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Abstract 

 

CO2 has been widely used as a working fluid in power generation and refrigeration systems and multistage compression is one important 

process in these systems. To save energy consumption, the compression should be conducted at optimum interstage pressure. In this 

work, a model to find the optimum interstage pressure for two-stage CO2 compression is studied. Use of cubic equations of state in the 

model is investigated and compared its result with the result from using a multiparameter equation of state, called SW equation of state. 

The compression in a subcritical region and from a subcritical to a supercritical region are investigated. The results of this study show 

that the cubic equations of state, except van der Waals equation of state, can generally predict the CO2 density and thermal expansivity 

with satisfied accuracy. The optimum interstage pressures obtained from the model using Redlich-Kwong, Peng-Robinson, and 

Redlich-Kwong-Soave equations of state are close to that using SW equation of state. The average absolute percentage difference 

(AAPD) from the comparison showed that these three cubic equations of state have AAPD less than 0.6% and 0.9% for the subcritical 

and transcritical compressions, respectively. The result of the study also shows that when the optimum interstage pressure is higher 

than the critical pressure, the optimum interstage pressure slightly increases with increasing the outlet pressure of the second-stage 

compressor. 
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1. Introduction 

 

Carbon dioxide (CO2) is now an interesting gas involving environmental problems, power generation systems, refrigeration 

systems, chemical industries, etc. CO2 is a greenhouse gas regarding a main contributor of global warming and climate change. Use of 

fossil fuels, such as in power generation and transportation sectors, has been the single largest source of CO2 emissions, responsible 

for nearly 65% of the global greenhouse gas emissions [1]. The capture and storage of CO2 from flue gases is considered as one 

potential way to reduce global CO2 emissions.  

Due to climate change, refrigerants with low ozone depletion potential (ODP) and global warming potential (GWP) are developed. 

Even the GWP of CO2 equals one, CO2 has been interested to use as a refrigerant because of nontoxic, non-flammables, and 

noncorrosive. Moreover, CO2 can be obtained as a waste product from some industrial activities, which is good for the environment 

[2]. As an interesting refrigerant, much effort has been paid to improving the CO2 refrigeration cycle’s performance in recent years [3]. 

In power generation, the supercritical CO2 Brayton cycle technology has been widely studied as it has high efficiency, low corrosion 

rate and compact system layout [4]. Another advantage of using supercritical CO2 in the Brayton cycle is that the higher density at the 

compressor inlet reduces the compressor specific work [5]. A review of supercritical CO2 power cycle integrated with concentrating 

solar power and the discussion of supercritical CO2 properties can be found in [6]. 

Compression is an important process in the operation of such systems mentioned above. To compress CO2 gas from a low pressure 

to a desired pressure, a multistage compression has been often used. Intercooling processes have been applied between compression 

stages. An optimum interstage pressure, so called an intermediate pressure, is a critical parameter of a two-stage compression system 

[7] because it leads to a minimum specific compression work. Textbooks [8, 9] usually used an ideal gas with constant specific heat to 

find the optimum interstage pressure and the suction temperature of the second-stage compressor is cooled down to that of the first-

stage compressor. The optimum interstage pressure based on the ideal gas model is: 

 

,
P P Poiopt id

                                            (1) 

 

where 𝑃𝑖 represents the suction pressure of the first-stage compressor and 𝑃𝑜 is the discharge pressure of the second-stage compressor. 

Equation (1) expresses that the optimum interstage pressure is the geometric mean of the suction and discharge pressures and this 
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optimum interstage pressure causes the same compression ratio in the first stage and the second-stage compressions. However, Özgür 

[10] has discussed that the ideal gas model may not provide the optimum interstage pressure in practice. The optimum interstage 

pressure from the ideal gas model can be used as a good initial guess for an iterative method to find the optimum interstage pressure 

[11]. 

A better ideal gas model to determine the optimum interstage pressures in the multistage compression has been developed by 

Vadasz and Weiner [12]. The difference of suction gas temperatures and the pressure drops in intercoolers were considered in their 

model. A similar result of the optimum interstage pressures, expressed in Vadasz and Weine’s work, has been found in a study from 

Lugo-Méndez et al. [13]. Different calculation methods of the optimum interstage pressure, however, based on the ideal gas assumption, 

have been found in literature [14, 15]. 

