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Abstract 

 

The no free lunch theory states that no specific heuristic method can effectively solve all problems. This theory has created opportunities 

for researchers to improve existing heuristic methods or even discover new approaches. One algorithm that has gained considerable 

attention from researchers is the Symbiotic Organism Search (SOS) algorithm. Its appeal lies in its simplicity and minimal parameter 

requirements, making it applicable to various problem domains. However, the SOS algorithm also has its limitations. This study focuses 

on the enhancement of SOS by introducing a modified random weight (MRW) method during the parasitism phase, resulting in the 

Improved SOS (I-SOS) algorithm. The effectiveness of this algorithm is tested in solving unconstrained problems using 26 benchmark 

functions and compared to several existing heuristic methods in the literature. The simulation results show that I-SOS outperforms 

basic SOS as well as several other algorithms. 

 

Keywords: Benchmark, Enhancement, Heuristic, Modified random weight, No free lunch 

 

 

1. Introduction 

 

The shortcomings of deterministic methods in solving complex problems have led to the advancement of heuristic methods. 

According to the "no free lunch" (NFL) theory, no individual heuristic approach can effectively address all optimization problems [1]. 

This theory has opened chances for researchers and engineers to enhance existing methods or even discover new heuristic approaches. 

Various heuristic methods have been successfully applied to solve real-world engineering problems. Genetic Algorithm (GA) has been 

used for optimizing distributed generation [2, 3]; Improved stochastic fractal search algorithm (ISFS) for automatic generation control 

(AGC) in power systems [4]; Particle Swarm Optimization (PSO) based on support vector machine (SVM) for structural optimization 

[5]; Grey Wolf Optimization (GWO) for wireless sensor network optimization [6], and Modified Salp Swarm Algorithm (mSSA) for 

optimization in practical engineering problems [7]. One such algorithm that has garnered considerable attention from engineers is 

Symbiotic Organism Search (SOS) algorithm [8]. Its appeal lies in its simplicity and minimal parameter requirements, which make it 

easily applicable to various problem domains [8]. 

While SOS is widely regarded as a robust algorithm [8-12], it is not without its limitations, as highlighted by several works. Al-

Sharhan and Omran [12] demonstrated that the improved organisms process in the mutualism and commensalism phases can quickly 

impact the entire ecosystem, resulting in low organism variability and premature convergence. Additionally, the random selection of 

organisms can lead to incorrect selections, wherein organisms with good fitness may be chosen during the phase of parasitism, hindering 

the introduction of new individuals, and reducing ecosystem variability [13]. Another challenge with SOS algorithm is achieving a 

balance between exploration and exploitation [14-16]. This refers to the algorithm's ability to strike a suitable balance between 

searching for new solutions and exploiting already discovered solutions. Maintaining this balance is crucial for effective optimization. 

Furthermore, SOS has been criticized for its inefficient computational time [14, 16-18], indicating that it may require significant 

computational resources or time to converge towards an optimal solution. 

There have been several studies conducted to improve the performance of the SOS algorithm. Al-Sharhan and Omran [12] proposed 

the use of ring propagation method to increase organism variability. Rodrigues et al. [13] introduced grouping, assignment, and ranking 

methods. Kumar et al. [14] focused on finding a balance between exploration and exploitation in SOS by introducing the adaptive 

benefit factor. Furthermore, Celik [15] suggested changes were made to the parasitism phase. The parasitism phase was divided into 

two groups with a 50% probability, and the parasitism vector was determined using quasi-opposite based learning (QOBL). 

Modifications to all phases were suggested in [16]. During the mutualism phase, each organism utilized the same benefit factor, while 

the random coefficient was limited to a certain range. The parasitism phase was excluded from the algorithm to simplify it. To enhance 

convergence speed and achieve a global optimum, the chaotic local search [18], and quasi-oppositional techniques were employed to 

improve optimization performance [19]. Additionally, adaptive Cauchy mutation methods were introduced in [20]. Modifications to 

the benefit factor and mutual vector are proposed by Chakraborty et al. [21], while the memory mechanism is proposed by Zhao and 

Liu [22]. The recombination and mutation methods are proposed by Yang et al. [23]. The adaptive chaotic local search method is 
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suggested by Dash et al. [24], while the clustering method is proposed by Yang and Sutrisno [25]. These diverse modifications were 

proposed to address specific limitations of the SOS algorithm and improve its overall effectiveness in optimizing complex problems. 

