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Abstract

COz2 has been widely used as a working fluid in power generation and refrigeration systems and multistage compression is one important
process in these systems. To save energy consumption, the compression should be conducted at optimum interstage pressure. In this
work, a model to find the optimum interstage pressure for two-stage CO2 compression is studied. Use of cubic equations of state in the
model is investigated and compared its result with the result from using a multiparameter equation of state, called SW equation of state.
The compression in a subcritical region and from a subcritical to a supercritical region are investigated. The results of this study show
that the cubic equations of state, except van der Waals equation of state, can generally predict the CO2 density and thermal expansivity
with satisfied accuracy. The optimum interstage pressures obtained from the model using Redlich-Kwong, Peng-Robinson, and
Redlich-Kwong-Soave equations of state are close to that using SW equation of state. The average absolute percentage difference
(AAPD) from the comparison showed that these three cubic equations of state have AAPD less than 0.6% and 0.9% for the subcritical
and transcritical compressions, respectively. The result of the study also shows that when the optimum interstage pressure is higher
than the critical pressure, the optimum interstage pressure slightly increases with increasing the outlet pressure of the second-stage
COMPpressor.
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1. Introduction

Carbon dioxide (CO2) is now an interesting gas involving environmental problems, power generation systems, refrigeration
systems, chemical industries, etc. COz2 is a greenhouse gas regarding a main contributor of global warming and climate change. Use of
fossil fuels, such as in power generation and transportation sectors, has been the single largest source of CO2 emissions, responsible
for nearly 65% of the global greenhouse gas emissions [1]. The capture and storage of CO2 from flue gases is considered as one
potential way to reduce global CO2 emissions.

Due to climate change, refrigerants with low ozone depletion potential (ODP) and global warming potential (GWP) are developed.
Even the GWP of CO: equals one, CO2 has been interested to use as a refrigerant because of nontoxic, non-flammables, and
noncorrosive. Moreover, CO2 can be obtained as a waste product from some industrial activities, which is good for the environment
[2]. As an interesting refrigerant, much effort has been paid to improving the COz refrigeration cycle’s performance in recent years [3].

In power generation, the supercritical CO2 Brayton cycle technology has been widely studied as it has high efficiency, low corrosion
rate and compact system layout [4]. Another advantage of using supercritical COz in the Brayton cycle is that the higher density at the
compressor inlet reduces the compressor specific work [5]. A review of supercritical CO2 power cycle integrated with concentrating
solar power and the discussion of supercritical CO2 properties can be found in [6].

Compression is an important process in the operation of such systems mentioned above. To compress CO2 gas from a low pressure
to a desired pressure, a multistage compression has been often used. Intercooling processes have been applied between compression
stages. An optimum interstage pressure, so called an intermediate pressure, is a critical parameter of a two-stage compression system
[7] because it leads to a minimum specific compression work. Textbooks [8, 9] usually used an ideal gas with constant specific heat to
find the optimum interstage pressure and the suction temperature of the second-stage compressor is cooled down to that of the first-
stage compressor. The optimum interstage pressure based on the ideal gas model is:

Popt,id = \/Pizpo @

where P; represents the suction pressure of the first-stage compressor and P, is the discharge pressure of the second-stage compressor.
Equation (1) expresses that the optimum interstage pressure is the geometric mean of the suction and discharge pressures and this
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optimum interstage pressure causes the same compression ratio in the first stage and the second-stage compressions. However, Ozgiir
[10] has discussed that the ideal gas model may not provide the optimum interstage pressure in practice. The optimum interstage
pressure from the ideal gas model can be used as a good initial guess for an iterative method to find the optimum interstage pressure
[11].

A better ideal gas model to determine the optimum interstage pressures in the multistage compression has been developed by
Vadasz and Weiner [12]. The difference of suction gas temperatures and the pressure drops in intercoolers were considered in their
model. A similar result of the optimum interstage pressures, expressed in Vadasz and Weine’s work, has been found in a study from
Lugo-Méndez et al. [13]. Different calculation methods of the optimum interstage pressure, however, based on the ideal gas assumption,
have been found in literature [14, 15].

