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Abstract

This study discusses a blood delivery routing problem faced by a regional blood centre (RBC). The RBC meets the requests of 21
hospitals for blood and blood products. Each hospital can request product deliveries throughout the day, but the RBC has a cut-off time
for its transportation round and manually designates a specific route for the transport van, which is available only during working
hours. This vehicle routing problem operates under vehicle time restriction constraints. The aim of the research is to use a metaheuristic
method to find the optimal transport route to deliver blood and blood products at minimal total cost. This paper proposes a novel hybrid
metaheuristic method that combines the firefly algorithm (FA) as the main structure, a crossover operator in differential evolution (DE)
and a new local search (NLS); is called the HFA+NLS algorithm. The exact solution of the mathematical model and current practice
are used for comparisons of the quality of the solutions. Four existing algorithms are also employed to compare the search performance.
The paired t-test is used to compare the means of the search performance measures of any two methods. Different sizes of problem are
considered by generating a set of nine test instances (small, medium and large problems) and a real-world case study to verify the
competitive performance of the proposed algorithm. The computational results reveal that the HFA+NLS algorithm has a superior
performance to other methods in the number of test instances for which the optimal, or the best known, solution was successfully found.
The HFA+NLS algorithm determines the best route for a blood transport van with a total blood transportation cost reduction of 66.46%.
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1. Introduction

Blood is an extremely important resource for saving the lives of accident victims, and is also needed by patients for the treatment
of some diseases. Government organizations dealing with blood management, such as hospitals and national blood centres, provide
effective value-added services by optimizing the delivery of requested blood products. Non-profit organizations oversee the blood
supply chain in some countries around the world, and attach great importance to blood management [1]. The blood supply chain relates
to activities and material flows among the network elements. Blood units are collected from donors, after their registration, screening
and testing, at either fixed or temporary blood donation facilities to avoid the transmission of diseases through blood transfusions. The
blood units are then tested for different types of blood diseases and compatibility before being used in blood transfusions. The blood
products are shipped to hospitals to fulfil orders received by the blood centre, by a blood transportation vehicle on a specified route
[2].

Some authors have developed mathematical approaches to optimize blood supply chain network models. Zahiri et al. [3] presented
a bi-objective mixed-integer model for the integrated planning of the main processes (collection, screening, production, distribution
and delivery route) for blood products. Total cost and the freshness of the blood products were optimized using a multi-stage stochastic
programming approach to take into account the uncertain nature of supply and demand. A multi-objective self-adaptive differential
evolution and variable neighbourhood search (named MSDV) was proposed to solve this highly complex problem. Mousavi et al. [4]
used bi-objective programming to design a supply chain network for blood products, considering social and environmental factors
affecting blood decomposition. They applied four metaheuristic approaches, multi-objective simulated annealing (MOSA), multi-
objective particle swarm optimization (MOPSO), multi-objective social engineering optimization (MOSEQ), and a non-dominated
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ranking genetic algorithm, to verify the behavior of the model. Their results showed that the overall cost was increased by the social
effects of blood decomposition.

The literature on the logistics of the upstream activities for blood and its components was studied to design a specified route for
blood product delivery by addressing the vehicle routing problem (VRP) in blood supply chain. Sahinyazan et al. [5], using a two-stage
IP-based heuristic algorithm, proposed a mobile collection model, based on the VRP, with the goal of increasing blood collection
levels. In this model, a new vehicle (shuttle) was integrated into the system to visit bloodmobiles (vehicles with medical staff and
equipment for collecting blood from donors) in the field and transfer the collected blood to the depot, while the bloodmobiles continued
to perform their tours without having to make daily returns to the depot. The blood pickup routing problem (BPRP), presented in
[6, 7], focuses on the upstream activities of blood logistics to pick up blood bags at fixed blood bank donation sites. The authors
modelled the problem on the VRP and solved the model using CPLEX optimization software along with simulated annealing (SA) to
minimize the total distance travelled. Ozener and Ekici [8] developed a blood platelet collection model using the vehicle routing
approach to optimize the number of donations for platelet production, while Haitam et al. [9] applied the VRP with time windows to
the collection of medical samples (blood and/or urine tubes) from sick people at home and their transportation to a laboratory in
Morocco. Karakoc and Gunay [10] studied priority-based vehicle routing for agile blood transportation between donor/client sites, and
the VRP, with simultaneous delivery and pickup and time windows, was applied to products in home healthcare logistics, such as
chemotherapy drugs and blood products [11].

Some studies have focused on the downstream activities of blood logistics for serving designated hospitals in the blood supply
chain network. Ganesh et al. [12] proposed a VRP to distribute and collect blood for a public healthcare system. They clustered the
nodes to be visited and then assigned vehicle routes to each cluster using a metaheuristic approach by combining genetic algorithms
(GAs) and SA. Rabbani et al. [13] introduced bi-objective mathematical programming for the collection of blood from donors by
bloodmobiles. They applied multi-objective fuzzy programming and the VVRP to determine the optimal routes, and solved the problem
using CPLEX with the SA approach. The VRP was also used to determine distribution routes for a blood transfusion unit in Indonesia,
obtaining a reduction in both distance and time [14]. Jafarkhan and Yaghoubi [15] developed an inventory routing model for distributing
red blood cells in hospitals using a real case study with a consideration of uncertain demand and supply. They solved this problem
using the robust stochastic optimization method, while Ghasemi and Bashiri [16] developed a two-stage stochastic inventory vehicle
routing model for the distribution of blood products that optimized the holding cost and the blood collection and transportation costs.
A production-inventory-routing problem for blood products was studied in [17] and solved by heuristic (local search) and metaheuristic
(adaptive large neighbourhood search (ALNS)) methods.