According to previous research [13-17], the parasitism phase plays a significant role in enhancing the performance of the SOS 

algorithm. In this study, an improved version of SOS called I-SOS is introduced. The modification is implemented by creating a 

subphase within the parasitism phase and integrating the modified random weight (MRW) from the crow search algorithm (CSA). This 

modification aims to reduce exploration by limiting the number of organisms generated through the original parasitism. On the other 

hand, the use of MRW can increase the exploitation of organisms, thus enhancing the balance between exploration and exploitation.    

 

2. Improved Symbiotic Organism Search (I-SOS) 

 

Cheng and Prayogo [9] introduced the Symbiotic Organism Search (SOS) algorithm in 2014, which mimics the symbiotic 

relationships found in natural ecosystems. These relationships include mutualism, commensalism, and parasitism. The mutualism phase 

of the SOS algorithm symbolizes the beneficial interaction between organisms, where they mutually assist each other. This relationship 

can be formulated as follows [9]: 

 

  )–(  ,X X rand 0 1 X MV bfiiN 1best                             (1) 

 

  )–(  ,X X rand 0 1 X MV bf2kN k best                             (2) 

 

Where Xi and Xk are two interacting individuals. XiN and XkN are the new organisms produced from the interaction in the mutualism 

phase. Here, i and k are integers. Xbest, bf and MV represent the best organism, benefit factor, and mutual vector respectively. MV and 

bf are formulated as follows [9]: 

 

)  ( .M 0 5 X Xi kV                             (3) 

 

    ,bf 1 round rand 0 11                            (4) 

 

    ,bf 1 round rand 0 12                            (5) 

 

The symbiotic relationship in the commensalism phase results in new individuals as follows [3]: 

 

     ,   X X rand 1 1 X Xi iN best k                                                            (6) 

 

During the parasitism phase, a symbiotic relationship is observed where one organism benefits while the other experiences 

drawbacks. This relationship is illustrated by creating organisms as parasitic vectors and other organisms as hosts. In this scenario, a 

parasitic vector will persist and supplant its host if it exhibits superior fitness in comparison to the host's fitness. Conversely, the host 

will endure and replace the parasitic vector if it demonstrates better fitness than the parasitic vector. 

Striking a harmony between exploitation and exploration of organisms is crucial factor for achieving the global optimum. In the 

parasitism phase, most new organisms with lower fitness values are eliminated from the population. The dominant organisms within 

the ecosystem are the new ones with higher fitness levels. As a result, the organism variability decreases, and the search space primarily 

focuses on organisms with high fitness. This characteristic can lead to premature convergence in the SOS algorithm. The absence of 

parameter tuning in the SOS algorithm makes it simple and user-friendly, but it also poses a problem on the other hand. The lack of 

parameter tuning that guides the solution search process leads to over-exploration during the parasitism phase, resulting in inefficient 

computation times [15]. 

To tackle this issue, the parasitism phase is split into two sub-phases: original parasitism and random weight parasitism. In the I-

SOS algorithm, the original parasitism phase remains unchanged and follows the same approach as the basic SOS algorithm. However, 

the random weight parasitism introduces a modification by incorporating a modified random weight (MRW) from the crow search 

algorithm (CSA) as follow: 

 

    ,  ,  MRW rand 0 1 rand 2 2                            (7) 

 

The new organism in the parasitism phase is written as follows:  

 

   X X MRW X Xi iiNew best                             (8) 

 

Utilizing a split phase within the parasitism phase leads to organisms produced during this phase being equally sourced from both 

the original parasitism and MRW. As a result, the quantity of organisms generated through the original parasitism diminishes, 

effectively reducing exploration. Conversely, the utilization of MRW involving organism Xi in equation (8) has the potential to boost 

the SOS algorithm's exploitation capability. This outcome ensures the preservation of individual variability, while simultaneously 

enhancing the equilibrium between the abilities to exploit and explore. The flowchart of I-SOS is depicted in Figure 1. The value of α 

in the flowchart indicates the percentage of new organisms generated with random weights. 
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Figure 1 I-SOS flowchart 

 

3. Results and discussions 

 

3.1 Mathematical benchmark functions  

 

The literature indicates a strong correlation between metaheuristic algorithms and numerical test problems. Benchmark test 

functions are mathematical functions that represent optimization problems [26]. These functions are optimized by searching for 

parameter values that yield the best solution. The problem space contains numerous sub-optimal solutions, characterized by hills and 

valleys, with the best solution hidden among them. The goal of optimization algorithms is to find the best solution as quickly as possible 

from a set of sub-optimal solutions in the search space. For validation, the I-SOS algorithm is used to solve unconstrained problems 

using 26 standard mathematical functions. The benchmark functions, dimensions (Dim), and minimum values (Min) are displayed in 

Table 1 [9].   