The optimum interstage pressure has been usually obtained using the mathematical concept of finding a maximum or minimum
point. To find the optimum thermodynamic condition in refrigeration systems, the derivative of the COP (coefficient of performance)
with respect to a pressure is found and it is set to be zero to find the pressure giving the maximum COP [16-18]. Inversely, the minimum
compression specific work can be found by setting the derivative of the specific work with respect to the pressure [19]. In these methods,
the thermodynamic properties of real gases, such as enthalpy and density, can be adopted in the calculation and use of real gas properties
in the calculation is better than using ideal gas assumption. However, the differentiations of thermodynamic properties must appear in
the calculations and these terms cause complicated calculations [16]. Computer simulation programs and commercial computer
programs providing thermodynamic properties are sometimes required such as those programs applied in the works from [17, 18].

Thermodynamic properties of CO2 can be calculated using an equation of states. A multiparameter equation of state called Span
and Wagner (SW) equation of state [20] is an accurate equation of state and known as an international reference equation of state for
CO:2 covering a wide range of temperature and pressure [21]. However, due to complication and time consumption, SW equation of
state is not included in most of the commercial software package [22]. Jarungthammachote [23] has developed a calculation model of
the optimum interstage pressures for multistage compression with intercoolings. The focused compression range of the study was
mainly in the supercritical region. The model expressed in terms of real gas properties and a partial derivative of entropy.
Multiparameter equations of state for different gases were used to find the properties and the derivative term in the study. The author
has mentioned that the multiparameter equations of state can give accurate properties of the gases even in supercritical region. However,
they consume computational resources and time. This is because a multiparameter equation of state consists of many terms and some
are complicated exponential terms. From this disadvantage, use of other equations of state should be studies and cubic equations of
state are interesting choices for this purpose. Calculation of properties using cubic equations of state shows some advantages over using
other types of equation of state. Cubic equations of state are relatively simple as they involve only a few parameters. Moreover, these
parameters can be easily adjusted and fitted to experimental data allowing for improved accuracy when modeling the properties of
specific gases or mixtures. The cubic equations of state are simple and easier for coding to develop a mathematical model and this
simplicity leads to an efficient computation of properties. The cubic equations of state, such as Peng-Robinson (PR) and Redlich-Kong-
Soave (RKS) equations of state, have been employed to find CO2 and other gases properties in single-phase regions, i.e., superheated
and supercritical regions [24-29]. Based on the literature [24, 27-29], PR and RKS equations of state can give sufficient accurate results
in prediction of density and other properties of COz2 in superheated and supercritical regions. Therefore, the cubic equations of state
should be investigated about their applications in the development of the optimum interstage pressure model.

This study aims to develop a model for calculation of the optimum interstage pressure in two-stage CO2 compression with an
intercooling process. The model is based on use of cubic equations of state, there are van der Waals (vdW), Redlich-Kwong (RK), PR,
and RKS equations of state. The properties of CO2 used to find the optimum interstage pressure obtained from the cubic equations of
state are validated with SW equation of state as well as experimental data. The model is investigated for CO2 compression in
superheated region (subcritical compression) and superheated to supercritical region (transcritical compression). The results of the
model are compared with that from the previous model which used SW equation of state. This work contributes the alternative way to
find the optimum interstage pressure of two-stage CO2 compression, which is based on the real gas properties. It is, therefore, better
than use of ideal gas model, especially in the transcritical compression. Moreover, it can indicate the potential of cubic equations of
state application for the optimum interstage pressure model.