The optimum interstage pressure has been usually obtained using the mathematical concept of finding a maximum or minimum 

point. To find the optimum thermodynamic condition in refrigeration systems, the derivative of the COP (coefficient of performance) 

with respect to a pressure is found and it is set to be zero to find the pressure giving the maximum COP [16-18]. Inversely, the minimum 

compression specific work can be found by setting the derivative of the specific work with respect to the pressure [19]. In these methods, 

the thermodynamic properties of real gases, such as enthalpy and density, can be adopted in the calculation and use of real gas properties 

in the calculation is better than using ideal gas assumption. However, the differentiations of thermodynamic properties must appear in 

the calculations and these terms cause complicated calculations [16]. Computer simulation programs and commercial computer 

programs providing thermodynamic properties are sometimes required such as those programs applied in the works from [17, 18]. 

Thermodynamic properties of CO2 can be calculated using an equation of states. A multiparameter equation of state called Span 

and Wagner (SW) equation of state [20] is an accurate equation of state and known as an international reference equation of state for 

CO2 covering a wide range of temperature and pressure [21]. However, due to complication and time consumption, SW equation of 

state is not included in most of the commercial software package [22]. Jarungthammachote [23] has developed a calculation model of 

the optimum interstage pressures for multistage compression with intercoolings. The focused compression range of the study was 

mainly in the supercritical region. The model expressed in terms of real gas properties and a partial derivative of entropy. 

Multiparameter equations of state for different gases were used to find the properties and the derivative term in the study. The author 

has mentioned that the multiparameter equations of state can give accurate properties of the gases even in supercritical region. However, 

they consume computational resources and time. This is because a multiparameter equation of state consists of many terms and some 

are complicated exponential terms. From this disadvantage, use of other equations of state should be studies and cubic equations of 

state are interesting choices for this purpose. Calculation of properties using cubic equations of state shows some advantages over using 

other types of equation of state. Cubic equations of state are relatively simple as they involve only a few parameters. Moreover, these 

parameters can be easily adjusted and fitted to experimental data allowing for improved accuracy when modeling the properties of 

specific gases or mixtures. The cubic equations of state are simple and easier for coding to develop a mathematical model and this 

simplicity leads to an efficient computation of properties. The cubic equations of state, such as Peng-Robinson (PR) and Redlich-Kong-

Soave (RKS) equations of state, have been employed to find CO2 and other gases properties in single-phase regions, i.e., superheated 

and supercritical regions [24-29]. Based on the literature [24, 27-29], PR and RKS equations of state can give sufficient accurate results 

in prediction of density and other properties of CO2 in superheated and supercritical regions. Therefore, the cubic equations of state 

should be investigated about their applications in the development of the optimum interstage pressure model.  

This study aims to develop a model for calculation of the optimum interstage pressure in two-stage CO2 compression with an 

intercooling process. The model is based on use of cubic equations of state, there are van der Waals (vdW), Redlich-Kwong (RK), PR, 

and RKS equations of state. The properties of CO2 used to find the optimum interstage pressure obtained from the cubic equations of 

state are validated with SW equation of state as well as experimental data. The model is investigated for CO2 compression in 

superheated region (subcritical compression) and superheated to supercritical region (transcritical compression). The results of the 

model are compared with that from the previous model which used SW equation of state. This work contributes the alternative way to 

find the optimum interstage pressure of two-stage CO2 compression, which is based on the real gas properties. It is, therefore, better 

than use of ideal gas model, especially in the transcritical compression. Moreover, it can indicate the potential of cubic equations of 

state application for the optimum interstage pressure model. 

 

2. Materials and methods 

 

2.1 Equation of state 

 

In this study, four cubic equations of state, vdW, RK, PR, and RK equations of state, are focused. The reference equation of state 

used in this study is SW equation of state. A general format of the cubic equations of state can be presented as 

 

( )( )

RT a
P

v b v c v d
 

  
                                          (2) 

 

The parameters 𝑎, 𝑏, 𝑐 and 𝑑 are described in Table 1. 𝑃𝑐 , 𝑇𝑐 and 𝜔 are the critical pressure, the critical temperature, and the acentric 

fraction, respectively. The values of 𝑃𝑐 , 𝑇𝑐 and 𝜔 used in this study are 𝑃𝑐 =7.3773 MPa, 𝑇𝑐 =304.1282 K and 𝜔 = 0.22394. 𝑅 is the 

gas constant and its value for CO2 is 𝑅 = 0.18892 kJ/kg·K.  
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Table 1 Parameters for the cubic equations of state 

 