Blood transportation in the Bangkok metropolitan region of Thailand was studied in [18], and the transport for the delivery of blood
products by a third-party logistics service provider, modelled as a VRP, was introduced in [19] with the aim of minimizing the total
route time (the sum of the total travel time and the total length of stay time). The model was solved using CPLEX. Sujaree and
Jirawongnuson [20] studied the blood routing problem in the northern region of Thailand from blood donation centres to hospitals in
the relevant area. The problem was modelled as a VRP and solved by the hybrid cuckoo search algorithm, which is a combination of
cuckoo search (CS), tabu search, and neighbourhood search. A location-routing problem with emergency referral (LRPER) model was
developed in [21] to determine the logistical locations of blood banks and the distribution of blood products, and was solved by a hybrid
genetic algorithm (HGA) that minimized the total fixed cost of the local blood banks, the total periodic delivery costs and the emergency
delivery costs. Intapan et al. [22] investigated the blood routing problem using a small-scale case study in the southern region of
Thailand. They implemented the VRP to determine the optimal route using a hybrid differential evolution algorithm, and their results
showed a reduction in transportation costs.

Recently, several metaheuristic approaches have been developed for solving different variants of the VRP, including the artificial
bee colony (ABC), the artificial fish swarm (AFS), the genetic local search algorithm, the variable neighbourhood search algorithm,
tabu search (TS), the iterated local search algorithm (ILS), particle swarm optimization (PSO), the large neighbourhood search
heuristic, the GA, SA, CS, differential evolution (DE), the firefly algorithm (FA) and the shuffled frog leaping (SFL) algorithm [23-
25]. Variants of recent metaheuristic algorithms have also been applied to solve the VRP for blood logistics; these include the GA, SA,
CS, DE and PSO. However, there have been limited applications of other existing metaheuristic approaches for solving blood delivery
routing problems in the blood supply chain network.

The Thai Red Cross Society is a charitable organization that undertakes humanitarian activities such as blood supply chain
management in Thailand. The blood services include the blood transfusion and blood donation service, which is coordinated by the
National Blood Centre and collects, processes and provides sufficient blood and blood components to hospitals nationwide. The
National Blood Centre has established twelve Regional Blood Centres (RBCs) for regional blood management operations [26].
According to the National Blood Centre [27], the daily blood requirements throughout Thailand, divided using the ABO blood group
system, are 500 units of group A, 550 units of group B, 800 units of group O and 150 units of group AB, with one unit being
approximately 400 ml of blood. High levels of blood demand in Thailand require efficient transportation and delivery. Here, the blood
supply chain is evaluated in terms of cost, time and distance as a vehicle routing problem for the efficient delivery of blood and blood
products to meet the demands of each hospital under vehicle time restriction constraints. Experiments are conducted on nine generated
test instances and one case study collected from real-life situations experienced by the 12th RBC in Songkhla Province (Southern
Thailand).

The 12th RBC for blood supply chain management delivers blood and blood products to 89 hospitals in seven provinces in the
south of Thailand. This study analyzed data collected from just 21 hospitals in Songkhla Province, for the case study because different
blood distribution policies apply elsewhere. When blood and blood products requested by hospitals have been approved by the Chief
of the 12th RBC in Songkhla Province, a vehicle (hospital van) with a driver is allocated for delivery and return as a single-trip journey,
as shown in Figure 1.
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Figure 1 Blood distribution policy

However, in the context of a cost-efficient supply chain, single-trip transportation leads to high costs of physical distribution in the
blood supply chain because the empty leg means there is inefficient use of the transport vehicle. This paper considers blood
transportation as a vehicle routing problem (VRP), considering how the 12th RBC can operate to efficiently deliver blood and blood
products to meet the demands of each hospital under vehicle time restriction constraints. A new metaheuristic algorithm is proposed to
optimize blood delivery transportation costs. The main contributions of this paper are threefold. First, the problem is based on the VRP,
and is called the Blood Delivery Routing Problem with time constraints (BDRP-TC); it assesses the optimal routing of a fleet of vehicles
to deliver blood bags between the blood centre and the requesting hospitals. BDRP-TC is an extension of the well-known VRP. Unlike
the VRP for other products, in BDRP-TC a set of vehicle routes is constructed to minimize total cost. Time-driven activity-based
costing is implemented in the transportation cost function to ensure minimal vehicle time use. Each hospital site is allocated the same
pickup time window for blood transport delivery and return. If the available vehicle time-of-use is exceeded, the delivery is scheduled
for the next day.

Second, the BDRP-TC model uses a hybridized firefly algorithm, a crossover operator in differential evolution, and a new local
search. No publications have previously applied this hybrid scheme for blood delivery routing.

Third, this paper scales up the problem size on the nine generated test instances and presents a new larger-scale case study based
on real-life situations to test the performance of the algorithm.

In order to summarize the research background and review of the literature focusing on the research topic in the context of blood
logistics, Table 1 provides a coding classification system of the relevant literature using seven major characteristics. Table 2 illustrates
the characteristic features of the relevant papers that were reviewed.

Table 1 Classification of literature on optimization of blood logistics

1. Blood type 4. Output
Platelet PLC Location/allocation LA
Plasma PLA Delivery routes DR
Red blood cell RBC Number of productions NP
Whole blood wB Inventory level IL
Blood products and blood components BP Integrated blood collection IBC
Blood bag BB Ordering policy OP
2. Objective function 5. Problem variants
Min. cost MC Vehicle routing problem with time window VRPTW
Max. remaining bloods MRS Location routing problem LRP
Min. distance MD Blood collection, production, distribution and routing BCPDRP
planning
Min. delays MDL Selective-covering-inventory-routing SCIR
Min. time MT Vehicle routing problem VRP
Min. delivery time MDT Special collecting vehicles SCV
Min. inventory-routing transfusion MIT Selective vehicle routing problem SVRP
Min. production costs MPC Blood pickup routing problem BPRP
Max. number collected and processed MCP Maximum blood collection problem MBCP
3. Modelling Pickup and delivery problem PDP
Stochastic dynamic programming SDP Vehicle routing problem with backhaul VRPB
Mixed integer linear programming MILP Vehicle routing problem with delivery and collection VRPDC
Mixed integer nonlinear programming MINLP Location routing problem with emergency referral LRPER

