOD
and LOQ for each parameter. The LOD and LOQ values for HHV from GA-PLSR were calculated as 622.42 kJ/kg and 1886.13 kJ/kg,
respectively. Additionally, LOD and LOQ for ultimate analysis parameters, including C from GA-PLSR, O from the MP-PLSR- 5
range method, H from GA-PLSR, and N from the MP-PLSR-5 range method were calculated as follows: 3.24 wt.% and 9.81 wt.% for
C, 2.04 wt.% and 6.18 wt.% for O, 0.35 wt.% and 1.05 wt.% for H, and 0.22 wt.% and 0.68 wt.% for N. These values indicate the
lowest concentration at which the reference parameters of the biomass can be reliably detected and precisely quantified. It is evident
that the LOD and LOQ for all reference parameters, except the wt.% of N, are lower than the minimum value used for developing the
models. This suggests that the selected model i.e., GA-PLSR for HHV, C, and H and the MP-PLSR- 5 range method for O has the
potential to reliably detect and precisely quantify these parameters based on their corresponding LOD and LOQ values, indicating high
sensitivity. However, the model predicting the N content, i.e., the MP-PLSR-5 range method in ground biomass, has limitations due to
higher LOD (0.22) and LOQ (0.68) values compared to the minimum reference values used for model development. Hence, to ensure
a reliable assessment of wt.% of N, it is essential to incorporate an adequate number of representative samples with predicted wt.% of
N values surpassing the LOD and LOQ values. Additionally, considering alternative modeling methods for evaluating N content in the
ground biomass would enhance the model sensitivity.

The Sc of the regression line from the training set was found to be 1 for all the measuring parameters. This suggests the accuracy
of the prediction of those constituents. A Sc value close to one indicate high accuracy in prediction, while a low oc of residual indicate
the high precision of the model. A lower value of oc and a higher value of Sc result in the smaller values of LOD and LOQ), indicating
higher sensitivity of the model.

The coefficient of determination values obtained from the analysis demonstrate a strong correlation between the independent
variables and their respective parameters. Specifically, GA-PLSR yielded an R%: of 0.95 for HHV, 0.79 for C, and 0.88 for H in the
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training set. The 5 range-PLSR model resulted in an R?c of 0.89 for O and 0.86 for N in the training set. These findings highlight the
high degree of relationships between the variables and their corresponding parameters.

Figure 3 illustrates the comparison between the measured versus predicted values in the training set for various parameters: a)
HHV (kJ/kg), b) wt.% of C, ¢) wt.% of O, d) wt.% of H, and ) wt.% of N.

Table 1 Analysis result of the HHV and ultimate analysis parameters of the ground biomass for assessment of LOD and LOQ

Reference value HHV Carbon Oxygen Hydrogen Nitrogen
Unit kJ/kg wt.% wt.% wt.% wt.%
Reference value range 14,682 - 18,616 38.4-48.0 46.26 - 54.36 4.95-6.48 0-0.83
Algorithm GA-PLSR GA-PLSR MP-PLSR-5 range GA-PLSR MP-PLSR-5 range
Preprocessing technique sdx sd1 501,01 SNV 4,44
Ne¢ 157 87 77 74 76
Mean 17005 44.62 44.95 5.72 0.30
SD 842 2.00 2.55 0.30 0.22
LVs 14 9 14 14 10
R% 0.95 0.79 0.67 0.88 0.86
R% 0.96 0.72 0.63 0.77 0.84
RMSEC 188.01 0.98 1.45 0.10 0.07
RMSEP 170.33 0.97 1.53 0.14 0.10
RPD 4.89 1.93 1.71 2.14 2.65
bias -21.96 0.19 0.45 -0.0 -0.03
oc 188.61 0.98 0.62 0.10 0.07
Sc 1.00 1.00 1.00 1.00 1.00
LOD 622.42 3.24 2.04 0.35 0.22
LOQ 1886.13 9.81 6.18 1.05 0.68
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Figure 3 Scatter plot of measured vs predicted values from the training set for: a) HHV, b) wt.% of carbon, c) wt.% of oxygen, d) wt.%
of hydrogen, and e) wt.% of nitrogen.
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4. Conclusions

