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Abstract 

 

The primary objective in foundation design is to ensure that the foundation exhibits satisfactory behavior under regulatory loading 

conditions while addressing critical safety concerns. This study aims to investigate the impact of parameter uncertainties in prediction 

models for bearing capacity and settlement of shallow and deep foundations on resulting failure probabilities using various 

approximation methods. Recognizing the complexity of reliability studies, this research explores the possibility of not probabilizing 

all variables and simplifying calculations for future applications. Additionally, it aims to assess the effectiveness of commonly used 

approximation methods in geotechnical engineering for estimating failure probabilities. The study's findings would enhance foundation 

reliability indices and decrease the probability of failure. The parametric study has enabled us to identify the variables that are most 

sensitive to changes in their coefficient of variation. The influence of model selection on foundation reliability is emphasized, and a 

critical evaluation of model bias is crucial for reliability analysis. It is evident that conservative models may shift subsequently 

calculated failure probabilities by inaccurately assigning situations from the safe domain to the failure domain due to inherent 

conservatism. 
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1. Introduction 

 

Uncertainty is a fact of life in geotechnical practice. The complexity of nature often presents soil profiles that are significantly 

different from those assumed in analysis and design. Similarly, loads and environmental conditions challenge even the most precise 

predictions. Limited site investigations, measurement errors, and imperfections in analysis procedures further complicate the engineer's 

task [1-6]. 

The consideration of bearing capacity and allowable settlement is crucial in foundation design [7-9]. Bearing capacity is determined 

by the shear strength of the soil and is estimated through theories proposed by [9-13], and others. However, the various equations for 

bearing capacity exhibit significant variations. Furthermore, the proposed theories for bearing capacity incorporate several assumptions 

aimed at simplifying the problems. 

The primary objective of foundation design is to ensure satisfactory behavior under regulatory loading conditions, while keeping 

in mind the need to balance safety and economy [7]. It is evident that damaging behavior remains possible under certain conditions. 

Faced with potentially conflicting criteria of unfavorable behavior and economic constraints, the engineer establishes a reasonable level 

of safety based on empirical results and personal experience [7-10]. The question that arises systematically is how to assess the level 

of safety that can be considered acceptable. An experienced designer can intuitively appreciate the effect of various factors on 

foundation performance, such as variations in loads and material strengths, model errors, execution errors or misdirected work, and 

unforeseen site conditions. In traditional design practice, an overall assessment of these factors is typically made using a factor of 

safety. Such an assessment of safety heavily depends on the framework of the analysis and does not distinguish between model 

uncertainties and parameter uncertainties. The factor of safety is essentially based on experience gained from similar projects. The 

variation in safety level resulting from new conditions or advancements in the state of the art cannot be justified by traditional practice. 

In the traditional method, an appreciation of risk can be obtained by incorporating various uncertainties into a mathematical 

formulation of risk. This approach forms the basis of probabilistic analysis, where uncertain quantities are modeled as random variables, 

and risk is evaluated in terms of a failure probability [14-20]. Stochastic modeling encompasses a set of methods that account for data 

uncertainties in computational models. In geotechnical engineering, reliability analysis aims to determine the reliability or failure 

probability of a structure, soil, or rock mass. The difficulty of calculating this probability has led to the development of various 

approximation methods [21-30]. 

We have good reason to be concerned about the reliability index's the accuracy when it is computed using the safety factors' 

anticipated values. The dependability index derived using this technique may in reality be deceptive if the traditional design utilizing 

safety factors is inaccurate as a result of numerous assumptions or simplifications. This is because the dependability index is determined 

using the presumptive safety factors, and the ensuing reliability rating may not be valid if the safety factors do not precisely reflect the 



562                                                                                                                                                   Engineering and Applied Science Research 2023;50(6) 

foundation's real behavior. There is an increasing focus on probabilistic approaches, which more rigorously account for uncertainties, 

in contemporary geotechnical engineering procedures. Probabilistic techniques, as opposed to depending entirely on set safety factors. 

The objective of this study is to examine the influence of parameter uncertainties in prediction models of bearing capacity and 

settlement of shallow and deep foundations on the failure probability obtained by each approximation method. Since reliability studies 

can involve heavy computations, this study explores the possibilities of reducing the number of random variables to consider in the 

analysis. The aim of this work is also to identify the advantages and limitations of certain approximation methods for failure probability 

used in geotechnical engineering. 

 

2. Uncertainty concept in geotechnical engineering 

 

The concept of uncertainty in geotechnical engineering refers to the consideration of the numerous sources of uncertainties that 

can affect analyses and predictions related to soils and foundations. Due to the complexity and inherent variability in soil properties, 

there are uncertainties regarding soil characterization, modeling of geotechnical behaviors, parameters used in calculations, loading 

conditions, etc. [25-35]. 

Uncertainty in geotechnical engineering can arise from various sources, such as measurement errors during site investigations, 

natural variations in soil properties, approximations in the models used, variations in environmental conditions, etc. 

Soil is a discontinuous, heterogeneous, anisotropic, and non-conservative material that is defined by a set of physico-mechanical 

characteristics (bulk density, elastic modulus, strength parameters, etc.). Due to the unique nature of soil material, as well as the history 

of stresses and geological conditions, this set of physico-mechanical characteristics varies from one point to another within the soil 

mass. A complete characterization of a site, accounting for measurement errors and uncertainties, requires quantifying all the physico-

mechanical characteristics at every point within the soil mass. The technical and practical impossibility of fully characterizing a site 

necessitates considering the values of all the physico-mechanical characteristics at any point within the soil mass as subject to debate 

[22, 34]. 