Statistical modelling and analysis SM Flexible and robust inventory-routing FRIR
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Table 1 (Continued) Classification of literature on optimization of blood logistics
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5. Problem variants (continued)

7. Method / Method for performance comparison (continued)

Capacitated vehicle routing problem CVRP IBM ILOG CPLEX CPLEX
Capacitated vehicle routing problem with time window CVRPTW LINGO software LINGO
Inventory-routing problem IRP Greedy heuristic / Generation heuristic GH/ GEH
Vehicle routing problem cold supply chain VRPCSC Pattern generation heuristic / Incremental pattern generation heuristic PGH / IPGH
Blood delivery routing problem with time constraints BDRP-TC Tabu search B
6. Type of solution method Neighbourhood search NS
Exact EX Genetic algorithm GA
Heuristic/ Metaheuristic HE Hybrid genetic algorithm HGA
7. Method / Method for performance comparison Hybrid cuckoo search HCS
Simulated annealing SA Artificial chemical reaction optimization ACROA
Harmony search HS Differential evolution DE
Local search / lterated local search LS/ILS Differential evolution with new local search DE+NLS
General algebraic modelling system GAMS Adaptive large neighbourhood search ALNS
Multi-objective self-adaptive differential evolution algorithm MSDV Hybrid metaheuristic algorithm including genetic algorithms and local search GANLS
Multi-objective simulated annealing MOSA Sweep algorithm SWA
Multi-objective particle swarm optimization MOPSO Saving algorithm Saving
Multi-objective social engineering algorithm MOSEO Hybrid firefly algorithm HFA
Non-dominated ranking genetic algorithm NSGA-II Hybrid firefly algorithm with new local search HFA+NLS
Simulated annealing heuristic with restart strategy SARS
Table 2 A summary of the articles reviewed in the context of blood logistics optimization
Reference article Year L I 2. . 3 . 4. > . I .
Blood type Objective function  Modelling Output Problem variants Solution method Performance comparison
EX HE
Eskandari-Khanghahi et al. [2] 2018 PLC MC MILP LA, DR VRPTW, LRP CPLEX SA HS
Zahiri et al. [3] 2018 PLC, PLA,RBC,WB MC, MRS MILP NP, IL, OP, DR BCPDRP GAMS MSDV -
Mousavi et al. [4] 2021 BP MC MILP DR VRP, SCV - MOSA, MOPSO, -
MOSEO, NSGA-II
Sahinyazan et al. [S] 2015 WB MC SM DR SVRP GOROBI HE -
Iswari et al. [6] 2016 WB MC MILP DR VRPTW CPLEX SA -
Yuetal. [7] 2018 WB MD MILP DR BPRP CPLEX SARS SA
Ozener and Ekici [8] 2018 PLC MCP SDP DR MBCP - GH GEH, PGH, IPGH
Haitam et al. [9] 2021 WB MDL MILP DR PDP, VRPTW CPLEX TB, NS -
Karakoc and Gunay [10] 2017 BP MDT MILP DR CVRP - GANLS -
Liu et al. [11] 2013 BP MC MINLP DR VRPTW - GA, TB -
Ganesh et al. [12] 2014 WB MC MILP DR VRPB, VRPDC - GA, SA -
Rabbani et al. [13] 2017 PLC MC MILP DR VRP CPLEX, GAMS SA -
Lestari et al. [14] 2021 BP MDT, MT MILP DR VRP - SWA -
Jafarkhan and Yaghoubi [15] 2018 RBC MC MILP DR, IL FRIR CPLEX, GAMS ILS ALNS
Ghasemi and Bashiri [16] 2018 PLC MC SDP LA SCIR CPLEX, GAMS - -
Mousazadeh and Darestania [17] 2019 BP MIT, MPC MILP IBC, IL VRP, IRP - LS ALNS
Pathomsiri and Sukhaboon [18] 2011 BB MD MILP DR VRP - Saving -
Taweeugsornpun and Raweewan [19] 2017 RBC MT MILP DR VRP CPLEX - -
Sujaree and Jirawongnuson [20] 2018 BP MD MILP DR CVRP - HCS GA, CS, ACROA
Banthao and Jittamai [21] 2018 BP MC MILP LA LRPER - HGA GA
Intapan et al. [22] 2022 PLC,PLA,RBC,WB MC MILP DR CVRP - DE+NLS SA, DE, HCS
Our paper 2023 PLC,PLA RBC,WB MC MILP DR BDRP-TC LINGO HFA+NLS SA, DE+NLS, HFA, HCS
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2. Vehicle routing for blood delivery

This section provides details of the mathematical model for the blood delivery routing problem with time constraints (BDRP-TC).
The objective is to minimize the total cost of blood transportation from the Regional Blood Centre to the requesting hospitals as the
sum of the transportation costs based on distance and the time-of-use of the vehicles. In addition, time limitations are an important
consideration in the decision support system for blood delivery, particularly in emergency blood transport. In the real situation of this
case, if emergency blood products are requested they are picked up by the requesting hospital from the 12th RBC and are excluded
from the delivery routing.