The results of this experiment show that the model has high sensitivity in detecting and quantifying parameters such as HHV in
kJ/kg, wt.% of C, H, and O in grounded biomass. These results also establish a minimum threshold for detectability and quantifiability
of these reference parameters. However, the LOD and LOQ for wt.% of N are higher than the minimum range value used during model
development, indicating the necessity for modification to enhance its sensitivity by improving the prediction accuracy and precision.
Therefore, to enhance the model’s effectiveness, it is advisable to expand the total dataset by including a wide range of representative
samples, particularly considering the variations in nitrogen content within the biomass. Additionally, it is crucial to validate the selected
models using unknown samples to ensure greater acceptance and reliability. These adjustments will contribute to an overall
improvement in the model’s sensitivity.

5. Acknowledgements

The authors would like to express sincere gratitude to the Near-Infrared Spectroscopy Research Center for Agriculture Product and
Food, Department of Agricultural Engineering, School of Engineering at King Mongkut’s Institute of Technology Ladkrabang,
Thailand for providing KMITL doctoral scholarship KDS 2020/52 and research fund. Additionally, the authors sincerely acknowledge
the Department of Research and Graduate Studies, Khon Kaen University, Thailand, for their valuable research support, which was
instrumental in the accomplishment of this study.

6. References

[1] EIA. Biomass explained [Internet]. 2022 [cited 2023 Jul 3]. Available from: https://www.eia.gov/energyexplained/biomass/.

[2] Rahman A, Farrok O, Haque MM. Environmental impact of renewable energy source based electrical power plants: solar, wind,
hydroelectric, biomass, geothermal, tidal, ocean, and osmotic. Renew Sust Energ Rev. 2022;161:112279.

[3] Srivastava RK, Shetti NP, Reddy KR, Nadagouda MN, Badawi M, Bonilla-Petriciolet A, et al. Valorization of biowastes for
clean energy production, environmental depollution and soil fertility. J Environ Manage. 2023;332:117410.

[4] Priya, Deora PS, Verma Y, Muhal RA, Goswami C, Singh T. Biofuels: an alternative to conventional fuel and energy source.
Mater Today: Proc. 2022;48:1178-84.

[5] XingJ, Luo K, Wang H, Gao Z, Fan J. A comprehensive study on estimating higher heating value of biomass from proximate
and ultimate analysis with machine learning approaches. Energy. 2019;188:116077.

[6] Bakker RR, Elbersen HW. Managing ash content and quality in herbaceous biomass: an analysis from plant to product. 14t
European Biomass Conference and Exhibition; 2005 Oct 17-21; Paris, France. p. 1-4.

[7]1 Obi OF, Pecenka R, Clifford MJ. A review of biomass briquette binders and quality parameters. Energies. 2022;15(7):2426.

[8] Nieto PJG, Garcia—Gonzalo E, Paredes—Sanchez BM, Paredes—-Sanchez JP. Forecast of the higher heating value based on
proximate analysis by using support vector machines and multilayer perceptron in bioenergy resources. Fuel. 2022;317:122824.

[9] Seow YX, Tan YH, Mubarak NM, Kansedo J, Khalid M, Ibrahim ML, et al. A review on biochar production from different
biomass wastes by recent carbonization technologies and its sustainable applications. J Environ Chem Eng. 2022;10(1):107017.

[10] Zukowski W, Jankowski D, Wrona J, Berkowicz-Ptatek G. Combustion behavior and pollutant emission characteristics of
polymers and biomass in a bubbling fluidized bed reactor. Energy. 2023;263:125953.

[11] Jara-Cobos L, Abril-Gonzalez M, Pinos-Vélez V. Production of hydrogen from lignocellulosic biomass: a review of technologies.
Catalysts. 2023;13(4):766.

[12] Ozgen S, Cernuschi S, Caserini S. An overview of nitrogen oxides emissions from biomass combustion for domestic heat
production. Renew Sust Energ Rev. 2021;135:110113.

[13] Aleksiejczuk A, Teleszewski TJ. Estimation of sulfur dioxide emissions in an automatic boiler with a retort burner for coal and
biomass in a single-family house based on the measurement of the heat consumed. Environ Sci Proc. 2022;18(1):10.