 

Table 1 Benchmark functions 

 

No Function Dim Min No Function Dim Min 

1 Beale 2 0 14 Zakharov 10 0 

2 Easom 2 -1 15 Michalewicz 10 10 -9.6602 

3 Matyas 2 0 16 Step 30 0 

4 Boha chevsky 1 2 0 17 Sphere 30 0 

5 Booth 2 0 18 Sum squares 30 0 

6 Michalewicz 2 2 -1.8013 19 Quartic 30 0 

7 Schaffer 2 0 20 Schwefel 22 30 0 

8 Six Hump Camel Back 2 -1.03163 21 Schwefel 12 30 0 

9 Boha chevsky 2 2 0 22 Rosenbrok 30 0 

10 Boha chevsky 3 2 0 23 Dixon- Price 30 0 

11 Schubert 2 -186.73 24 Rastrigin 30 0 

12 Colville 4 0 25 Griewank 30 0 

13 Michalewicz 5 5 -4.6877 26 Ackley 26 30 0 

 

No 

Yes 

Parasitism Phase 

1. Rand =rand (0:1)  

2. If Rand < α 

     - Generate organisms using Eq. (8) 

   - Evaluate the fitness of organism 

   - Select the fittest organism 

3. else If Rand ≥ α 

   - Create a parasitic vector  

   - Evaluate the fitness of parasitic vector 

   - Select of the fittest organism 

     end 

 

  

iter+1 

Start 

Initialization, iter=1 

Iter=max(iter)? 

Stop 

Mutualism and 

Commensalism phase  
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Table 2 Effect of random coefficient 

 

Benchmark Description 
Random coefficient (α) 

1.0 0.9 0.7 0.5 0.3 0.1 0.0 

Michalewicz 10 Mean -9.08060 -9.59689 -9.65541 -9.660152 -9.660152 -9.660152 -9.660152 

NFEavg 9000.00 8085.00 5614.20 2900.10 2695.50 2538.90 2423.7 

time (s) 10.7991 9.5322 6.6471 3.4947 3.4394 3.2509 3.2193 

Running times 10 10 10 10 10 10 10 

Convergent times 0 4 8 10 10 10 10 

Rosenbrok Mean 9.28E-13 9.40E-13 9.709E-13 9.72E-13 8.933E-13 3.357E-11 0.266678 

NFEavg 4153.5 4254.6 4743.3 5029.5 6433.8 8989.5 9000.00 

time (s) 4.182066 4.619358 5.20878 5.4980604 7.2807716 10.372944 10.47039 

Running times 10 10 10 10 10 10 10 

Convergent times 10 10 10 10 10 1 0 

 

3.2 Effect of random coefficient (α) 

 

To observe the influence of random coefficients (α) on the algorithm's performance, a simple experiment was conducted by varying 

the random coefficient from 1 to 0. A random coefficient of 1 means all organisms (100%) follow the parasitism phase through MRW, 

while a random coefficient of 0 means no organism goes through MRW (100% of organisms follow the original parasitism). The 

parameter settings used were ecosize=50 and maximum error=1x10-12. The maximum number of iterations is 3000 or maximum number 

fitness evaluations (NFE)=9000. Mean, Time, and NFE average values were obtained after running the program 10 times. The 

simulation was performed on 2 benchmark functions, namely Michalewicz 10 and Rosenbrok. These two benchmarks were chosen 

because both functions have large dimensions, and in the tests conducted by Cheng and Prayogo [9], SOS could not reach the expected 

convergent point. The simulation results are shown in Table 2. 