2. Materials and methods
2.1 Equation of state

In this study, four cubic equations of state, vdW, RK, PR, and RK equations of state, are focused. The reference equation of state
used in this study is SW equation of state. A general format of the cubic equations of state can be presented as

p_RT a
v—=b (v+c)(v+d)

@

The parameters a, b, ¢ and d are described in Table 1. P,, T, and w are the critical pressure, the critical temperature, and the acentric
fraction, respectively. The values of P., T, and w used in this study are P. =7.3773 MPa, T, =304.1282 K and w = 0.22394. R is the
gas constant and its value for COz is R = 0.18892 kJ/kg-K.
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Table 1 Parameters for the cubic equations of state

Equation of state a b c d
212 1RT,
vdw 21 RTe 1RTe 0 0
64 P 8 R
212 RT,
RK 0427487 7¢ 1 0.08664--.C b 0
P \Tr R
2:2
0.45724 % 1¢
¢ RTc
PR 2 0.07780—-¢ (1++2)b (1-v2)b

a=[1+m(1-{T)]", Fe
m = 0.37464 +1.542260)— 0.26992°
R272 .

c

0.42748

0.08664 ¢ b 0

a=[1+m(1—jT_r)J2, Fe

m = 0.48508 +1.5517 ¢ — 0.156130>

RKS

To find the specific volume, which is an inverse of density, a cubic equation of specific volume, is obtained as.

v3+(c+d —b—%)vz+[g—(%+b](c+d)+cd}v{a—:+(g+bj(cd)}:0 3

The SW equation of state is the multiparameter equation of state which is possibly classified as a Helmholtz-type equation of state.
The specific Helmholtz free energy, a(p, T), is presented in terms of a non-dimensional Helmholtz free energy, ¢ (8, 7), and it is split
into an ideal gas part, ¢° (6, 7), and a residual part, ¢" (8, 7), as shown in Eq. (4).

a(

#(6,7) =

Fff) — 6.0+ 4 (5.1) (4)

where § = p/p. and T = T, /T are the reduced density and the inverse of reduced temperature, respectively. The subscript ¢ denotes
the value at the critical point. The details of SW equation of state can be found in [20].

2.2 Optimum interstage pressure of CO2 compression
For a two-stage compression with an intercooling process, the total specific work can be determined as:

(hys ) (g —hy)

Misen2 Tisen1

®)

Weot =

where the subscript s represents the isentropic process and the subscripts 1, 2, 3 and 4 indicate the thermodynamic states in the two-
stage compression shown in Figure 1.
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Figure 1 Two-stage compression with intercooling process
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In this study, no pressure losses in the intercooler and pipelines and the constant isentropic efficiencies of 9igen1 aNd Nigenz, are
assumed in the analysis. To find the optimum interstage pressure, P, = P3op;, the derivative of the total specific work with respect
to P, is determined and set to be zero. It finally results:

T4 7T3 _ [1/ (p3’7isen2) -1/ (pznisenl)] -0
Uisenz (853 /aps )T:Ta

(6)

A detail of derivation of Eq. (6) is shown in Appendix A. Based on the Maxwell relation, the denominator of the second
term, (0s/dP)r, can be replaced by —(dv/dT)p and this derivative can relate to a fluid property called the thermal expansivity (or the
thermal expansion coefficient), 8, which is defined as:

1( ov 1(9 1| (6P /0T

po(2) -2 @i, o
viaT Jo  p\aT )y V| (8P /ov),

Thus, Eq. (6) can be rewritten as:

f :T _T + 1_ p3 nisenz 1 :0 (8)
12713 e
P2 Mems | Ps

2.3 Thermodynamic properties

To find the optimum interstage pressure using Eq. (8) the density and thermal expansivity of CO2 are required. The density is an
inverse of the specific volume, obtained from solving Eq. (3). The thermal expansivity can be calculated from the most-right term in
Eq. (7) because the cubic equations of state are explicitly expressed in terms of pressure. The derivative terms, (0P/dT),, and
(0P /dv)r, obtained from the cubic equations of state as well as SW equation of state, are shown in Table 2. In the case of SW equation
of state, the details of partial derivative terms can be found in Span and Wagner’s work [20].