Equation of state a b c d 

vdW 
2 2

27

64

R Tc
Pc

 
1

8

RTc

Pc
 0 0 

RK 
2 2

1
0.42748

R Tc
P Tc r

 0.08664
RTc

Pc
 b  0 

PR 
 

2 2
0.45724

2
1 1 ,

R Tc
Pc

m Tr



    
 

 

20.37464 1.54226 0.26992m      

0.07780
RTc

Pc
  1 2 b   1 2 b  

RKS 
 

2 2
0.42748

2
1 1 ,

R Tc
Pc

m Tr



    
 

 

20.48508 1.5517 0.15613m      

0.08664
RTc

Pc
 b  0 

 

To find the specific volume, which is an inverse of density, a cubic equation of specific volume, is obtained as.  

 

   3 2 0
RT a RT ab RT

v c d b v b c d cd v b cd
P P P P P

        
                    
        

                                                                  (3) 

 

The SW equation of state is the multiparameter equation of state which is possibly classified as a Helmholtz-type equation of state. 

The specific Helmholtz free energy, 𝑎(𝜌, 𝑇), is presented in terms of a non-dimensional Helmholtz free energy, 𝜙(𝛿, 𝜏), and it is split 

into an ideal gas part, 𝜙𝑜(𝛿, 𝜏), and a residual part, 𝜙𝑟(𝛿, 𝜏), as shown in Eq. (4).  

 

( , )
( , ) ( , ) ( , )

a T o r

RT


                                                                                  (4) 

 

where 𝛿 = 𝜌/𝜌𝑐  and 𝜏 = 𝑇𝑐/𝑇 are the reduced density and the inverse of reduced temperature, respectively. The subscript 𝑐 denotes 

the value at the critical point. The details of SW equation of state can be found in [20]. 

 

2.2 Optimum interstage pressure of CO2 compression 

 

For a two-stage compression with an intercooling process, the total specific work can be determined as: 

 

( ) ( )
4, 3 2, 1

2 1

h h h h
s s

wtot
isen isen

 

 
                            (5) 

 

where the subscript s represents the isentropic process and the subscripts 1, 2, 3 and 4 indicate the thermodynamic states in the two-

stage compression shown in Figure 1.  

 

 
 

Figure 1 Two-stage compression with intercooling process 
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In this study, no pressure losses in the intercooler and pipelines and the constant isentropic efficiencies of 𝜂𝑖𝑠𝑒𝑛1 and 𝜂𝑖𝑠𝑒𝑛2, are 

assumed in the analysis. To find the optimum interstage pressure, 𝑃2𝑜𝑝𝑡 = 𝑃3𝑜𝑝𝑡, the derivative of the total specific work with respect 

to 𝑃2 is determined and set to be zero. It finally results: 

 

 
 

3

3 2 2 14 3

2 3 3

1/ ( ) 1 / ( )
0

/

isen isen

isen T T

T T

s P

   





 

 
                                        (6) 

 

A detail of derivation of Eq. (6) is shown in Appendix A. Based on the Maxwell relation, the denominator of the second 

term, (𝜕𝑠/𝜕𝑃)𝑇, can be replaced by −(𝜕𝑣/𝜕𝑇)𝑃 and this derivative can relate to a fluid property called the thermal expansivity (or the 

thermal expansion coefficient), 𝛽, which is defined as: 

 

 

 

/1 1 1

/

v

P P T

P Tv

v T T v P v






      
        

         

                                        (7) 

 

Thus, Eq. (6) can be rewritten as: 

 

3 2
4 3

2 1 3

1
1 0isen

isen

f T T
 

  

 
     

 
                                         (8) 

 

2.3 Thermodynamic properties 

 

To find the optimum interstage pressure using Eq. (8) the density and thermal expansivity of CO2 are required. The density is an 

inverse of the specific volume, obtained from solving Eq. (3). The thermal expansivity can be calculated from the most-right term in 

Eq. (7) because the cubic equations of state are explicitly expressed in terms of pressure. The derivative terms, (𝜕𝑃/𝜕𝑇)𝑣  and 

(𝜕𝑃/𝜕𝑣)𝑇, obtained from the cubic equations of state as well as SW equation of state, are shown in Table 2. In the case of SW equation 

of state, the details of partial derivative terms can be found in Span and Wagner’s work [20].  