In the general situation of blood delivery, according to [28], the time limitation for temporarily maintaining blood quality outside
a permanent blood storage room (i.e., during transportation) is no more than 24 hours. In this paper, we study the blood delivery routing
only in the real situation under the 12th RBC’s delivery management policy. This policy directs that the time limit for blood
transportation must not exceed the 8 working hours of a day, which is equal to the working time of a driver, and this is set as a parameter
of the delivery time in the BDRP-TC model. This model can handle a delivery time of up to 24 hours according to the maximum time
limit suggested in [28] by changing the parameter value for working hours per day. In this case, the overtime, if any, based on the
hourly driving rate for a driver should be calculated and included in the transportation cost based on the time-of-use of the vehicle.
When blood product requests for hospitals are approved each day by the Chief of the Regional Blood Centre, the routing planner will
manually assign all requesting hospitals to the route as far as possible within the day requested. Each hospital is visited exactly once
by only one blood delivery vehicle. However, in practice, it is possible that a requesting hospital may not be included in the route. It
will then be assigned to a new route on the next working day, or if necessary it will directly pick up the blood products requested from
the 12th RBC using its own hospital vehicle. In this model, the requesting hospitals will receive their delivery on a new route on the
next working day if they cannot be assigned to a route within the requested day. Blood and blood product bags are packed into single-
size foam boxes for each hospital and then assigned to the designated traveling route for shipping to that hospital. The maximum
number of boxes that can be loaded into a blood transportation van is 40 boxes. The model assumptions are summarized in the list
below.

(1) The locations of the blood centre and the hospital points are known.

(2) The amount of blood in the requests for blood products is determined.

(3) Each route assigned to a blood delivery vehicle takes the blood centre as its starting point, and returns to the blood centre.

(4) All the blood requests of a hospital must be met at the same time (i.e., splitting blood requests for one hospital is not allowed).

(5) The total number of blood boxes packed for each route must not exceed the maximum load of the blood delivery vehicle (i.e.,

there must be no more than 40 boxes).

(6) Each hospital is served exactly once by only one blood delivery vehicle, but one blood delivery vehicle can serve multiple

hospitals within its route.

(7) The sum of the traveling time for each route must not exceed the predefined value for the maximum delivery time (i.e., it must

be no more than 8 hours of working time).

The indices, parameters, decision variables and objective function used in the formulation are explained in detail below.

Indices

i Hospital ;,i=1, 2, ..., I

Jj Hospital j,j =1, 2, ..., J

k Blood transport vehicle k, k=1, 2, ..., K

Parameters

I,J  Number of hospitals

K Number of blood transport vehicles

T Working hours per day

dij Traveling distance from i to j (kilometres, km)

£ Traveling time from i to j (hours), calculated as the traveling distance divided by the average vehicle speed (km/hour), which
is calculated from the historical driving data

cd Transportation cost based on traveling distance (Baht/km)

ct Transportation cost based on time-of-use of the vehicle (Baht/min)

qi Blood request (number of boxes for all products) of hospital i

ak Capacity of the blood transport vehicle &

Decision variables
U¥ Variable to eliminate incomplete loop paths or to prevent incomplete loop delivery paths

b {1 if the blood transport vehicle k drives from hospital i to hospital j
v 0 Otherwise
¥ {1 if the blood request for hospital i is carried by blood transport vehicle &
! 0 Otherwise
Objective function:
Min z = 3K, ¥V, Zj]\io(Cd dij+ cttfj)ij 1)
Subject to
TV X <1 k=12,..K )

YoXh=3NoXyy  h=12,..N;k=12,.K ©)]
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KoY =1 Ji=1,..N (4)
Y Y <a k=12,...K (5)
v < ¥Nx; i=1 LN k=1.2,...K (6)
T N XE=1 Jj=12,..N @)
TVOENGAXE<T,  k=12..K ®)
U > Ubegim ais (a(X + X6)) = Xi(qit q) k=12, Ks 020, N:j =12,...N; i ©)
Uf < a—Xb(ak — q) ,k=12,..K;i=1,..N (10)
Ub 2 g D% gX k=12,.Ki=1,..N (11)
X5 ={0,1} ,i=0,..,N; j=02,..,N; k=12,..K (12)
Y ={0,1} ,i=0....N; k=12,..K (13)
Uk>0 , i=0,..,N; k=12,...K (14)

The objective function (1) minimizes the total cost of delivering blood and blood products from the Regional Blood Centre to the
requesting hospitals. This sum function of the transportation cost is based on the distance and the time-of-use of the vehicle. The
transportation cost based on distance is calculated as a function of the average cost of the van, the fuel cost, the maintenance cost and
the cost of tyre changes, multiplied by the traveling distance from the Regional Blood Centre or from hospital i to hospital ;. The cost
based on time-of-use of the vehicle is computed as the product of the time-activity-based cost for transportation (including driver’s
wages, depreciated cost, vehicle tax and insurance) and the time-of-use of the vehicle. Constraint (2) ensures that no blood transport
vehicle departs from the Regional Blood Centre (Location no. 0) more than once. Constraint (3) ensures that when the blood transport
vehicle travels to a particular hospital it then travels out from that hospital. Constraint (4) ensures that the blood request for hospital :
is carried out only once by the blood transport vehicle k. Constraint (5) ensures that the blood transport vehicle loads boxes of blood
products that do not exceed its capacity. Constraint (6) guarantees that delivery to hospital i is possible only if blood transport vehicle
k travels through hospital i from one of the hospital j. Constraint (7) ensures that hospital j will only be visited once by any blood
delivery vehicle on the route from any hospital i. Constraint (8) ensures that the total traveling time for each route does not exceed the
specified working time, and Constraints (9) to (11) are equations to prevent subtours. Constraints (12) to (14) set the boundary values
for the decision variables.

3. Hypotheses and methodology

A wide variety of algorithms has been developed using metaheuristic methods rather than mathematical methods to solve the
complexity of the VRP, because these methods are simpler and more flexible. For this reason, the research goal is formulated as using
a new hybrid metaheuristic method to determine the transport route with minimal total cost for blood and blood products delivery. Two
research hypotheses (RHSs) were posited as follows:

RH1: The search performance of the novel hybrid metaheuristic algorithm is better than or comparable to existing metaheuristic
methods for solving the BDRP-TC.

RH2: If the route planning staff of the 12th RBC use the novel hybrid metaheuristic algorithm to design a specific route for blood
delivery, they will be better prepared for blood delivery management, with a cost saving on transportation.