In geotechnical engineering, and as a first approximation, uncertainties arise from three sources: 

 Randomness inherent in certain characteristics of the studied media or systems. 

 Imperfections in the methods for estimating randomness and, more generally, the models used for analyzing the studied 

systems. 

 Inability to know the social objective and social aversion to risk. 

In most applications, the influence of this uncertainty is not considered [16, 34]. In the probabilistic approach, uncertainties 

regarding the load S and the resistance R are explicitly taken into account. The fundamental idea in the design of a system is to achieve 

a state that lies within the safety region on Figure 1 throughout the entire service life of the structure. The design criteria are located 

above the failure surface (R=S); the strength above the required strength represents the safety margin. 

 

 
 

Figure 1 General design criterion for resistance as a function of solicitation [16]. 

 

The probability of the load exceeding the resistance is given by: 

 

𝑃[𝑆 > 𝑅] = 𝑃[𝑅 ≤ 𝑆] = 𝑃[𝑅 − 𝑆 ≤ 0] = 𝑃[g(𝑥) ≤ 0]                                                         (1) 

 

where x = [x1 ,x2, ...,xn] denotes the set of random variables, and g(x) represents the limit state function. When an expression is 

available to describe the limit state, such as bearing capacity or settlement, which allows for the expression of a safety margin, the 

failure probability is the probability that this margin is less than zero or a chosen value. A fundamental problem in reliability theory is 

related to the calculation of the multiple probability integral to estimate the failure probability Pf: 

 

𝑃𝑓 = 𝑃[g(𝑋) ≤ 0] = ∫ 𝑓(𝑥)𝑑𝑥

g(𝑋)≤0

                                                                                                                                                                           (2) 
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 where f(x) represents the joint probability density function of x. In the special case of simple functions, where an analytical 

expression for the joint probability density function of the limit state function g(x) is given, analytical methods can be used. However, 

in practical cases where the joint probability densities are non-Gaussian and the basis function is nonlinear, determining the exact value 

of Pf through analytical methods is impossible. This difficulty has led to the development of various approximation methods. 

The reliability index β is a measure of the reliability of a system that reflects the system's ability to perform a required function 

under given conditions for a specified duration while incorporating knowledge about parameter uncertainty. Calculation of the 

reliability index requires: 

 A deterministic mechanical model (e.g., a calculation model for the bearing capacity of a foundation). 

 A definition of the limit state g(x). 

 The characteristic statistical parameters of uncertainty (or variability) of random variables- mean value (µ), standard deviation 

(σ). The shapes of parameter distributions can be highly significant. Parameters can encompass not only the properties of 

geotechnical materials but also loads and system geometry. 

 An approximation method to estimate the value of the reliability index. 

The reliability index does not provide a direct answer to the posed problem. A more comprehensive or useful piece of information 

is the probability of failure. In most reliability analysis methods, the probability of failure is defined from the reliability index, except 

in simulation methods that allow for a direct estimation of the value. 

 

3. Approximate methods for determining the failure probability  

 

The methods available to estimate the failure probability Pf, can be classified into two groups: moment methods and simulation 

methods. 

The moments of the limit state function g(x) must be calculated at the proper point in the case of moment techniques. In the 

literature, a number of iterative strategies have been presented. First Order Second Moment (FOSM) reliability method, First Order 

Reliability Method (FORM), Second Order Reliability Method (SORM), and other specialized methods that employ third or fourth-

order statistical moments, such as the First Order Third Moment (FOTM) method, are the main techniques. 

The development of the FOSM (First-Order Second-Moment) method began in the 1970s, with Cornell's reliability index [34]. 

This method has firmly established itself in the field of geotechnical engineering [16, 17]. 

The FORM method proposed by Hasofer and Lind [35] is considered one of the most reliable computational methods for 

geotechnical applications. The FORM method was developed to address the non-invariance of the reliability index β with respect to 

the chosen limit state function and to overcome the mathematical limitations of the FOSM method. 

Approximating the limit state at the design point by a straight line or plane introduces errors in the FORM analysis, the magnitude 

of which depends on the nonlinearity of the limit state equation. This is why higher-order moment methods, such as the SORM method, 

have been developed [16]. In this method, a quadratic or higher-order polynomial is used to describe the limit state surface at the design 

point. 

Improving the FORM method by incorporating higher-order moments led to the First Order and Third Moment (FOTM) reliability 

method and the Higher-Order Moment Simulation Technique (HOMST). These two methods rely on the first-order Taylor series 

expansion of the basis function at the design point. The FOTM method is based on the third moment of the limit state function and 

assumes that the centered and standardized limit state function follows a lognormal distribution [30]. The HOMST method involves 

using the fourth-order moment of the limit state function to transform it into a standardized normal variable during the calculation of 

the reliability index [31]. Higher-order moment methods provide better approximations but are generally not considered necessary for 

the majority of applications. 

Another commonly used method is the Point Estimate Method (PEM), which is an approximate method that estimates the first two 

moments of a limit state function based on the first two moments of the basic random variables. This method is robust and provides 

satisfactory accuracy for certain types of problems if the coefficient of variation is not very large [16]. The coefficient of variation 

(COV) is defined as = (Standard Deviation/Mean) × 100. 