 Table 2 shows that the convergence of the algorithm is highly influenced by the variation in the value of α. The simulation results 

using the Michalecz 10 function indicate that decreasing the value of α in the simulation improves the algorithm's performance. The 

NFE and convergence time decrease, while the number of convergences increases. However, different results are observed in the 

simulation using the Rosenbrok function. Decreasing the value of α actually worsens the algorithm's performance. The required time 

and NFE increase, while the number of convergences decreases. The simulation results for α=0.5 and α=0.3 show that the number of 

convergences for each benchmark function is 10 for 10 program runs (100%). The difference lies in the fact that the time and NFE for 

α=0.5 are slightly better compared to the value of α=0.3. The convergence curves of the two benchmark functions for α=1.0, α=0.5, 

and α=0.0 are shown in Figure 2. Figure 2 illustrates that the convergence curve for α=0.5 falls between the curves for α=0.0 and α=1.0. 

Therefore, this paper utilizes I-SOS with α=0.5, which means that 50% of new individuals are randomly weighted.  

 

 
 

(a) Rosenbrok convergence with different α 

 
 

(b) Michalewicz 10 convergence with different α 

 

Figure 2 Resenbrok and Michalewicz 10 convergence with different α 

 

3.3 Numerical optimization 

 

The performance of I-SOS was evaluated using a set of 26 unconstrained mathematical functions as a benchmark [8]. The results 

obtained from the simulations were compared to those of Genetic Algorithm (GA), Differential Evolution (DE), Particle Swarm 

Optimization (PSO), Bees Algorithm (BA), Symbiotic Organism Search (SOS), and Quasi-Oppositional SOS (QOSOS). I-SOS was 

developed using Matlab and executed on a laptop equipped with a core 2 duo processor and 4 GB of RAM. The parameter 

configurations for GA, DE, PSO, and BA followed the guidelines provided in [9], while the settings for QOSOS were based on [19]. 

In the case of I-SOS and SOS, the parameters used were ecosize = 50; Maximum number of iterations = 3000 or maximum NFE=9000; 

Maximum error = 1x10-12. The mean, and average NFE (NFEavg) values of I-SOS were computed based on 25 runs for every benchmark. 

Any values below 1x10-12 were considered equivalent to 0 [9]. Table 3 illustrates the performance of I-SOS compared to other 

algorithms in solving the 26 benchmark functions. The highlighted numbers indicate the best results for the respective benchmark. 
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Table 3 demonstrates that based on the convergence rate, I-SOS outperforms the GA, PSO, DE, BA, SOS, and QOSOS algorithms. 

I-SOS achieves a higher convergence rate by converging on 24 out of 26 benchmark functions tested, while SOS and QOSOS converge 

on 22 and 23 benchmark functions, respectively. GA exhibits the worst performance, converging on only 9 benchmark functions. I-

SOS fails to converge only on the Quadratic and Dixon Price functions. However, in the case of the Quadratic function, although I-

SOS does not converge to the expected value, it demonstrates a better mean value (5.894 x 10-5) compared to SOS. This mean value is 

also quite close to the expected global minimum value of 0. As for the Dixon Price function, QOSOS is the only algorithm that can 

reach the global minimum value. Other algorithms, including SOS and I-SOS, only produce a minimum value of 0.66667. 

 

Table 3 I-SOS performance compared to other algorithms. 

 

No Min Description GA [9] PSO [9] DE [9] BA [9] QOSOS [19] SOS I-SOS 

1 0.000 Mean 0.000 0.000 0.000 1.88E-5 0.000 0.000 0.000 

  NFEavg NA NA NA NA NA 158,751 86.283 

2 -1.000 Mean -1.000 -1.000 -1.000 -0.99994 -1.000 -1.000 -1.000 

 NFEavg NA NA NA NA NA 168,708 102.345 

3 0.000 Mean 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 NFEavg NA NA NA NA NA 70,914 49,308 