The research team conducted this study on nine generated test instances, with different numbers of hospitals requesting blood
products, to investigate the search performance of the proposed method. One case study, a real-life situation experienced by the RBC
in Songkhla Province, was used to examine whether the new proposed method can provide a cost saving on transportation for blood
products.

3.1 A novel hybrid metaheuristic algorithm to solve the BDRP-TC

The proposed algorithm is a hybridization of the firefly algorithm (FA), the crossover operator in differential evolution (DE) and
a new local search (NLS), and is called the HFA+NLS algorithm. The FA is a metaheuristic algorithm that was introduced by Yang
[29] in 2008 for optimization problems, and was bio-inspired by the flashing behaviour of fireflies at night. The FA has been
successfully implemented to solve many optimization problems. It has good population diversity, but the search performance needs to
be enhanced for the aspects of exploitation capability and fast convergence. Wang et al. [30] suggested that the binomial crossover
operator of DE should be incorporated with evolutionary algorithms to improve search performance. Here, the binomial crossover
operator is employed to enhance the exploitation ability of the proposed method. NLS is an effective local search strategy introduced
by Intapan et al. [22], and is a modified version of the new local search of Kongkaew and Wittayasilp [31]. In this paper, the HFA+NLS
allows a possible solution to access a new local search procedure to escape the trap and/or obtain a new improved solution. Details of
these methods are given in the following subsections.
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3.2 Design of the HFA+NLS algorithm

In this paper, we develop a new method that is a hybridization of the FA, the crossover operator of DE and NLS. The FA is the
main structure of the algorithm, while the crossover operator of DE and NLS are applied to improve the search performance. The step-
by-step procedures of the proposed algorithm are described below.

Step 1. (Initialization): Set the FA parameters, choose a stopping criterion, and randomly generate the initial population of fireflies
(x;) to represent a routing solution in the BDRP-TC problem.

Step 2. (Brightness): Compute the light intensity (Z;) for each firefly member i, which is determined by the objective function f(x;).
Decode the space coordinates of each firefly member i (x;) in the current population using the largest-ranked-value (LRV) method, to
represent a group of possible routes. Evaluate the objective function f(x;), which is the total cost of blood transportation, of each firefly
using Eq. (1).

Step 3. (Movement of fireflies): This step moves less bright fireflies towards brighter ones. If the brightness (i.e., light intensity)
of firefly member j (/;) is more attractive (brighter) than the brightness of firefly member i (;), then firefly member i is attracted to
firefly member j. The movement of the fireflies is determined by

x(t+ 1) = x,(0) + Boe 77 (x; — x;) + alrand — 0.5) (15)

where x; and x; are the space coordinates of firefly members i and ;. The second term is associated with the attractiveness, based on the
distance between the two fireflies. The third part is the randomization term. The step a and rand represent the random number generator
uniformly distributed in the range [0, 1].

Step 4. (Crossover operation): Apply the binomial crossover operator to implement a discrete recombination of the fireflies after
the movement (x;(¢ + 1)) and the parent fireflies (x;) to produce offspring.

Step 5. (Updating the light intensity): Update the light intensity of the firefly members in the population.

Step 6. (Local search): Apply the new local search procedure to all fireflies in the population. Details of the new local search
method are presented in the next subsection.

Step 7. (Evaluating and ranking the fireflies): Decode the space coordinate of each firefly member in the population to represent a
group of possible routes and then evaluate the objective function of each firefly using Eq. (1). After evaluation, rank the fireflies to
find the current best solution.

Step 8. (Checking for the stopping criterion): Terminate the algorithm if the number of generations has reached the stopping
criterion, then report the outputs.

The HFA+NLS procedure can be summarized as the pseudocode depicted in Figure 2.

Algorithm HFA+NLS for the BVRP-TC
Initialization:
Set the FA parameters: light absorption coefficient (y), number of population (NP), maximum number of
generations (MaxGen)
Randomly generate the initial population of fireflies x; (i = 1, ..., NP).
Apply the LRV rule to decode the space coordinates of firefly member i (x;) to represent the group of routes.
Assume that f{(x;) is the objective function.
Light intensity [; at x; is determined by f(x;) .
Define light absorption coefficient y.
while (¢ < MaxGen) do
for i =1 to NP (all NP fireflies) do
for j=1to NP (all NP fireflies, inner loop) do

If ([, > [;) then

Move firefly i towards ; in n-dimension using Eq. (15);

End
Vary attractiveness with distance r via exp(—yr?)
Apply the crossover operator of DE.
Evaluate new solutions and update light intensity.
End for j
End for i
Apply the new local search operation based on five neighborhood structures.
Rank the fireflies and find the current best.
End while
Postprocess results and visualization

Figure 2 Pseudocode of the HFA+NLS
3.3 Detail of the NLS procedure
According to the movement in the search space, the solution can move from one solution to another in many different directions to

improve the space of only the feasible solutions. The NLS procedure provides a systematic change of five neighbourhood structures to
explore the solution space with the ability to avoid being trapped in local minima. According to the search enhancement with the local
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search, the local search can be applied either to only the top members or to all the members in the population. In this paper, the NLS
procedure with five moves is applied to all the members in the population. This is because the NLS procedure enables the members in
the population with worse solutions to have a chance to evolve towards a better solution in the search space region. The NLS procedure
with these structures is depicted in Figure 3.