Simulation methods are based on generating a set of responses from which the failure probability can be estimated. The simplest 

technique is the Monte Carlo method (MCS), proposed by Von Neumann during World War II [16]. This method involves randomly 

sampling N numerical values for each basic variable, and by solving the problem N times in a deterministic manner, we can obtain a 

sample that represents the different responses of the limit state function, g(x). If Nf is the number of responses that fall within the failure 

domain, then the failure probability can be estimated by: 

 

𝑃𝑓 =
𝑁𝑓

𝑁
                                               (3) 

 

The main drawback of the simulation method is that it requires very long computation times compared to moment methods. 

Specialized methods such as Conditional Simulation (CS), Importance Sampling (EST), and Directional Simulation (DS) have been 

proposed to reduce the number of simulations needed. 

In this study, the moment methods FOSM, FORM, and SORM, as well as MCS, were used to analyze the reliability of shallow and 

deep foundations. Detailed descriptions of these methods can be found in Melchers [25] and Haldar and Mahadevan [36]. 

 

4. Design of shallow and deep foundations 

 

 Shallow foundations and deep foundations are the two primary foundation types utilized to support structures in foundation 

engineering. The design engineer for foundations must take into account two failure types while keeping safety and economy in mind: 

a) Bearing Capacity Failure: This failure mode occurs when the soil beneath the foundation is unable to support the applied loads. 

It is important to ensure that the foundation can withstand the anticipated loads without excessive settlement or shear failure. 

b) Settlement Failure: Excessive settlement of the foundation can lead to structural damage and loss of functionality. It is crucial 

to design the foundation in a way that minimizes settlement and provides adequate support to prevent significant deformations. 

Reliability analysis techniques, such as the ones mentioned earlier (FOSM, FORM, SORM, MCS), can be employed to assess the 

failure probability for both shallow and deep foundations. These methods take into account uncertainties in material properties, soil 
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characteristics, and applied loads to provide a quantitative measure of the foundation's reliability. By incorporating these probabilistic 

analyses into the design process, engineers can make informed decisions to ensure the safety and efficiency of foundation systems. 

 

4.1 Design of shallow foundations 

 

4.1.1 Bearing capacity of shallow foundations 

 

The bearing capacity of a shallow foundation is typically determined based on the mechanical properties of the soil measured either 

in the laboratory or in-situ. The general equation for this bearing capacity is given by: 

 

𝑞𝑢 = 𝐶𝑁𝑐𝐼𝑐𝑆𝑐𝑇𝑐𝑑𝑐 +
1

2
𝐵′𝛾′𝑁𝛾𝐼𝛾𝑆𝛾𝑇𝛾𝑑𝛾 + 𝑞0𝑁𝑞𝐼𝑞𝑆𝑞𝑇𝑞𝑑𝑞                                            (4) 

 

where C is the cohesion of the soil, qo is the effective stress of the soil at the foundation base, B' is the reduced width of the 

foundation, γ' is the unit weight of the soil below the base. Nc, Nγ, and Nq are the bearing capacity factors, which depend on the soil's 

friction angle φ. Ic, Iγ, Iq; Sc, Sγ, Sq; Tc, Tγ, Tq; and dc, dγ, dq are correction factors. 

This study considers two commonly used models in the calculation of bearing capacity for shallow foundations, namely the Hansen 

model [11] and the Vesic model [12]. 

 

4.1.2 Settlement of shallow foundations 

 

The application of loads on soil causes displacements. The most significant displacements are vertical displacements or settlements. 

The total settlement S of a foundation, which is the response to the applied load on the soil, can be calculated as the sum of three 

components: 

 

𝑆 = 𝑆𝑖 + 𝑆𝑐 + 𝑆𝑓                                                (5) 

 

 where Si represents instantaneous settlement, Sc is consolidation settlement, and Sf is creep settlement. 

 

4.2 Design of deep foundations 

 

4.2.1 Bearing capacity of deep foundations 

 

 The ultimate vertical load carried by a pile is generally given by: 

 

𝑄𝑢 ≈ 𝑞𝑝𝑢𝐴𝑃 + ∑ 𝑄𝑓𝑢𝑖

𝑛

𝐼=1

− 𝑊𝑝                                                                                                                                                                                      (6) 

           

where Qu is the ultimate bearing capacity of the pile, qpu is the ultimate point load stress at the pile tip, Ap is the cross-sectional area 

of the pile, L is the length of the pile, Qs is the ultimate vertical load due to lateral friction, and W is the weight of the pile. 

Different methods have been proposed to solve Equation (6), with the most recommended ones being the Hansen method, the Vesic 

method, and the Generalized Ultimate Capacity Equation method by USACE [37]. 

 

4.2.2 Settlement of deep foundations 

 

The settlement of an isolated pile under loads is generally low and is not a determining calculation parameter for most civil 

engineering structures. However, in some cases of pile groups, it may be imperative to consider settlement, and reliable estimation 

often requires an accurate assessment of the settlement of an individual pile. 

In the case of linear elasticity, the settlement at the head of a pile with diameter D under the action of a vertical load Qv at the pile 

head is given by: 

 

𝑆0𝑝 =
𝑄𝑣.𝐼𝑣

𝐸(𝐿).𝐷
                                                 (7) 

 

where Iv is the settlement factor at the pile head and E(L) is the Young's modulus of the soil at the base of the pile. 