Table 2 The derivative terms in Eq. (7) calculated using cubic and SW equations of state

Equation of state (apP/aT), (oP/dv)r
R R 2a
VdW (V—b) (V—b)2 v3
RK R , a R, a(2v+b)
(v=b) 2v(v+b)T (v=b)*  V?(v+b)’
R am -R 2a(v+b)
PR + 7+ 2
(v=b) [v(v+b)+b(v-b)]\TT.a (v—=b)" [v(v+b)+b(v-b)]
RKS R . am -R . a(2v+b)
(v=b) v(v+b)TTa (v—b)* V(v+b)’
r 2 4r r 2 4r
SW pR(1+5a¢ -0 o9 j TR[1+256¢+526¢2]
00 0001 00 00

The value of entropy used in the isentropic process calculation is obtained from the dimensionless entropy departure, (s - sig)/R,
and it can be computed based on the cubic equations of state as presented in Table 3. The standard entropy available in NASA report

[30] is used to find the ideal gas entropy, s*.

Table 3 Dimensionless entropy departure obtained from the cubic equations of state

Equation of state (s—s%)/R
vdw In[Z(1-b/v)]
RK In[Z(1-b/v)]- 2 In@+b/v)
da/dT 1+(1+\5)b/V am
PR In|Z(1-b/v) |- n ,da/dT =—
[2( )] 242 bR 1+(1—J§)b/v JTTa
da/dT am
In|Z(1-b/v) |- In(1+b/v),da/dT =-
RKS n[Z( V)] = n(l+b/v), da —
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2.4 Calculation of the optimum interstage pressure

The calculation procedure to find the optimum interstage pressure using the cubic equations of state is shown in Figure 2. Hereafter,
the symbol EoS represents the word “equation of state”. The ideal gas optimum interstage pressure multiplied with a constant c,
Py init = ¢/ PinPoyt, Can be used as the initial guess of P,. The constant can be varied between 1.3 to 1.6. The recommended value of
¢ was obtained from the fact that the ideal gas model usually underestimates the optimum interstage pressure and based on the pressure
and temperature ranges in this study, the ratio of optimum interstage pressure from the ideal gas model and that from the cubic equations
of state generally varied from 1.3 to 1.6.

START

Identification of parameters:
Pl L] T] J T: L] PJ s Misent» Migen

!

Assume P, (P,

2,imit

Update 7, using
secant method

l NO
State 1

known: R, VES
From cubic EoS 2 p,, 5, STOP

State 2 T
known: s, =s,, P,

Jand £ =P, e

Equation (7) > f

A

From secant method > 7,
From cubic EoS > p,

'

State 4

State 3 known: s, =s,, P,

known: T, P,
From cubic EoS = p,, 3,5,

* From secant method > T,
From cubic EoS > p,

Figure 2 Calculation procedure of optimum interstage pressure
3. Results and discussion
3.1 Density and thermal expansivity comparisons

In this section, the density and the thermal expansivity calculated from the cubic equations of state are compared to that calculated
from SW equation of state. For the density, the calculation results from the cubic equations of state are also compared to the
experimental data. The comparisons are done in 3 regions. The first (I) and second (lI) regions are superheated with T < T, and
T, < T, respectively. The third (I11) region is a supercritical region. The details of each comparison region are shown in Table 4. The
average absolute percentage deviation (AAPD) is used in the comparisons. The formula of AAPD is expressed in Eq. (9) and it is the
average value of the absolute percentage deviations (APD). In comparison of the density from cubic equations of state with that from

the experimental data, pS"in Eq. (9) is replaced by the density from the experiment, p**?.

cubic

13 |p" - p
AAPD:NZ W

i=1 i

N
100 = %Z APD 9)
i=1

Table 4 Pressure and temperature ranges and the number of comparison points in each region

Region Temperature range (K) Pressure range (MPa) No. of data points
0) 222.0 - 302.0 0.599 — 6.713 231
()} 304.0 — 1000.0 0.599 - 7.370 441
(nn 304.1282 — 1000.0 7.3773 — 60.000 900