Procedure New Local Search (NLS)
Begin
x; represents the space coordinates of the firefly i to be enhanced.
Apply the LRV rule to decode the space coordinates of firefly member i (x;) to represent the group of routes.
Evaluate the objective function f(x;).
fork=1tonx(n—1)
h=1,
while 2 <5
Ifh=1
Randomly select two different positions of space coordinates z and v of the firefly i;
Execute swap operation for the firefly member i (x;), and obtain the new firefly member i (x; ,,,);
Elseif =2
Randomly select two different positions of space coordinates » and v of the firefly ;
Execute insert operation for the firefly member i (x;), and obtain the new firefly member i (x; ,..);
Elseif =3
Execute reverse operation for the firefly member 7 (x;), and obtain the new firefly member i (x; e.,);
Elseif h =4
Execute random walk operation for the firefly member i (x;), and obtain the new firefly member i (x; ,.,);
Elseif h=5
Insert the average of the value of best firefly operation for the firefly member i (x;), and obtain the new
firefly member i (x; e.);
End if.
Apply the LRV rule to decode the space coordinates of new firefly member i (x; ,.,,) to represent the
group of routes.
Evaluate the objective function f(x; ,.)-
If (f(xi_new) _f(xi) < 0)
X = xi_new;f(xi ) :f(xi_new)
Continue
Elseh=h+1;
End if.
End while.
End for.
End.

Figure 3 Pseudocode for the NLS method

The solution quality (i.e., total cost of transportation) and computational time of the algorithms were investigated to verify the
research hypotheses. The algorithm generated a reduced total cost of transportation, with a higher solution quality executed in a faster
computational time. The statistical parameters used in this study include the average total transportation cost, the average computation
time and the average improvement rate. The graphical analysis approach and the statistical paired t-test are also employed for
comparison.

4. Computational results and comparisons
4.1 Experiment settings and performance comparison

The efficiency of the proposed HFA+NLS algorithm for solving the BDRP-TC problem was analyzed in terms of the total cost and
computational time. The mathematical model was solved for the optimal solution, or the best known feasible solution, obtained using
optimization software (Lingo v.20 on Windows). The best known feasible solution was used if the optimal solution was not found after
24 hours (i.e., 86,400 seconds) of runtime. The proposed HFA+NLS method was tested and compared with the optimal solution (or
best known feasible solution) obtained from Lingo and the solution based on current practice of the 12th RBC. Previous studies used
simulated annealing (SA) [6], hybrid cuckoo search (HCS) [20] and hybrid differential evolution (DE+NLS) [22] to successfully
deduce, in a short period of time, near-optimal solutions of the VRP for blood transportation. All five of the metaheuristic algorithms
considered (including the HFA) were coded in Java computer language with NetBeans IDE 8.2 and run on a computer with Intel Core
i5 CPU 2.40 GHz and Ram DDR4 8 GB. All six methods and the current practice were tested with nine generated test instances and a
real-world case study, making ten test instances in total. In this paper, we consider only the total cost of the current procedure operated
by the 12th RBC. The ten test instances were divided into three groups (small, medium and large test problems) depending on the
number of hospitals. Details of the ten test instances are illustrated in Table 3.
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Table 3 Information for the test instances

Test instance No. of hospitals Test instance No. of hospitals
S1 5 M3 52
S2 7 L1 60
S3 10 L2 68
M1 40 L3 72
M2 46 Case study 21

For the experimental settings, all test instances were repeated five times for each algorithm and once for the current practice. The
maximum number of generations was used as the stopping criterion in the experiments for all the five algorithms under consideration.
When the generation number reached the predefined maximum value, the best known solution was reported. In order to develop a
robust algorithm, in Table 4, the 2% full factorial design method with 2 replications (i.e., 2*2*2*2 = 16 runs) was applied for tuning the
parameters for the HFA+NLS method (with the test instance M3) to determine the best values of the three parameters: step size (a),
light absorption coefficient (y) and crossover rate (CR). Table 5 shows the analysis of variance for the parameter tuning. For the two-
way interaction between two factors S-S (step size) and L-A (light absorption coefficient), using a significance level of 0.05, the p-
value (= 0.031) was less than 0.05. This indicates that there was significant interaction between these two factors. For the single-factor
result for the light absorption coefficient (L-A), the p-value (< 0.000) was less than 0.05, meaning that there was a significant difference
in yield (total cost) between the two levels of this factor. In Figure 4, using the response optimizer in Minitab software, it was clear
that there was better performance and robustness of HFA+NLS when the parameters a, y and CR were set to 1, 0.5 and 0.95,
respectively. The parameter values of HFA were the same as those of HFA+NLS. In addition, the parameter values of SA, HCS and
DE+NLS were obtained from the works of Iswari et al. [6], Sujaree and Jirawongnuson [20] and Intapan et al. [22], respectively. The
parameter settings used in all five algorithms are shown in Table 6.

Table 4 Parameters for HFA+NLS and their levels

Factor Name Low level (-) High level (+)
S-S Step size (o) 0.2

L-A Light absorption coefficient (y) 0.5 1

C-R Crossover rate (CR) 0.7 0.95
Response Name

T-C Total Cost

Table 5 Analysis of variance for the parameter tuning experiment

Source DF Adj SS Adj MS F-Value P-Value
Model 7 718213 102602 8.07 0.004
Linear 3 598496 199499 15.70 0.001
S-S 1 35592 35592 2.80 0.133
L-A 1 560623 560623 44.12 0.000
C-R 1 2281 2281 0.18 0.683
2-Way Interactions 3 105295 35098 2.76 0.111
S-S*L-A 1 86732 86732 6.83 0.031
S-S*C-R 1 7406 7406 0.58 0.467
L-A*C-R 1 11157 11157 0.88 0.376
3-Way Interactions 1 14422 14422 1.13 0.318
S-S*L-A*C-R 1 14422 14422 1.13 0.318
Error 8 101660 12708
Total 15 819873
Model Summary
S R-sq R-sq(adj) R-sq(pred)
112.728 87.60% 76.75% 50.40%
Optimal - y;g, i?(s) 5_./3 0950
D:0.6077 cur [1.0] [0.50] [0.950]
Predict Low 0.20 0.50 0.70
T-C
Minimum
y =3230.0550
d =0.60775

Figure 4 The plots obtained from the response optimizer
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Table 6 Details of parameters used in each algorithm