 

5. Reliability of shallow and deep foundations 

 

In this study, the probabilistic methods FOSM, FORM, SORM, and MCS are used to account for and assess the influence of random 

uncertainties on the considered design model parameters. The variation of the reliability index with respect to the level of uncertainty 

in the parameters is examined for each of the probabilistic methods. The variation of the reliability index with respect to the variance 

of one of the random variables is obtained by keeping the mean of the variable under consideration constant and fixing the coefficient 

of variation of the other random variables at an arbitrarily set value of 5%. The distributions of the random variables are assumed to be 

normal or lognormal. The margin of safety is given by: 

 

g(𝑅, 𝐿) = 𝑅(𝑥) − 𝐿(𝑥)                                             (8) 

 

where R(x) represents the bearing capacity or settlement of the foundation, and L(x) represents the applied load or allowable 

settlement of the foundation. 
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5.1 Reliability of shallow foundations 

 

The parameters considered as random variables (normal or lognormal distributions) in the reliability analyses of shallow 

foundations are indicated in Table 1. The geometric parameters are assumed to be deterministic with the following average values: 

width B = 2 m, length L = 3 m, and depth d=1.5 m. The allowable settlement is set to 5 cm. 

 

Table 1 Parameters and average values considered in the probabilistic analysis of a shallow foundation. 

 

Parameter Symbol Variable Mean value 

Specific parameters for bearing capacity prediction models 

Friction angle Ø Random 25° 

Cohesion C Random 15 kN/m2 

Dry unit weight γ Random 18 kN/m3 

Vertical load Qv Random 400 kN 

Horizontal load Qh Random 120 kN 

Moment parallel to B MB Random 100 kN.m 

Moment parallel to L ML Random 100 kN.m 

Slope inclination T Random 10° 

Base inclination S Random 25° 

Cohesion between soil and base Ca Random 10 kN/m2 

Specific parameters for settlement prediction models 

Elastic modulus E Random 40 MPA 

Preconsolidation stress qc Random 100 kN/m2 

Coefficient of consolidation Cv Random 2,5 ×10-8 m2/s 

Poisson's ratio ν Random 0,3 

Void index ei Random 0,8 

Compression index Cc Random 0,1 

Recompression index Cr Random 0,02 

Creep index Cα Random 0,004 

 

In the problem of probabilistic analysis of the bearing capacity of shallow foundations, the bearing capacity R(x) is given by 

Equation (4), and the load L(x) is the vertical load divided by the foundation area. The diagonal values of the correlation matrix are 

equal to unity. The friction angle and cohesion are assumed to be negatively correlated with ρ = -0.5; the vertical and horizontal loads 

are assumed to be positively correlated with ρ = 0.5; the moments MB and ML are assumed to be positively correlated with ρ = 0.5. 

We examined the changes of the reliability index according to the covariance of each of the parameters of the model under 

consideration, as determined using the FORM Method. The results of the parametric reliability analysis of a shallow foundation 

subjected to an inclined and eccentric load near a sloping base are presented in Figures 2. These figures show the variations of the 

reliability index for each parameter of a limit state function. The main results obtained are as follows: 

• For all the considered limit state functions, the reliability index strongly depends on the internal friction angle of the soil, the 

vertical load, and the horizontal load. 

• For all the considered limit state functions, the reliability index is not significantly dependent on the cohesion between the base 

of the footing and the foundation soil; this insensitivity is more pronounced when the parameters are modeled using a lognormal 

distribution. 

• When dealing with the same limit state function, the importance of parameter influences is closely tied to the nature of the 

distribution of the random variables. Nevertheless, the internal friction angle of the soil stands out as the most influential parameter, 

irrespective of the distribution type of the random variables and the considered correlation matrix. This result underscores the 

dominance of the internal friction angle over other factors in shaping the behavior of the system, reaffirming its critical role in various 

scenarios and distribution patterns. 

 

5.2 Probabilistic analysis of settlement in shallow foundations 

 

In the problem of probabilistic analysis of settlement in shallow foundations, the settlement R(x) is given by Equation (5), and the 

allowable settlement L(x) is fixed at a value of 5 cm. All random variables are considered independent. 

Using the FORM Method, Figure 3 shows that the reliability index strongly depends on the preconsolidation pressure, unit weight, 

and vertical load, while it has very little dependence on the other variables, where the variation of the reliability index is practically 

constant. Furthermore, these figures demonstrate that the preconsolidation pressure is the random variable that governs the reliability 

for this mode of failure. 

 

5.3 Variable reduction 

 

Based on the results obtained in the previous sections, it is reasonable to question whether reliability analysis conducted with all 

random variables of a limit state function is only of theoretical interest. In other words, in practice, can we perform reliability analysis 

by considering a reduced number of random variables? To answer this question, a practical example is considered, where the measured 

variability in practice is taken into account. 
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Figure 2 Variation of the reliability index with the coefficient of variation (C.o.v) of the capacity parameters of shallow foundations. 

(a) Normal distribution, (b) Lognormal distribution. 

Figure 3 Variation of reliability index with coefficient of variation (C.o.v) of settlement parameters - overconsolidated soil. (a) Normal 

distribution, (b) Lognormal distribution 

 

5.3.1 Variable reduction methodology 

 

Studying the sensitivity of random variables in any limit state is crucial. This is justified by the fact that changing the coefficient 

of variation of a given random variable can lead to significant modifications in the reliability index values. When a random variable is 

replaced with a deterministic value, the omission coefficient is used to assess the effect of this change on the engineer's judgment. The 

omission coefficient for a random variable is expressed as follows: 

 

𝛺𝑖 = |𝛽 − 𝛽𝑖|                               (9) 

 

βi corresponds to the reliability index calculation where all variables are random, except for xi which is deterministic. β is the 

reliability index when all variables are probabilistic. 
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The guidelines provided by the U.S. Army Corps of Engineers [37], given in Table 2, can be used to determine whether a variable 

can be replaced with a deterministic value. In fact, to transition from a lower safety level to a more satisfactory safety level, an increase 

of 0.5 in the reliability index is required if the reliability index is less than 3. If the calculated reliability index is greater than 3, an 

increase of 1 is required to transition from an acceptable safety level to a higher safety level. 