Table 5 shows the AAPD obtained from the comparison of density calculated from cubic equations of state and SW equation of
state in different regions. In region (1), RKS and PR equations of state give lowest AAPD in density and thermal expansivity
comparisons, respectively. For the high temperature superheated region, region (1), PR equation of state can predict the density of CO2
better than the others, while RKS estimates the thermal expansivity slightly better than PR. However, RK, PR and RKS can predict
density and thermal expansivity with slightly different AAPD. For vdW equation of state, it provides the density of CO2 in the
superheated regions with highest AAPD. If the ideal gas law is applied, it gives the density in the higher temperature superheated region
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with AAPD of 3.19%, while AAPD of vdW equation of state is 1.412%. Therefore, use of vdW equation of state to predict the density
of COy, even in the high temperature region, gives a better result than use of the ideal gas law. The highest AAPD of each cubic equation
of state is found in the supercritical region. PR equation of state has considerably low AAPD for density prediction and it also gives
the thermal expansivity with the lowest AAPD when compared to other cubic equations of state.

Table 5 AAPDof density and thermal expansivity comparisons between that from cubic equations of state and SW equation of state.

EoS Property AAPD (%)
Region (1) Region (1) Region (111)
p 3.443 1.412 7.744
vdw
B 17.892 2.582 15.228
p 1.115 0.799 3.795
RK B 8.868 1.011 4.391
- p 0.751 0.375 0.946
B 2.992 0.946 3.177
p 0.548 0.721 4.562
RKS
B 4.077 0.801 4.962

To compare the density prediction from the cubic equations of state with that from the experiments, CO2 densities in superheated
and supercritical regions available in the literature [31-33] are used. The experimental data were not recorded in equal increments of
temperature and pressure and the experimental data used in the comparison are not cover the pressure and temperature ranges shown
in Table 4. In superheated region, the data cover the temperature and pressure ranges of 220 K to 697.81 K and 0.2973 MPato 7.37163
MPa, respectively. For supercritical region, the densities are available in the temperature and pressure ranges of 304.135 K to 695.36
Kand 7.37861 MPa to 34.203 MPa, respectively. The number of experimental data points used in this comparison is totally 485. There
are 226 data points located in the superheated region and 259 data points are in the supercritical region. Table 6 expresses AAPD of
the comparison between the density predicted from cubic equations of state and that from experiments. The comparison results in
Table 6 indicate that PR equation of state gives the lowest AAPD in the comparison of density in superheated and supercritical regions.

Table 6 AAPDof the density comparison between that from cubic equations of state and experimental values

EoS AAPD (%)
Superheated region Supercritical region
vdwW 5.442 12.287
RK 2.173 6.174
PR 1.280 3.852
RKS 1.693 8.590

3.2 Optimum interstage pressure

To show the optimum interstage pressure calculated from the cubic equations of state, the compressions of CO: are classified into
two cases, the subcritical and the transcritical compressions. The inlet state, defined by P; and Ty, and T of the subcritical compression
case are P; = 101.325 kPa, T, = 298K and T; = 306 K, while these of the transcritical compression case areP; = 2.6487 MPa,
T,= 264 K and T3 = 306 K. The outlet temperature of the intercooler defined at 306 K is based on the concept that the ambient air is
used as a cooling fluid. The cooling air has an average temperature of 301 K (28 °C) and the approach temperature is set at 5 K. The
desired pressure, P,, of these two compression cases is varied to study the change of the optimum interstage pressure. The simulation
results are shown in the following sections.