Parameter Algorithm
SA HCS DE+NLS HFA HFA+NLS
Step size (a) - - - 1 1
Light absorption coefficient (y) - - - 0.5 0.5
Scaling factor (F) - - 0.9 - -
Crossover rate (CR) - - 0.7 0.95 0.95
Initial temperature (To) 150 - - - -
Final temperature (Tfinal) 0.001 - - - -
Cooling rate (8) 0.99 - - - -
Lévy flight (1) - 3 - - -
Probability to discover (P,) - 0.45 - - -
Number of populations - 100 100 100 100
Maximum number of generations 100 100 100 100 100

4.2 Computational results and discussion

The results for all the methods under consideration (total cost and running time) are presented in Table 7, with the improvement
rates in transportation costs for blood products provided by the proposed HFA+NLS method compared with the current practice by the
route planning staff of the 12th RBC shown in Table 8. Statistical tests on the total cost and computational time were conducted to
determine any significant differences between the means of the proposed HFA+NLS approach and the competitive method using the
paired t-test at a significance level of 0.05, with the results reported in Table 9. A plot of the convergence behavior against the generation
number of all the methods considered for the case study is depicted in Figure 5. Table 10 illustrates the best, worst, and mean results
obtained with the standard deviations over 100 times of running the algorithm over the problem set.

Table 7 Computational results generated by the seven methods considered

Current

No. of - Lingo SA HCS DE+NLS HFA HFA+NLS

Instance o ivals practice - - : - : ;
Cost Cost Time Cost Time Cost Time Cost Time Cost Time Cost Time
S1 5 1636.2 1300.4 0.07 1300.4 1.40 1300.4 3.60 1300.4 2.00 1300.4 1.40 1300.4 1.60
S2 7 1735.4 1091.9 0.16 1091.9 2.20 1091.9 4.20 1091.9 3.20 1091.9 3.00 1091.9 2.80
S3 10 3246.2 1333.3 0.52 1366.1 4.40 1358.6 8.40 1353.4 6.80 1361.3 5.80 1350.6 7.00
M1 40 11891.5 2524.8 1440 25955 50.20  2567.9 83.80 25635 7440 25859  65.00 2571.3  70.60
M2 46 13515.9 3048.4 86400 3559.2 69.80 34745 95.80  3480.8 81.00 3488.7 76.80 3470.2 81.60
M3 52 15238.3 2789.7 86400 3619.2 8720 34179 11320 33659 86.80 3358.1 82.80 33219 91.60
L1 60 16532.8 2729.7 86400 3536.2 8420 32744 118.00 3330.6 87.60 3344.8 89.00 3238.0 89.60
L2 68 17767.9 2388.8 86400 35224 88.00 33319 116.20 3326.3 86.20 3306.7 86.80 3217.9  90.20
L3 72 18470.0 2320.3 86400 3628.2 8820 3344.0 107.80 34032 90.40 3402.1 87.20 3300.2 92.40
Case study 21 6464.9 1671.1 5480.41 19189 23.20 1730.6 36.40 1754.0 33.80 1804.4  33.60 1728.1  34.00
Average 10649.9 2130.7 52388.12 2613.8 49.88  2489.2 68.74  2497.0 5522 25044 5314  2459.1 56.14

Remark: Unit of “Cost” is Thai Baht (THB), where 36 Baht is approximately 1 US dollar (USD), and unit of “Time” is seconds.

Table 8 Improvement rate for total cost by the HFA+NLS

Total cost (THB)

Instance Improvement rate (%0)

Current practice HFA+NLS

S1 1636.2 1300.4 20.52
S2 1735.4 1091.9 37.08
S3 3246.2 1350.6 58.39
M1 11891.5 2571.3 78.38
M2 13515.9 3470.2 74.33
M3 15238.3 3321.9 78.20
L1 16532.8 3238.0 80.41
L2 17767.9 3217.9 81.89
L3 18470.0 3300.2 82.13
Case study 6464.9 1728.1 73.27
Overall average 66.46

As seen in Table 7, all the metaheuristic methods considered can achieve the optimal solutions (solved by Lingo v.20) for instances
S1and S2. The HFA+NLS method outperformed all the metaheuristic methods and the current practice in the number of test instances
for which it successfully determined the best known solution. The HFA+NLS found the solution in 9 out of the 10 test instances. The
total number of successful test instances for the HFA, DE+NLS, HCS and SA methods was 2, 3, 2 and 2, respectively. For all the small
test instances, the optimal solution or best known solution was obtained by the proposed HFA+NLS, while the SA, HCS, DE+NLS
and HFA methods were successful in some test instances. For the medium-sized problems, the HFA+NLS method successfully found
the best known solutions in two test instances (M2 and M3). The DE+NLS method achieved the best known solution for only one test
instance (M1), while the SA, HCS and HFA methods did not find any of the best known solutions. For the large problems and the case
study, the HFA+NLS method successfully found the best known solutions for all the test instances.
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The results in Table 8 show that the HFA+NLS algorithm reduces the total blood transportation cost by 66.46%, and achieves a
better route for the blood transport van than the current practice.

Table 9 P-values of the test of significance

Methods Costs Times
HFA+NLS vs. Current practice 0.002 -

HFA+NLS vs. Lingo 0.015 0.004
HFA+NLS vs. DE+NLS 0.029 0.264
HFA+NLS vs. HFA 0.009 0.012
HFA+NLS vs. SA 0.008 0.012
HFA+NLS vs. HCS 0.053 0.004

The results in Table 9 shows the statistically significant differences in total cost and computational time using the paired-t test. For
the tests on the total cost of the pair HFA+NLS vs. Lingo, there was a significant difference in the means, and it was found that the
better solutions were accomplished by Lingo, according to Table 7. For the other pairs, there was a significant difference in the mean
total cost almost always, except for the pair HFA+NLS vs. HCS. This indicates that the performance of HFA+NLS in searching for
solutions was better than the current practice, SA, DE+NLS and HFA, while the performance of HFA+NLS and HCS in searching for
solutions was equivalent. The results show no statistically significant difference in the computational time between HFA+NLS and
DE+NLS, indicating the equivalence of these methods, while significant differences were found for the other pairs. Therefore, the
comparative numerical results show the competitiveness of the proposed HFA+NLS algorithm in solving the blood delivery routing
problem with time constraints (BDRP-TC).