[14] Posom J, Maraphum K, Phuphaphud A. Rapid evaluation of biomass properties used for energy purposes using near-infrared
spectroscopy. In: Taner T, Tiwari A, Ustun TS, editors. Renewable Energy-Technologies and Applications. IntechOpen; 2021.
p. 1-17.

[15] Shrestha B, Posom J, Sirisomboon P, Shrestha BP. Comprehensive assessment of biomass properties for energy usage using
near-infrared spectroscopy and spectral multi-preprocessing techniques. Energies. 2023;16(14):5351.

[16] Ytsma CR, Dyar MD. Calculations of and effects on quantitative limits for multivariate analyses of geological materials with
laser-induced breakdown spectroscopy. Spectrochim Acta B: At Spectrosc. 2022;191:106395.

[17] Ershadi S, Shayanfar A. Are LOD and LOQ reliable parameters for sensitivity evaluation of spectroscopic methods?. J AOAC
Int. 2018;101(4):1212-3.

[18] Shabir GA, John Lough W, Arain SA, Bradshaw TK. Evaluation and application of best practice in analytical method validation.
J Lig Chromatogr Relat Technol. 2007;30(3):311-33.

[19] Posom J, Sirisomboon P. Evaluation of the higher heating value, volatile matter, fixed carbon and ash content of ground bamboo
using near infrared spectroscopy. J Near Infrared Spectrosc. 2017;25(5):301-10.

[20] Mierzwa-Hersztek M, Gondek K, Jewiarz M, Dziedzic K. Assessment of energy parameters of biomass and biochars, leachability
of heavy metals and phytotoxicity of their ashes. J Mater Cycles Waste Manag. 2019;21:786-800.

[21] Mishra P, Nikzad-Langerodi R. Partial least square regression versus domain invariant partial least square regression with
application to near-infrared spectroscopy of fresh fruit. Infrared Phys Technol. 2020;111:103547.

[22] Killner MHM, Rohwedder JJR, Pasquini C. A PLS regression model using NIR spectroscopy for on-line monitoring of the
biodiesel production reaction. Fuel. 2011;90(11):3268-73.

[23] Mehmood T, Martens H, Saebg S, Warringer J, Snipen L. A partial least squares based algorithm for parsimonious variable
selection. Algorithms Mol Biol. 2011;6:27.

[24] Posom J, Phuphaphud A, Saengprachatanarug K, Maraphum K, Saijan S, Pongkan K, et al. Real-time measuring energy
characteristics of cane bagasse using NIR spectroscopy. Sens Bio-Sens Res. 2022;38:100519.

[25] Li Z, Song J, Ma 'Y, Yu Y, He X, Guo Y, et al. Identification of aged-rice adulteration based on near-infrared spectroscopy
combined with partial least squares regression and characteristic wavelength variables. Food Chem: X. 2023;17:100539.


https://www.eia.gov/energyexplained/biomass/

618 Engineering and Applied Science Research 2023;50(6)

[26] Maraphum K, Saengprachatanarug K, Wongpichet S, Phuphuphud A, Posom J. Achieving robustness across different ages and
cultivars for an NIRS-PLSR model of fresh cassava root starch and dry matter content. Comput Electron Agric. 2022;196:106872.

[27] Saenphon C, Ditcharoen S, Malai C, Saengprachatanarug K, Wongpichet S, Sirisomboon P, et al. Total soluble solids, dry matter
content prediction and maturity stage classification of durian fruit using long-wavelength NIR reflectance. J Food Compos Anal.
2023;124:105667.

[28] Armbruster DA, Pry T. Limit of blank, limit of detection and limit of quantitation. Clin Biochem Rev. 2008;29(Suppl 1):S49-52.

[29] International Conference on Harmonization (ICH). Validation of analytical procedures: text and methodology. Q2(R1). Geneva:
ICH; 2005.

[30] Clua-Palau G, Jo E, Nikolic S, Coello J, Maspoch S. Finding a reliable limit of detection in the NIR determination of residual
moisture in a freeze-dried drug product. J Pharm Biomed Anal. 2020;183:113163.