4 0.000 Mean 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

  NFEavg NA NA NA NA NA 74.639 56.31 

5 0.000 Mean 0.000 0.000 0.000 5.3E-4 0.000 0.000 0.000 

  NFEavg NA NA NA NA NA 264.828 219.63 

6 -1.8013 Mean -1.8013 -1.57287 -1.8013 -1.8013 -1.8013 -1.8013 -1.8013 

  NFEavg NA NA NA NA NA 44.865 32,004 

7 0.000 Mean 0.00424 0.000 0.000 0.000 0.000 0.000 0.000 

 NFEavg NA NA NA NA NA 299.751 146.370 

8 -1.03163 Mean -1.03163 -1.03163 -1.03163 -1.03163 -1.03163 -1.03163 -1.03163 

  NFEavg NA NA NA NA NA 143.631 110.508 

9 0.000 Mean 0.06829 0.000 0.000 0.000 0.000 0.000 0.000 

  NFEavg NA NA NA NA NA 68.25 50.163 

10 0.000 Mean 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

  NFEavg NA NA NA NA NA 96.48 66.366 

11 -186.73 Mean -186.73 -186.73 -186.73 -186.73 -186.73 -186.73 -186.73 

 NFEavg NA NA NA NA NA 432.945 284.256 

12 0.000 Mean 0.01494 0.000 0.04091 1.11760 0.000 0.000 0.000 

 NFEavg NA NA NA NA NA 3977,274 316.305 

13 -4.6877 Mean -4.64483 -2.49087 -4.68348 -4.6877 -4.68348 -4.6877 -4.6877 

  NFEavg NA NA NA NA NA 382.308 277.065 

14 0.000 Mean 0.01336 0.000 0.000 0.000 0.000 0.000 0.000 

 NFEavg NA NA NA NA NA 226.671 168.963 

15 -9.6602 Mean -9.49683 -4.00718 -9.59115 -9.6602 -9.6598 -9.65982 -9.6602 

  NFEavg NA NA NA NA NA 9000 2930.628 

16 0.000 Mean 1.17E+03 0.000 0.000 5.12370 0.000 0.000 0.000 

 NFEavg NA NA NA NA NA 554.37 501.363 

17 0.000 Mean 1.11E+03 0.000 0.000 0.000 0.000 0.000 0.000 

 NFEavg NA NA NA NA NA 180.228 149.643 

18 0.000 Mean 1.48E+2 0.000 0.000 0.000 0.000 0.000 0.000 

  NFEavg NA NA NA NA NA 170.31 142.080 

19 0.000 Mean 0.18070 0.00116 0.00136 1.72E-6 3.2708E-5 7.415E-05 5.894E-05 

 NFEavg NA NA NA NA NA 9000 9000 

20 0.000 Mean 11.0214 0.000 0.000 0.000 0.000 0.000 0.000 

  NFEavg NA NA NA NA NA 303.237 253.517 

21 0.000 Mean 7.40E+3 0.000 0.000 0.000 0.000 0.000 0.000 

  NFEavg NA NA NA NA NA 191.871 162.030 

22 0.000 Mean 1.96E+5 15.08862 18.20394 28.834 1.0354 0.2700 0.000 

  NFEavg NA NA NA NA NA 9000 5475.108 

23 0.000 Mean 1.22E+3 0.6667 0.66667 0.6667 0.000 0.6667 0.6667 

  NFEavg NA NA NA NA NA 9000 9000 

24 0.000 Mean 52.92259 43.97714 11.71673 0.000 0.000 0.000 0.000 

 NFEavg NA NA NA NA NA 280.44 198,117 

25 0.000 Mean 10.63346 0.01739 0.00148 0.000 0.000 0.000 0.000 

 NFEavg NA NA NA NA NA 186.12 154.428 

26 0.000 Mean 14.67178 0.16462 0.000 0.000 0.000 0.000 0.000 

 NFEavg NA NA NA NA NA 297.24 249.006 

Global minimum 9 17 18 18 23 22 24 
NA: Not available.  

 

 Regarding the convergence speed, I-SOS outperforms SOS on 24 benchmark functions, and in 2 other benchmark functions, both 

I-SOS and SOS do not converge. Based on the NFE, I-SOS is on average 32.29% faster than SOS. The comparison of convergence 

characteristics between I-SOS and SOS for solving the Schaffer function is illustrated in Figure 3. 
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Figure 3 Convergence characteristics of I-SOS and SOS on the Schaffer function 

 

4. Conclusions 

 

This study suggests enhancing SOS by incorporating random weight during the parasitism phase. The inclusion of random weight 

in this phase aims to increase the diversity of organisms within the ecosystem, leading to the attainment of the optimal global value. 

The validation results using 26 benchmark functions demonstrate that I-SOS outperforms other methods in terms of NFE and 

convergence speed. I-SOS achieves convergence in 24 out of 26 benchmark functions with superior accuracy compared to alternative 

approaches. In terms of convergence speed, I-SOS excels across 24 benchmarks, being 32.29% faster than SOS. Based on the validation 

outcomes, it can be concluded that I-SOS exhibits a greater ability to discover optimal solutions. 
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