3.2.1 Subcritical compression

For CO2 subcritical compression, the optimum interstage pressures calculated using the cubic equations of state for the isentropic
compression are presented in Figure 3(a). It shows that at low P,, all cubic equations of state give almost the same optimum interstage
pressure. However, when P, increases the difference of the optimum interstage pressures obtained from different cubic equations of
state can be observed. Among cubic equations of state, PR and RKS equations of state provide virtually the same optimum interstage
pressure. For example, at P, = 7.0 MPa, the optimum interstage pressure predicted by PR and RKS equations of state are 0.9933 and
0.9912 MPa, respectively. At P, = 7.0 MPa, SW equation of state gives the optimum interstage pressure of 0.9857 MPa. The
comparison of the optimum interstage pressures from PR and SW equations of state shows the APD of 0.77%, while that from RKS
and SW equation of state gives APD of 0.55%. In the case of using RK and vdW equations of state to find the optimal interstage
pressure for P, = 7.0 MPa, the APD are 0.84% and 2.22%, respectively. The AAPD from the case of PR, PK, and RKS equations of
state are slightly different and the AAPD of these three cases are less than 0.6%. Moreover, the ideal gas model, Py, = /Py Py, is also
used to find the optimum interstate pressures at different P, and they are compared with the results of other equations of state as shown
in Figure 3(a). It is clearly illustrated that the ideal gas model provides the optimum interstage pressures much lower than that from
other equations of state. The AAPD from the comparison of the ideal gas model and SW equation of state is 11.5%.
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Figure 3 Optimum interstage pressure for CO2 compression from P; = 0.101325 MPa, T,= 298 K to different P, with T; = 306 K (a)
isentropic compression and (b) non-isentropic compression with 75, 1 = 0.87 and 7;sen » = 0.82

In Figure 3(b), the optimum interstage pressures calculated from the cubic and SW equations of state as well as the ideal gas model
for non-isentropic compressions are presented. The isentropic efficiencies are 7;sen 1 = 0.87 and n;en 2 = 0.82. The results in Figure
3(b) show that the cubic equations of state can give the optimum interstage pressure of non-isentropic compression marginally different
from that given by SW equation of state. The AAPD of the comparison for the case of PR, RK, and RKS are 0.49%, 0.54%, and 0.42%,
respectively. For vdW equation of state, it has AAPD of the comparison of 1.52%. If the ideal gas model is applied for the non-isentropic
compression, it yields AAPD of 23.64%. It should be noted that the ideal gas model is developed based on isentropic compression.
Application of ideal gas model in non-isentropic compression can cause a large value of deviation. The total specific compression work
computed based on the optimum interstage pressure obtained from PR and RKS equations of state are about the same value as that
from SW equation of state and they are a little lower than that from the other cubic equations of state.

3.2.2 Transcritical compression

To study the optimum interstage pressure of CO2 compression from the subcritical region to the supercritical region, the inlet state
is defined as P, = 2.6487 MPa, T; = 264 K (0.85 degree of superheat) and T3 is fixed at 306 K. The outlet pressure, P,, is varied from
7.0 MPa to 15.0 MPa. The optimum interstage pressure of isentropic and non-isentropic compressions are shown in Figures 4(a) and
4(b), respectively.

8.0

75 +
< 7.0 Gl
s =3
n_% 6.5 n_%

7.0 9.0 11.0 13.0 15.0 7.0 9.0 11.0 13.0 15.0
P, (MPa) P, (MPa)

Figure 4 Optimum interstage pressures for CO2 compression from P; = 2.6487 MPa, T;= 264 K to different P, with T; = 306 K, (a)
isentropic compression and (b) non-isentropic compression with 1;se, 1 = 0.87 and 75, = 0.82