 

Table 2 Relationship between reliability index, failure probability, and safety level [37]. 

 

Reliability index β Reliability Failure probability Level of performance 

5 0,999 999 7 0,000 000 3 High 

4 0,933 968 3 0,000 031 7 Good 

3 0,998 650 0 0,001 350 0 Above average 

2,5 0,993 790 3 0,006 209 7 Below average 

2,0 0,977 249 9 0,022 750 1 Poor 

1,5 0,933 192 8 0,066 807 2 Unsatisfactory 

1,0 0,841 344 7 0,158 655 3 Hazardous 

 

In our approach, calculating the omission coefficient will allow us to verify if the reduction of one or more variables will 

compromise the engineer's judgment. A value of the omission coefficient less than 0.5 for a low safety level or less than 1 for a high 

safety level indicates that the probabilization of that variable has no effect on the engineer's decision. On the other hand, a result greater 

than 0.5 for a low safety level or greater than 1 for a high safety level highlights an overestimated or underestimated safety level. In 

both situations, the variable should be included as a random variable. Since reliability studies can involve heavy calculations, this 

verification examines the possibility of reducing the number of variables in the problem and ensuring simplified calculations for 

practical applications. 

 

5.3.2 Variable reduction for bearing capacity of a sloping shallow foundation 

 

To assess the sensitivity of the random variables in the bearing capacity of a sloping shallow foundation subjected to an eccentric 

and inclined load near a slope, two sets of calculations were performed. Table 3 summarizes the mean values and covariances of the 

parameters considered in the sensitivity analysis. 

 

Table 3 Coefficients of variation and mean values considered in the sensitivity study of the variables for the bearing capacity of a 

sloping shallow foundation. 

 

Parameters 
Case 1  Case 2 

Mean value C.o.v (%)  Mean value C.o.v (%) 

Friction Angle  

Cohesion 

Unit weight  

Vertical load  

Horizontal load 

Moment parallel to B 

Moment parallel to L 

Slope inclination 

Base inclination 

Base adhesion to soil  

Ø 

C 

γ 

Qv 

Qh 

MB 

ML 

S 

T 

Ca 

25° 

15 kN/m2 

18 kN/m3 

400 kN 

120 kN 

100 kN.m 

100 kN.m 

10° 

25° 

10 kN/m2 

2-50 

2-50 

5 

10 

10 

10 

10 

2 

2 

10 

 

 

 

 

 

 

 

 

 

 

30° 

18 kN/m2 

18 kN/m3 

400 kN 

120 kN 

100 kN.m 

100 kN.m 

10° 

25° 

10 kN/m2 

2-50 

2-50 

10 

15 

15 

10 

10 

2 

2 

10 

 

For the two cases considered in Table 3, the covariances of the Mohr-Coulomb resistance parameters are assumed to vary jointly 

from 2% to 50%, while the covariances of the other random variables are kept constant. Two formulations of the SORM method, 

namely SORMCai [18] and SORMZhao [31], were used. Using the limit state function given by Equation (8) and the Monte Carlo 

simulation technique, the reliability index is calculated in two different ways: first, by considering the statistics of the limit state function 

(MCSS), and second, by counting failures - g(x) < 0 in different simulation cycles (MCSC). This parametric study led to the following 

conclusions (Figures 4 and 5): 

• For both cases considered, the FORM, SORM, and CMCSC methods provide very similar results, even when the limit state 

function is nonlinear or when the covariance of a parameter exceeds 15%. This result is not in line with the findings of the Committee 

on Reliability Methods for Geotechnical Engineering [20], which states that for a covariance exceeding 15% of a parameter, the 

reliability methods mentioned above yield different results. This conclusion is closely related to the nature of the limit state function 

used. The results obtained by the FORM, SORM, and MCSC methods, which do not impose any restriction on the variability of the 

parameters, show that in certain cases, a high coefficient of variation can be assigned to the parameters in a reliability analysis with 

FORM/SORM without significant error. 

• The second-order reliability method (SORM) uses second-degree terms of the Taylor series. The computational difficulty is 

greater, and the improvement in accuracy is not always commensurate with the additional computational effort. The numerical 

examples presented demonstrate that the precision provided by the first-order reliability method (FORM) is sufficient for practical 

applications. 

• The Monte Carlo simulation technique has the advantage of conceptual simplicity, but it requires a large number of samples -

500,000 samples in our case - of the limit state function to achieve satisfactory accuracy. The numerical examples show that the 

reliability indices obtained from the statistics of the limit state function and the failure counting methods are quite different. In many 

situations, the MCSC method is more accurate than the MCSS method. 

• In the case of a nonlinear limit state function, which is common in geotechnical problems, the FORM method produces significant 

errors. 

• For low covariance values of the parameters, the FORM and MCSS methods yield very similar results. 
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Figure 4 Comparison of reliability indices calculated with FOSM, FORM, SORM, and MCS - Hansen model. (a) Case 1, (b) Case 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 Comparison of reliability indices calculated with FOSM, FORM, SORM, and MCS - Vesic model. (a) Case 1, (b) Case 2. 

 

To reduce the size of the probabilistic analysis problem for the bearing capacity of shallow foundations, the variations of the 

calculated reliability indices considering each of the ten variables as random are compared to the variations of the reliability indices 

calculated using a limited but chosen number of random variables (Figure 6 and 7). A good agreement can be observed between the 

variations of the reliability indices calculated with ten random variables and the variations with a reduced number of random variables. 