 

Table 2 The derivative terms in Eq. (7) calculated using cubic and SW equations of state 

 

Equation of state (𝝏𝑷/𝝏𝑻)𝒗 (𝝏𝑷/𝝏𝒗)𝑻 

vdW 
 

R

v b
 

 
2 3

2R a

vv b





 

RK 
   2

R a

v b v v b T


 
 

 

 

 
2 22

2a v bR

v b v v b




 
 

PR       c

R am

v b v v b b v b TT


      

 
 

 

   
2 2

2a v bR

v b v v b b v b




      

 

RKS 
    c

R am

v b v v b TT


 
 

 

 

 
2 22

2a v bR

v b v v b




 
 

SW 

2

1
r r

R
 

  
  

  
  

   
 

2
2

2
1 2

r r

TR
 

 
 

  
  

  
 

 

The value of entropy used in the isentropic process calculation is obtained from the dimensionless entropy departure, (𝑠 − 𝑠𝑖g) 𝑅⁄ , 

and it can be computed based on the cubic equations of state as presented in Table 3. The standard entropy available in NASA report 

[30] is used to find the ideal gas entropy, 𝑠𝑖g.  

 

Table 3 Dimensionless entropy departure obtained from the cubic equations of state 

 

Equation of state (𝒔 − 𝒔𝒊g) 𝑹⁄  

vdW  ln 1 /Z b v     

RK  ln 1 / ln(1 / )
2

a
Z b v b v

bRT
       

PR  
 
 

1 1 2 //
ln 1 / ln , /

2 2 1 1 2 / c

b vda dT am
Z b v da dT

bR TTb v 

  
          
 

 

RKS    
/

ln 1 / ln 1 / , /
c

da dT am
Z b v b v da dT

bR TT
         
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2.4 Calculation of the optimum interstage pressure 

 

The calculation procedure to find the optimum interstage pressure using the cubic equations of state is shown in Figure 2. Hereafter, 

the symbol EoS represents the word “equation of state”. The ideal gas optimum interstage pressure multiplied with a constant 𝑐, 

𝑃2,𝑖𝑛𝑖𝑡 = 𝑐√𝑃𝑖𝑛𝑃𝑜𝑢𝑡, can be used as the initial guess of 𝑃2. The constant can be varied between 1.3 to 1.6. The recommended value of 

c was obtained from the fact that the ideal gas model usually underestimates the optimum interstage pressure and based on the pressure 

and temperature ranges in this study, the ratio of optimum interstage pressure from the ideal gas model and that from the cubic equations 

of state generally varied from 1.3 to 1.6. 

 

 
 

Figure 2 Calculation procedure of optimum interstage pressure 

 

3. Results and discussion 

 

3.1 Density and thermal expansivity comparisons 

 

In this section, the density and the thermal expansivity calculated from the cubic equations of state are compared to that calculated 

from SW equation of state. For the density, the calculation results from the cubic equations of state are also compared to the 

experimental data. The comparisons are done in 3 regions. The first (I) and second (II) regions are superheated with 𝑇 < 𝑇𝑐  and         

𝑇𝑐 < 𝑇, respectively. The third (III) region is a supercritical region. The details of each comparison region are shown in Table 4. The 

average absolute percentage deviation (𝐴𝐴𝑃𝐷) is used in the comparisons. The formula of 𝐴𝐴𝑃𝐷 is expressed in Eq. (9) and it is the 

average value of the absolute percentage deviations (𝐴𝑃𝐷). In comparison of the density from cubic equations of state with that from 

the experimental data, 𝜌𝑆𝑊in Eq. (9) is replaced by the density from the experiment, 𝜌exp. 

 

1 1

1 1
100

SW cubic
N N

i i

SW
i ii

A APD
N

P
N

A D
 

 


                                                          (9) 

 

Table 4 Pressure and temperature ranges and the number of comparison points in each region 

 

Region Temperature range (K) Pressure range (MPa) No. of data points 

(I) 222.0 – 302.0 0.599 – 6.713 231 

(II) 304.0 – 1000.0 0.599 – 7.370 441 

(III) 304.1282 – 1000.0 7.3773 – 60.000 900 

 