The optimum interstage pressure from the cubic and SW equations of state show the same shape for the isentropic and non-
isentropic compressions, but they are different in values. Therefore, the discussions are done only for the isentropic compression. The
optimum interstage pressure from the cubic and SW equations of state give a similar trend. For P, from 7.0 MPa to 9.0 MPa, the
optimum interstage pressure dramatically increases with increasing P,, especially with in the range of P, from 8.5 MPato 9.0 MPa and
from 8.0 MPa to 8.5 MPa for the isentropic and non-isentropic compressions, respectively. A 0.5 MPa increment in P, of theses ranges
(8.5 MPato 9.0 MPa and 8.0 MPato 8.5 MPa) results in a nearly vertical ascent in the optimal interstage pressure changes. This rapid
increase accidentally causes lines linking the optimal interstage pressures for these two points of P, to nearly overlap. However, it is
important to inform that the optimal interstage pressure values within these P, ranges exhibit slight variations, similar to that occur at
lower value of P,. When the optimum interstage pressure is higher than the critical pressure, increasing P, causes a little increase of
the optimal interstage pressure. The shape of the optimum interstage pressure as shown in Figures 4(a) and 4(b) has been found in Jeon
and Kim’s work [18] in which a multi-stage compression cycle of liquified COz2 transport ship was studied.

For the comparison of the optimum interstage pressure obtained from the cubic equations of state and that from SW equation of
stat, at P, lower than 8.5 MPa, SW equation of state gives the optimum interstage pressure higher than that from the cubic equations
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of state. For higher P,, the optimum interstage pressure from SW equation of state marginally changes when P, increases. However,
the optimum interstage pressures from PR, RK and RKS equations of state increase with higher rates than that from SW equation of
state. Therefore, the value of the optimum interstage pressure from SW equation of state varies between these values from PR, RK and
RKS equations of state. PR and RKS equations of state give almost the same value of the optimum interstage pressure and they are
averagely higher than that predicted by RK equation of state. The AAPD for the case of PR, RK, and RKS equations of state are slightly
different. These values are less than 0.9% and the highest value of AAPD is found in the isentropic compression predicted by PR
equation of state and its value is 0.88%. For vdW equation of state, it gives lowest optimal interstage pressure and finally approaches
the value from SW equation of state. The AAPD of the case of vdW equation of state is 1.46% for the isentropic compression and
1.27% for the non-isentropic compression.

To compare the results from the model developed in this study with that analyzed by Jeon and Kim [18], the optimum interstage
pressures from the present model are plotted and compared with the results from [18], as illustrated in Figure 5. This figure shows that
the optimum interstage pressures from using PR and RKS equations of state almost completely coincide with that from Jeon and Kim’s
analysis. The optimum interstage pressures from these two cubic equations of state compared to that from Jeon and Kim’s work show
AAPD of 0.46% for RKS and 0.47% for PR equations of state. For the results using RK and vdW equations of state, they diverge from

results of Jeon and Kim’s analysis with AAPD of 0.95% and 1.93%, respectively.

8.0
<
a70 -
3
n:é“ ® JeonKim
6.0 —PR
' ——RK
---RKS

—a—vdW

T

50 — ‘ ‘
70 80 90 100 110 120 130 140

P, (MPa)

Figure 5 Comparison of optimum interstage pressure from present model and that from Ref. [18]

It is quite interesting that, in Figures 4(a), 4(b) and 5, after the optimum interstage pressure is higher than the critical pressure,
when P, increases the optimum interstage pressure is almost unchanged. The reason is that the entropy constant lines around or on the
left-hand side of the critical point are steeper than the others in the superheated region and the right-hand side of the critical point, as
illustrated in P-h diagram shown in Figure 6. In the figure, it is the thermodynamic states plotted following the calculation of the
optimum interstage pressure using PR equation of state for the case of P, = 11.5 MPa. The entropy constant line for the first-stage
compression (s = 1.90330 kJ/kg-K) has lower slope than the entropy constant line for the second-stage compression (s = 1.36792
kJ/kg-K). It can be implied that when P, increases, the increase of the enthalpy change in the first-stage compression is more than the
deduction of the enthalpy change in the second-stage compression due to different slope of entropy constant lines. Consequently,
increase of the specific compression work in the first stage, w; = (h, s — hy), is more than reduction of the specific compression work
in the second stage, w, = (hss — h3). With similar reason, when P, increases, for example from 11.0 MPa to 11.5 MPa, the outlet
pressure in the first-stage compression should slightly increases and the outlet pressure in the second-stage compression should be
mainly increases to reach the desired P,. Even though the pressure in the second-stage compression is mainly risen, the specific
compression work in this stage slightly increases, because the entropy constant line is very steep and it causes a small increase of the
enthalpy difference. For the non-isentropic compression, it can also be explained by this way, because the non-isentropic compression
work is based on the isentropic compression work as w,.; = Wigen/Nisen. However, if the isentropic efficiency of the second-stage
compressor is much lower than that of the first-stage compressor, it possibly affects the changing trend of optimum interstage pressure.
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Figure 6 P-h diagram showing the thermodynamic states for the isentropic compression from P; = 2.6487 MPa, T, =264 Kto P, =
11.5 MPa with T3 = 306 K
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4. Conclusion