It is observed that the reliability index for this mode of failure of shallow foundations can be accurately estimated using only the 

Mohr-Coulomb resistance parameters (c, φ) if their covariances exceed 15%. For lower covariances, uncertainties in the vertical and 

horizontal loads must also be considered. 
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Figure 6 Reduction of random parameters - Hansen model. (a) Case 1, (b) Case 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 Reduction of random parameters - Vesic model. (a) Case 1, (b) Case 2. 

 

The results of the sensitivity analysis on the variables predicting the bearing capacity are presented in Table 4. The analysis shows 

that to achieve a reduction in the number of random variables, it is necessary to consider the angle of friction, the cohesion term, the 

vertical load, and the horizontal load as random variables. These parameters are considered crucial in reliability assessment due to their 

significant impact, with omission factors less than 0.5. On the other hand, the remaining variables can be treated as deterministic, as 

their influence on reliability is relatively smaller. 
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Table 4 Reduction of variables for the bearing capacity of a shallow foundation. 

 

Random combination of 

parameters used  

Distribution Influence of reduction Appropriate random parameter 

combination Case 1 Case 2 

 Hansen Model 

Ø  + C  + γ 
Normal ▲  ▲ Friction angle  

+ 

Cohesion 

+ 

Vertical load 

+ 

Horizontal load 

Lognormal ▲ ▲ 

Ø  + C  + Qv 
Normal   

Lognormal ▲  

Ø  + C  + Qv + Qh 
Normal   

Lognormal   

 Vesic Model 

Ø  + C  + γ 
Normal ▲ ▲ Friction angle  

+ 

Cohesion 

+ 

Vertical load 

+ 

Horizontal load 

Lognormal ▲ ▲ 

Ø  + C  + Qv 
Normal   

Lognormal ▲ ▲ 

Ø  + C  + Qv + Qh 
Normal   

Lognormal   

▲ : Risk                 : Without Risk 

 

5.3.3 Variable reduction for settlement of a shallow foundation 

 

The number of parameters involved in the probabilistic analysis of settlement in a shallow foundation on overconsolidated soil is 

quite large (10 parameters). However, it is possible to identify among these parameters those that have a negligible influence in the 

reliability analysis. In order to assess the sensitivity of the random variables in settlement, two sets of calculations were performed. 

Additionally, two other calculations were conducted using a different mean value for the allowable settlement compared to the first 

case. Table 5 summarizes the mean values and coefficients of variation used in each case for the sensitivity analysis of the variables. 

 

Table 5 Coefficients of variation and mean values considered in the sensitivity analysis of the variables for settlement of a shallow 

foundation 

 

Parameters 
Case 1 Case 2 

Mean value C.o.v (%) Mean value C.o.v (%) 

Vertical load 

Dry unit weight 

Elastic modulus 

Preconsolidation stress 

Consolidation coefficient 

Poisson's ratio 

Void ratio 

Compression index 

Recompression index 

Creep index 

Allowable settlement 

Qv 

γ 

E 

qc 

Cv 

ν 

ei 

Cc 

Cr 

Cα 

Sadmi 

400 kN 

18 kN/m3 

40 MPA 

100 KN/m2 

2,5 ×10-8 m2/s 

0 ,3 

0,8 

0,1 

0,02 

0,004 

5 cm 

10 

5 

10 

2 - 50 

25 

10 

10 

10 

10 

10 

0 

400 kN 

18 kN/m3 

40 MPA 

100 kN/m2 

2,5 ×10-8 m2/s  

0,3 

0,8 

0,1 

0,02 

0,004 

6 cm 

10 

5 

10 

2 - 50 

50 

20 

20 

20 

20 

20 

0 

 

The reduction of variables for settlement prediction of a shallow foundation is presented in Table 6. From this table, it can be 

observed that a valid reduction of random variables for all cases can only be achieved if the preconsolidation pressure, vertical load, 

dry unit weight of soil, and creep index are considered as random variables. These parameters are deemed essential in reliability 

evaluation due to omission factors less than 0.5. The other variables can be considered as deterministic. 

 

Table 6 Reduction of variables for settlement of a shallow foundation 

 

Random combination of 

parameters used 

Distribution Influence of the reduction Appropriate random combination 

of parameters Case 1 Case 2 

 Overconsolidated soil 

qc + Qv 
Normal ▲ ▲ Preconsolidation stress 

+ 

Vertical load 

+ 

Soil weight 

+ 

Creep index 

Lognormal ▲ ▲ 

qc + Qv + γ 
Normal  ▲ 

Lognormal  ▲ 

qc + Qv + γ + Cα 
Normal   

Lognormal   

▲ : Risk                  : Without Risk 
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5.4 Reliability of deep foundations 

 

The assessment of the reliability of a deep foundation involves verifying its suitability for service. This process is of great 

importance as it determines whether the foundation is inacceptable conditions of safety and functionality. Geotechnical investigation 

is the first step in this process, as it allows for the best possible consideration of site-specific data. 

However, the available information may remain incomplete or even inaccurate due to the limited depth of investigation. Moreover, 

the structure is located in deep layers where the actions it experiences are not always precisely known. This leads to a large number of 

uncertainties that need to be understood and considered in the evaluation process. For this reason, the analysis of the performance of 

this type of structure must be developed based on probabilistic foundations, using the principles and methods of reliability theory. 

For the reliability analysis of deep foundations, the example of an isolated pile under a vertical compressive load is considered. 

Table 7 provides an overview of the variables required in the prediction models for bearing capacity and settlement, as defined by 

Equation 6 and 7. 