Figure 5 shows a convergence plot for all five algorithms in solving the case study. The proposed HFA+NLS algorithm
outperformed SA, HCS and HFA after reaching the 27 generation. HFA+NLS showed slower convergence than DE+NLS for the first
57 generations but then achieved optimal performance. In addition, the HFA+NLS algorithm provides superior results to the other
algorithms in solution quality, since HFA+NLS can explore more new solutions from the solutions obtained after the movement of
firefly step in Eq. (15) by applying the DE crossover operator, leading to new best solutions because of the effectiveness of the DE
crossover operator. The hybridization with NLS can speed up the process of finding a lower total cost by using information from the
five neighbourhoods search space to enhance the algorithm’s ability to avoid being trapped in a local optimal solution. As seen in
Figure 5, the HFA hybridized with NLS can lead to a faster convergence than the HFA without NLS. Thus, the proposed HFA+NLS
method is very efficient, with fast convergence. To compare the performance with DE+NLS, the HFA+NLS performs better than
DE+NLS since it can generate solutions more from two successive methods. The first solutions set is generated by using Eq. (15).
Then, the obtained solutions set will be re-explored by the DE crossover operator to be new solutions. In contrast to the DE+NLS, there
is only a set of solutions generated by the DE crossover operator. Therefore, HFA+NLS can find more solutions than DE+NLS even
though the same NLS method is used, leading to better performance of the algorithm.

—— HFA+NLS —— DE+NLS ~— SA —=— HCS —— HFA
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Figure 5 The behavior plot of the case study

Table 10 Best, worst, mean and standard deviations among 100 times of running HFA+NLS

Instance No. of hospitals Best Worst Mean Standard deviations
S1 5 1300.4 1300.4 1300.4 -
S2 7 1091.9 1415.1 1138.6 99.4
S3 10 1351.2 1420.5 1373.8 213
M1 40 2589.4 4725.3 3072.6 513.7
M2 46 3511.2 4992.4 3824.8 399.0
M3 52 3421.4 4870.4 3879.4 471.4
L1 60 3367.8 5201.3 41495 471.9
L2 68 3211.2 4893.3 3911.3 512.6
L3 72 3421.1 53394 4200.8 570.0

Case study 21 1838.0 3653.2 2569.2 542.1
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In Table 10, the results show less variability in the solutions obtained for the small problem, and instance S1 has no variability.
When the problem size increases, the variability in the solutions obtained becomes larger. The range between the best value and the
worst value also becomes larger when the instance size increases. Therefore, the HFA+NLS needs its search capability to be further
enhanced with an efficient strategy in order to reduce the variability and the range of solutions obtained.

The novel hybrid metaheuristic algorithm, HFA+NLS, successfully solved the BDRP-TC and determined a shorter transportation
route to deliver blood and blood products. Therefore, RH1 was satisfied, and the HFA+NLS algorithm performed significantly better
than the other methods. For RH2, the HFA+NLS algorithm reduced the total cost of blood transportation, with a cost saving of 66.46%.
Thus, this method was beneficial for the Chief of the 12th RBC to design specific blood delivery routes.

5. Conclusions

Blood is an extremely important resource for saving the lives of accident victims, and is also needed by patients for the treatment
of some diseases. Many academics and practitioners have highlighted the importance of the blood supply chain to handle supply and
demand more efficiently. The blood delivery routing problem with time constraints (BDRP-TC) was formulated as a vehicle routing
problem with time constraints to minimize the total cost of delivering blood and blood products. A novel hybridization of the firefly
algorithm (FA), a crossover operator in differential evolution (DE) and a new local search (NLS), called the HFA+NLS algorithm, was
developed and tested using nine generated test instances and a real-world case study. The solution (total cost) for the HFA+NLS method
was compared with current practice and the optimal solution, or best known solution, obtained from the Lingo v.20 optimization
software. In addition, the performance of the HFA+NLS algorithm was compared with four other existing methods: simulated annealing
(SA), hybrid cuckoo search (HCS), hybrid differential evolution (DE+NLS) and the hybrid firefly algorithm (HFA), in terms of solution
quality and computational time. The HFA+NLS method provided the most promising and competitive search performance, with good
exploitation ability and fast convergence to solve blood delivery routing problems with time constraints. The HFA+NLS algorithm was
proved to be a useful approach for optimizing blood delivery management at a regional blood centre, with cost savings in product
transportation.

In addition to the previously mentioned contributions, our study can fill a research gap in the literature in three ways. First, a
mathematical model for the blood delivery routing problem with time constraints (BDRP-TC) has been developed and solved for
optimal solutions by using the Lingo optimization software. Second, a hybridization of the firefly algorithm, a crossover operator in
differential evolution, and a new local search has been introduced and used to successfully solve the BDRP-TC. Third, the performance
of the algorithm was tested with different problem sizes for nine generated test instances and a new case study based on a real-life
situation for the BDRP-TC.

The current knowledge can be extended to develop user-friendly mobile application software and data visualization according to
the Industry 4.0 concept, by using the HFA+NLS as the solution method to determine the best blood delivery route, and then transferring
the knowledge to the 12th RBC’s routing planner for practical use in a real situation. In addition, future research can extend this research
in two directions. The first will be to extend the model to cope with other characteristics in real-world situations, including time
windows, travel routes under violence situation (e.g., arson, bombing and other attacks) and travel possibilities, vehicle speeds
depending on traffic conditions and uncertain demands. The second will be to improve the performance of the metaheuristic techniques
or to develop new techniques. A comparison of the performance with other existing metaheuristic techniques may also be made.
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