Table 5 shows the 𝐴𝐴𝑃𝐷 obtained from the comparison of density calculated from cubic equations of state and SW equation of 

state in different regions. In region (I), RKS and PR equations of state give lowest 𝐴𝐴𝑃𝐷  in density and thermal expansivity 

comparisons, respectively. For the high temperature superheated region, region (II), PR equation of state can predict the density of CO2 

better than the others, while RKS estimates the thermal expansivity slightly better than PR. However, RK, PR and RKS can predict 

density and thermal expansivity with slightly different  𝐴𝐴𝑃𝐷. For vdW equation of state, it provides the density of CO2 in the 

superheated regions with highest 𝐴𝐴𝑃𝐷. If the ideal gas law is applied, it gives the density in the higher temperature superheated region 
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with 𝐴𝐴𝑃𝐷 of 3.19%, while 𝐴𝐴𝑃𝐷 of vdW equation of state is 1.412%. Therefore, use of vdW equation of state to predict the density 

of CO2, even in the high temperature region, gives a better result than use of the ideal gas law. The highest 𝐴𝐴𝑃𝐷 of each cubic equation 

of state is found in the supercritical region. PR equation of state has considerably low 𝐴𝐴𝑃𝐷 for density prediction and it also gives 

the thermal expansivity with the lowest 𝐴𝐴𝑃𝐷 when compared to other cubic equations of state.  

 

Table 5 𝐴𝐴𝑃𝐷of density and thermal expansivity comparisons between that from cubic equations of state and SW equation of state. 

 

EoS Property 𝑨𝑨𝑷𝑫 (%) 

Region (I) Region (II) Region (III) 

vdW 
𝜌   3.443 1.412   7.744 

𝛽 17.892 2.582 15.228 

RK 
𝜌   1.115 0.799   3.795 

𝛽   8.868 1.011   4.391 

PR 
𝜌   0.751 0.375   0.946 

𝛽   2.992 0.946   3.177 

RKS 
𝜌   0.548 0.721   4.562 

𝛽   4.077 0.801   4.962 

 

To compare the density prediction from the cubic equations of state with that from the experiments, CO2 densities in superheated 

and supercritical regions available in the literature [31-33] are used. The experimental data were not recorded in equal increments of 

temperature and pressure and the experimental data used in the comparison are not cover the pressure and temperature ranges shown 

in Table 4. In superheated region, the data cover the temperature and pressure ranges of 220 K to 697.81 K and 0.2973 MPa to 7.37163 

MPa, respectively. For supercritical region, the densities are available in the temperature and pressure ranges of 304.135 K to 695.36 

K and 7.37861 MPa to 34.203 MPa, respectively. The number of experimental data points used in this comparison is totally 485. There 

are 226 data points located in the superheated region and 259 data points are in the supercritical region. Table 6 expresses 𝐴𝐴𝑃𝐷 of 

the comparison between the density predicted from cubic equations of state and that from experiments. The comparison results in  

Table 6 indicate that PR equation of state gives the lowest 𝐴𝐴𝑃𝐷 in the comparison of density in superheated and supercritical regions. 

 

Table 6 𝐴𝐴𝑃𝐷of the density comparison between that from cubic equations of state and experimental values 

 

EoS 𝑨𝑨𝑷𝑫 (%) 

Superheated region Supercritical region 

vdW 5.442 12.287 

RK 2.173 6.174 

PR 1.280 3.852 

RKS 1.693 8.590 

 

3.2 Optimum interstage pressure  

 

To show the optimum interstage pressure calculated from the cubic equations of state, the compressions of CO2 are classified into 

two cases, the subcritical and the transcritical compressions. The inlet state, defined by 𝑃1 and 𝑇1, and 𝑇3 of the subcritical compression 

case are 𝑃1  = 101.325 kPa, 𝑇1 = 298K and 𝑇3  = 306 K, while these of the transcritical compression case are𝑃1  = 2.6487 MPa,                  

𝑇1= 264 K and 𝑇3 = 306 K. The outlet temperature of the intercooler defined at 306 K is based on the concept that the ambient air is 

used as a cooling fluid. The cooling air has an average temperature of 301 K (28 oC) and the approach temperature is set at 5 K. The 

desired pressure, 𝑃4, of these two compression cases is varied to study the change of the optimum interstage pressure. The simulation 

results are shown in the following sections.  

 

3.2.1 Subcritical compression 

  

For CO2 subcritical compression, the optimum interstage pressures calculated using the cubic equations of state for the isentropic 

compression are presented in Figure 3(a). It shows that at low 𝑃4, all cubic equations of state give almost the same optimum interstage 

pressure. However, when 𝑃4 increases the difference of the optimum interstage pressures obtained from different cubic equations of 

state can be observed. Among cubic equations of state, PR and RKS equations of state provide virtually the same optimum interstage 

pressure. For example, at 𝑃4 = 7.0 MPa, the optimum interstage pressure predicted by PR and RKS equations of state are 0.9933 and 