 

Table 7 Parameters and mean values considered in the probabilistic analysis of an isolated pile. 

 

Parameter Symbol Variable Mean value 

Parameters common to prediction models 

Vertical load Qv Random 400 kN 

Pile diameter D Deterministic 0,9 m 

Height of sand clay La Deterministic 6 m 

Height of sand layer Ls Deterministic 10 m 

Pile weight γbéton Deterministic 25 kN/m3 

Specific parameters for bearing capacity prediction models 

Friction angle 𝜙̅𝑠 Random 30° 

Undrained cohesion Cu Random 15 kN 

Dry unit weight of sand γs Random 10 kN/m3 

Dry unit weight of clay γa Random 12 kN/m3 

Specific parameters for settlement prediction model 

Elastic modulus of the sand layer Es Random 30 MPA 

Elastic modulus of the clay layer Ea Random 15 MPA 

Elastic modulus of the pile Ep Random 30 MPA 

Poisson's ratio   Random 0,35 

Allowable settlement 𝑆𝑝𝑎𝑑𝑚𝑖 Deterministic 4 cm 

 

5.4.1 Probabilistic analysis of the bearing capacity of deep foundations 

 

While many geotechnical calculation models are "simple," reasonable predictions of the complex behavior of soil-structure 

interaction can still be achieved through empirical calibration. Due to the unique nature of geotechnics where empiricism is 

unavoidable, model uncertainties can be significant. A simple assessment of the bias (or mean) of a model is crucial for reliability 

analysis. If the model is conservative, it is evident that calculated failure probabilities will be biased, as situations belonging to the safe 

domain will be incorrectly assigned to the failure domain due to built-in conservatism. 

For the analysis of bearing capacity, two prediction models for tip resistance are considered: the Vesic model and the Generalized 

Bearing Capacity Equation [37]. 

In the probabilistic analysis of the bearing capacity of deep foundations, the bearing capacity R(x) is given by Equation (6), and the 

load L(x) represents the vertical load divided by the foundation area. All random variables are considered independent. 

The parametric study allowed us to identify the variables most sensitive to variations in their standard deviation (or coefficient of 

variation). This study showed that the friction angle is the most dominant variable, and the order of influence of the other variables 

depends on the choice of distribution law (Figure 8). 

 

5.4.2 Probabilistic analysis of settlement of deep foundations 

 

In the probabilistic analysis of settlement of deep foundations, the settlement R(x) is given by Equation (7), and the allowable 

settlement L(x) is set to a value of 4 cm. All random variables are considered independent. 

The parametric study allowed us to identify the variables most sensitive to variations in their standard deviation (Figure 9). The 

following observations can be made: 

• The reliability index is highly dependent on the coefficient of variation of the vertical load, the modulus of elasticity of the pile, 

and has little dependence on the coefficient of Poisson. 

• The limit state function is highly sensitive to the choice of distribution law used to model the random variables - the order of 

influence of the parameters and the values of the reliability index depend on it. 
 

5.4.3 Variable reduction 

 

This section is adopted to study the sensitivity of variables and verify if it is possible to identify, among these variables, those that 

have a negligible influence in the probabilistic analysis. Table 8 presents the coefficients of variation and biases (means) that are used 

in the sensitivity analysis of random parameters. 
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Figure 8 Variation of the reliability index with the coefficient of variation (C.o.v) of the parameters for the bearing capacity of an 

isolated pile. (a) Normal distribution, (b) Lognormal distribution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 9 Variation of reliability index with coefficient of variation of settlement parameters for an isolated pile. (a) Normal distribution, 

(b) Lognormal distribution. 
 

Table 8 Coefficients of variation and mean values considered in the sensitivity analysis of the variables for the bearing capacity and 

settlement of an isolated pile. 
 

Parameters Notation 
Means Cov (%) 

Cas 1 Cas 2 Cas 1  Cas 2 

Common parameters in prediction models 

Vertical load Qv 400 kN 360 kN 10 15 

Please refer to Table 7 for the geometric variables. 

Specific parameters for bearing capacity prediction models 

Friction Angle  𝜙̅𝑠 30° 32° 2 - 50 2 - 50 

Undrained cohesion Cu 15 kN/m2 15 kN/m2 2 - 50 2 - 50 

Dry unit weight of sand γs 10 kN/m3 10 kN/m3 5 10 

Dry unit weight of clay γa 12 kN/m3 12 kN/m3 5 10 

Specific parameters for settlement prediction model 

Elastic modulus of the sand layer Es 30 MPA 30 MPA 2 - 50 2 - 50 

Elastic modulus of the clay layer Ea 15 MPA 15 MPA 2 - 50 2 - 50 

Elastic modulus of the pile Ep 30 MPA 35 MPA 15 10 

Poisson's ratio ν 0,35 0,35 10 20 

Allowable settlement 𝑆𝑝𝑎𝑑𝑚𝑖 4 cm 4 cm 0 0 
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Figures 10 to 12 present the result of the variations of reliability indices using different models for predicting the bearing capacity 

and settlement of a pile, different probability density functions, different means and coefficients of variation, and different proposed 

combinations to assess the sensitivity of the random variables. The following observations can be made: 

• In all models for predicting the bearing capacity and settlement of a pile, the vertical load appears to have a pronounced influence 

on the behavior of the reliability index. The gap between the reference curves (5 random variables) and the curves that consider the 

vertical load as a deterministic variable is evident. 