CO2 compression is a key process in power generation and refrigeration systems using CO: as working fluid. Consequently, the
optimum interstage pressures, minimizing compression work, is an interesting topic. The optimum interstage pressure model based on
cubic equations of state for two-stage CO2 compression is developed in this study. The results of the model are validated with the
previous model using the multiparameter equation of state, called Span-Wagner (SW) equation of state. The developed model requires
densities, temperatures and thermal expansivity to find the optimum interstage pressure. The main conclusions drawn from the study
are summarized as follows:

e Cubic equations of state are computationally efficient because of their simplicity and they provide reasonably accurate

properties even in supercritical region, especially RKS, PR, and RK equations of state.

e RKS, PR, and RK equations of state can predict the optimum interstage pressure close to that from the SW equation of state
with the average absolute percentage difference less than 0.6% and 0.9% for subcritical and transcritical compressions,
respectively.

e The ideal gas model cannot give the optimum interstage pressure with reasonable average absolute percentage difference,
especially at high pressure.

e Intranscritical compression, increase in outlet pressure of the second-stage compression causes a small increase in the optimum
interstage pressure when the optimum interstage pressure is above the critical pressure. This is because the enthalpy difference
in the first-stage compression is higher than that in the second-stage compression.
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Appendix A. Derivation of Eq. (5)

Based on the total specific work defined in Eq. (4) and the assumption that the isentropic efficiencies are constants, the derivative
of the total specific work with respect to P, can be expressed as:

ow, 1 0

tot _

aPZ ﬂisenz aipz

1 0

(h4,s - hg)+ﬁ67|32

(hs—hy) (App. 1)

The derivative of h; with respect to P, , (3h,/0P,), is zero because the compressor inlet state or state 1 is independent of the
pressure P,. The temperature T3 and the desired discharge pressure, P,, are known parameters. The derivative of h, s with respect to

P, , (ah“ /apz), can be transformed as (ah4_s /654)P_P X (653 /6P2)T=T3. As it requires a lot of page space to describe, a detailed
T4
explanation of this transformation can be found in Ref. [23]. Therefore, Eq. (App. 1) can be rewritten as the following equation.

o _ 1 [am,sj [68} _(%J Lt (ahz,sJ (App. 2)
aPZ nisenz as4 P=P, aF’Z T=T, aPZ T=T, nisenl aPZ s=s5,

From the Maxwell relationship, it gives that (6h4's/6s4)P_P =T, (ahz,s/apz)szs =1/p,and (0h3/0P,)r=r, = T3(ds3/
=P, 2

0P,)r=r, + 1/p3. No pressure drop in the intercooling is assumed. It results in that P, = P5. Substituting these relations into Eq.
(App. 2) and set the result to be zero, it yields:

11

1 T(@sj T[@s) _L,
77isen2 aPS T=T, 6P3 T=T, p3 Uisenl pz

Arranging Eq. (App. 3) gives Eq. (App. 4) which is similar to Eq. (5).

0 (App. 3)

T4 _T3 _ [1/ (p?:nisenz) -1/ (pznisenl)] -0

(App. 4)
77isen2 (653 / aF>3 )T =T,