0.9912 MPa, respectively. At 𝑃4 = 7.0 MPa, SW equation of state gives the optimum interstage pressure of 0.9857 MPa. The 

comparison of the optimum interstage pressures from PR and SW equations of state shows the 𝐴𝑃𝐷 of 0.77%, while that from RKS 

and SW equation of state gives 𝐴𝑃𝐷 of 0.55%. In the case of using RK and vdW equations of state to find the optimal interstage 

pressure for 𝑃4 = 7.0 MPa, the 𝐴𝑃𝐷 are 0.84% and 2.22%, respectively. The 𝐴𝐴𝑃𝐷 from the case of PR, PK, and RKS equations of 

state are slightly different and the 𝐴𝐴𝑃𝐷 of these three cases are less than 0.6%. Moreover, the ideal gas model, 𝑃𝑜𝑝𝑡 = √𝑃1𝑃4, is also 

used to find the optimum interstate pressures at different 𝑃4 and they are compared with the results of other equations of state as shown 

in Figure 3(a). It is clearly illustrated that the ideal gas model provides the optimum interstage pressures much lower than that from 

other equations of state. The 𝐴𝐴𝑃𝐷 from the comparison of the ideal gas model and SW equation of state is 11.5%. 
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Figure 3 Optimum interstage pressure for CO2 compression from 𝑃1 = 0.101325 MPa, 𝑇1= 298 K to different 𝑃4 with 𝑇3 = 306 K (a) 

isentropic compression and (b) non-isentropic compression with 𝜂𝑖𝑠𝑒𝑛,1 = 0.87 and 𝜂𝑖𝑠𝑒𝑛,2 = 0.82 

 

In Figure 3(b), the optimum interstage pressures calculated from the cubic and SW equations of state as well as the ideal gas model 

for non-isentropic compressions are presented. The isentropic efficiencies are 𝜂𝑖𝑠𝑒𝑛,1 = 0.87 and 𝜂𝑖𝑠𝑒𝑛,2 = 0.82. The results in Figure 

3(b) show that the cubic equations of state can give the optimum interstage pressure of non-isentropic compression marginally different 

from that given by SW equation of state. The 𝐴𝐴𝑃𝐷 of the comparison for the case of PR, RK, and RKS are 0.49%, 0.54%, and 0.42%, 

respectively. For vdW equation of state, it has 𝐴𝐴𝑃𝐷 of the comparison of 1.52%. If the ideal gas model is applied for the non-isentropic 

compression, it yields 𝐴𝐴𝑃𝐷 of 23.64%. It should be noted that the ideal gas model is developed based on isentropic compression. 

Application of ideal gas model in non-isentropic compression can cause a large value of deviation. The total specific compression work 

computed based on the optimum interstage pressure obtained from PR and RKS equations of state are about the same value as that 

from SW equation of state and they are a little lower than that from the other cubic equations of state.  

 

3.2.2 Transcritical compression 

 

To study the optimum interstage pressure of CO2 compression from the subcritical region to the supercritical region, the inlet state 

is defined as 𝑃1 = 2.6487 MPa, 𝑇1 = 264 K (0.85 degree of superheat) and 𝑇3 is fixed at 306 K. The outlet pressure, 𝑃4, is varied from 

7.0 MPa to 15.0 MPa. The optimum interstage pressure of isentropic and non-isentropic compressions are shown in Figures 4(a) and 

4(b), respectively.  

 

     
 

Figure 4 Optimum interstage pressures for CO2 compression from 𝑃1 = 2.6487 MPa, 𝑇1= 264 K to different 𝑃4 with 𝑇3 = 306 K, (a) 

isentropic compression and (b) non-isentropic compression with 𝜂𝑖𝑠𝑒𝑛,1 = 0.87 and 𝜂𝑖𝑠𝑒𝑛,2 = 0.82 

 

The optimum interstage pressure from the cubic and SW equations of state show the same shape for the isentropic and non-

isentropic compressions, but they are different in values. Therefore, the discussions are done only for the isentropic compression. The 

optimum interstage pressure from the cubic and SW equations of state give a similar trend. For 𝑃4 from 7.0 MPa to 9.0 MPa, the 

optimum interstage pressure dramatically increases with increasing 𝑃4, especially with in the range of 𝑃4 from 8.5 MPa to 9.0 MPa and 

from 8.0 MPa to 8.5 MPa for the isentropic and non-isentropic compressions, respectively. A 0.5 MPa increment in 𝑃4 of theses ranges 