• After analyzing the four proposed combinations for reducing the variables involved in predicting the bearing capacity of a pile 

using the Hansen model and the general failure model (Figure 10 and 11), it is observed that for low coefficients of variation of the 

unit weights of the soil layers, the standard deviation seems to have a pronounced influence on the behavior of the reliability index. 

However, the unit weights of the two considered layers can be treated as deterministic. The rationale for this decision lies in the 

significant increase in the reliability index, which is generally greater than 5 for low coefficients of variation, and thus the engineer's 

judgment will not be affected by any increase resulting from the reduction of these two variables. 

• The results obtained in the sensitivity analysis of the settlement parameters reaffirmed that the vertical load and the pile's modulus 

of elasticity are the two random variables that govern reliability for this failure mode (Figure 12). 

 
Figure 10 Reduction of random parameters - generalized failure model.  

 
Figure 11 Reduction of random parameters - Vesic model. 
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Figure 12 Reduction of random parameters - elasticity method. 

 

Table 9 summarizes the results obtained from the sensitivity analysis of the variables involved in the probabilistic analysis of an 

isolated pile. It can be observed from this table that most variables can be treated as deterministic. This is explained by the fact that, 

for the selected performance function (ultimate limit state of bearing capacity, ultimate limit state of settlement), the dispersion of 

certain variables has little influence on the calculations. On the contrary, the deterministic value to be considered in the calculations 

will have a considerable influence for certain variables. 

 

Table 9 Reduction of variables for the bearing capacity and settlement of an isolated pile 

 

Random combination of 

parameters used 

Distribution Influence of reduction Appropriate random 

parameter combination Cas 1 Cas 2 
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Normal   

Lognormal   



 s + Qv   
Normal ▲ ▲ 

Lognormal   

 General shear failure model 


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Normal   
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Normal   
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Table 9 (continued) Reduction of variables for the bearing capacity and settlement of an isolated pile 

 

Random combination of 

parameters used 

Distribution Influence of reduction Appropriate random 

parameter combination Cas 1 Cas 2 

 Prediction models for bearing capacity 

 Hansen Model 



 s + Cu  + γs + γa 
Normal   

Friction angle 

+ 

Vertical load 

Lognormal   



 s + Qv   + γs + γa 
Normal   

Lognormal   



 s + Qv   +  γs 

Normal   

Lognormal   



 s + Qv   
Normal   

Lognormal   

 Settlement prediction model 

 Elasticity Method 

Qv + Es + Ea + Ep 
Normal   

Vertical load  

+ 

Soil elasticity modulus (Es 

ou Ea) 

+ 

Pile's elasticity modulus 

Lognormal   

Es + Ea + Ep + ν 
Normal ▲ ▲ 

Lognormal ▲ ▲ 

Qv + Es + Ep 

Normal   

Lognormal   

Qv + Es  
Normal ▲ ▲ 

Lognormal ▲ ▲ 

▲ : Risk              : Without Risk 

 

6. Conclusion 

 

This parametric study of reliability analysis for shallow and deep foundations has allowed us to assess the effects of design 

parameter uncertainties on the reliability index and draw the following conclusions: 

• The traditional practice of foundation design using safety factors can be misleading. Foundations designed with large safety 

factors are not exempt from the risk of failure, especially if there are significant uncertainties in the design parameters. 

• Reliability analysis provides a logical framework for incorporating uncertainties into the design process and enhances the risk 

perception in traditional design methods. 

• For all considered limit state functions in probabilistic analysis of shallow foundations, the reliability index depends strongly on 

the internal friction angle of the soil, the vertical load, and the horizontal load, and is less dependent on the cohesion between the 

foundation base and the soil. This independence is observed especially when the parameters are modeled by a lognormal distribution. 

Sensitivity analysis of the parameters shows that the reliability index of shallow foundations, in the general case considered, can be 

accurately estimated by considering only the Mohr-Coulomb resistance parameters (c, φ), the vertical load, and the horizontal load as 

random variables. 

• The parametric analysis of settlement in shallow foundations shows that the reliability index is strongly influenced by the 

preconsolidation pressure, unit weight, and vertical load, while being less dependent on other variables. 

• In all models for predicting the bearing capacity and settlement of deep foundations, the vertical load appears to have a pronounced 

influence on the reliability index. The gap between the reference curves and the curves considering the vertical load as a deterministic 

variable is evident.  

• Sensitivity analysis has shown that a reduction of random parameters is still possible even when the number of random variables 

involved in the probabilistic analysis is relatively small (5 variables). The parametric study has allowed us to identify the variables 

most sensitive to variations in their standard deviation (or coefficient of variation). This study has shown that the internal friction angle 

of the soil is the most dominant variable, and the order of influence of other variables depends on the choice of the distribution law. 

• The second-order reliability method (SORM) uses second-degree terms of the Taylor series. The calculation difficulty is greater, 

but the improvement in precision is not always commensurate with the additional computational effort. 

• The first-order-second-moment method (FOSM) leads to significant errors that can compromise the engineer's judgment and 

jeopardize the safety of the structure. This method should be abandoned in favor of more robust methods. 

• The numerical examples presented demonstrate that the precision provided by the first-order reliability method (FORM) is 

sufficient for practical geotechnical applications. 

• Monte Carlo simulation has the advantage of conceptual simplicity but requires a large number of simulations. With advancements 

in computer technology, the time required to perform the necessary simulations may no longer be a problem. 

• The probabilistic distribution type of parameters has a significant influence on the calculated reliability index. Table 2, which 

served as our guide, appears to be incomplete as it does not specify the type of probability distribution used for the considered 

parameters in the probabilistic analysis. 
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