(8.5 MPa to 9.0 MPa and 8.0 MPa to 8.5 MPa) results in a nearly vertical ascent in the optimal interstage pressure changes. This rapid 

increase accidentally causes lines linking the optimal interstage pressures for these two points of 𝑃4 to nearly overlap. However, it is 

important to inform that the optimal interstage pressure values within these 𝑃4 ranges exhibit slight variations, similar to that occur at 

lower value of 𝑃4. When the optimum interstage pressure is higher than the critical pressure, increasing 𝑃4 causes a little increase of 

the optimal interstage pressure. The shape of the optimum interstage pressure as shown in Figures 4(a) and 4(b) has been found in Jeon 

and Kim’s work [18] in which a multi-stage compression cycle of liquified CO2 transport ship was studied.  

For the comparison of the optimum interstage pressure obtained from the cubic equations of state and that from SW equation of 

stat, at 𝑃4 lower than 8.5 MPa, SW equation of state gives the optimum interstage pressure higher than that from the cubic equations 
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of state. For higher 𝑃4, the optimum interstage pressure from SW equation of state marginally changes when 𝑃4 increases. However, 

the optimum interstage pressures from PR, RK and RKS equations of state increase with higher rates than that from SW equation of 

state. Therefore, the value of the optimum interstage pressure from SW equation of state varies between these values from PR, RK and 

RKS equations of state. PR and RKS equations of state give almost the same value of the optimum interstage pressure and they are 

averagely higher than that predicted by RK equation of state. The 𝐴𝐴𝑃𝐷 for the case of PR, RK, and RKS equations of state are slightly 

different. These values are less than 0.9% and the highest value of 𝐴𝐴𝑃𝐷 is found in the isentropic compression predicted by PR 

equation of state and its value is 0.88%. For vdW equation of state, it gives lowest optimal interstage pressure and finally approaches 

the value from SW equation of state. The 𝐴𝐴𝑃𝐷 of the case of vdW equation of state is 1.46% for the isentropic compression and 

1.27% for the non-isentropic compression. 

To compare the results from the model developed in this study with that analyzed by Jeon and Kim [18], the optimum interstage 

pressures from the present model are plotted and compared with the results from [18], as illustrated in Figure 5. This figure shows that 

the optimum interstage pressures from using PR and RKS equations of state almost completely coincide with that from Jeon and Kim’s 

analysis. The optimum interstage pressures from these two cubic equations of state compared to that from Jeon and Kim’s work show 

𝐴𝐴𝑃𝐷 of 0.46% for RKS and 0.47% for PR equations of state. For the results using RK and vdW equations of state, they diverge from 

results of Jeon and Kim’s analysis with 𝐴𝐴𝑃𝐷 of 0.95% and 1.93%, respectively. 

 

 
 

Figure 5 Comparison of optimum interstage pressure from present model and that from Ref. [18]  

 

It is quite interesting that, in Figures 4(a), 4(b) and 5, after the optimum interstage pressure is higher than the critical pressure, 

when 𝑃4 increases the optimum interstage pressure is almost unchanged. The reason is that the entropy constant lines around or on the 

left-hand side of the critical point are steeper than the others in the superheated region and the right-hand side of the critical point, as 

illustrated in P-h diagram shown in Figure 6. In the figure, it is the thermodynamic states plotted following the calculation of the 

optimum interstage pressure using PR equation of state for the case of 𝑃4 = 11.5 MPa. The entropy constant line for the first-stage 

compression (𝑠 = 1.90330 kJ/kgK) has lower slope than the entropy constant line for the second-stage compression (𝑠 = 1.36792 

kJ/kgK). It can be implied that when 𝑃2 increases, the increase of the enthalpy change in the first-stage compression is more than the 

deduction of the enthalpy change in the second-stage compression due to different slope of entropy constant lines. Consequently, 

increase of the specific compression work in the first stage, 𝑤1 = (ℎ2,𝑠 − ℎ1), is more than reduction of the specific compression work 

in the second stage, 𝑤2 = (ℎ4,𝑠 − ℎ3). With similar reason, when 𝑃4 increases, for example from 11.0 MPa to 11.5 MPa, the outlet 

pressure in the first-stage compression should slightly increases and the outlet pressure in the second-stage compression should be 

mainly increases to reach the desired 𝑃4. Even though the pressure in the second-stage compression is mainly risen, the specific 

compression work in this stage slightly increases, because the entropy constant line is very steep and it causes a small increase of the 

enthalpy difference. For the non-isentropic compression, it can also be explained by this way, because the non-isentropic compression 

work is based on the isentropic compression work as 𝑤𝑎𝑐𝑡 = 𝑤𝑖𝑠𝑒𝑛/𝜂𝑖𝑠𝑒𝑛. However, if the isentropic efficiency of the second-stage 

compressor is much lower than that of the first-stage compressor, it possibly affects the changing trend of optimum interstage pressure.  

 

 
 

Figure 6 P-h diagram showing the thermodynamic states for the isentropic compression from 𝑃1 = 2.6487 MPa, 𝑇1 = 264 K to 𝑃4 =
11.5 MPa with 𝑇3 = 306 K 

5.0

6.0

7.0

8.0

7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0

P
o
p

t
(M

P
a)

P1 (MPa)

JeonKim

PR

RK

RKS

vdW

2.0

6.0

10.0

14.0

18.0

150 200 250 300 350 400 450 500

P
 (

M
P

a)

h (kJ/kg)

1

2
3

411.50 MPa

7.81613 MPa

2.6487 MPa



Engineering and Applied Science Research 2024;51(1)                                                                                                                                                      9 

4. Conclusion 

 

CO2 compression is a key process in power generation and refrigeration systems using CO2 as working fluid. Consequently, the 

optimum interstage pressures, minimizing compression work, is an interesting topic. The optimum interstage pressure model based on 

cubic equations of state for two-stage CO2 compression is developed in this study. The results of the model are validated with the 

previous model using the multiparameter equation of state, called Span-Wagner (SW) equation of state. The developed model requires 

densities, temperatures and thermal expansivity to find the optimum interstage pressure. The main conclusions drawn from the study 

are summarized as follows: 

 Cubic equations of state are computationally efficient because of their simplicity and they provide reasonably accurate 

properties even in supercritical region, especially RKS, PR, and RK equations of state. 

 RKS, PR, and RK equations of state can predict the optimum interstage pressure close to that from the SW equation of state 

with the average absolute percentage difference less than 0.6% and 0.9% for subcritical and transcritical compressions, 

respectively. 

 The ideal gas model cannot give the optimum interstage pressure with reasonable average absolute percentage difference, 

especially at high pressure. 

 In transcritical compression, increase in outlet pressure of the second-stage compression causes a small increase in the optimum 

interstage pressure when the optimum interstage pressure is above the critical pressure. This is because the enthalpy difference 

in the first-stage compression is higher than that in the second-stage compression. 
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Appendix A. Derivation of Eq. (5) 

  

Based on the total specific work defined in Eq. (4) and the assumption that the isentropic efficiencies are constants, the derivative 

of the total specific work with respect to 𝑃2 can be expressed as: 
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The derivative of ℎ1 with respect to 𝑃2 , (𝜕ℎ1/𝜕𝑃2), is zero because the compressor inlet state or state 1 is independent of the 

pressure 𝑃2. The temperature 𝑇3 and the desired discharge pressure, 𝑃4, are known parameters. The derivative of ℎ4,𝑠 with respect to 

𝑃2 , (𝜕ℎ4,𝑠/𝜕𝑃2), can be transformed as (𝜕ℎ4,𝑠/𝜕𝑠4)
𝑃=𝑃4

× (𝜕𝑠3/𝜕𝑃2)𝑇=𝑇3
. As it requires a lot of page space to describe, a detailed 

explanation of this transformation can be found in Ref. [23]. Therefore, Eq. (App. 1) can be rewritten as the following equation. 
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                                                           (App. 2) 

 

From the Maxwell relationship, it gives that (𝜕ℎ4,𝑠/𝜕𝑠4)
𝑃=𝑃4

= 𝑇4 , (𝜕ℎ2,𝑠/𝜕𝑃2)
𝑠=𝑠2

= 1/𝜌2and  (𝜕ℎ3/𝜕𝑃2)𝑇=𝑇3
= 𝑇3(𝜕𝑠3/

𝜕𝑃2)𝑇=𝑇3
+ 1/𝜌3. No pressure drop in the intercooling is assumed. It results in that 𝑃2 = 𝑃3. Substituting these relations into Eq. 

(App. 2) and set the result to be zero, it yields: 
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Arranging Eq. (App. 3) gives Eq. (App. 4) which is similar to Eq. (5). 

 

 
 

3

3 2 2 14 3

2 3 3

1/ ( ) 1 / ( )
0

/

isen isen

isen T T

T T

s P

   





 

 
                                              (App. 4) 

 


