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Abstract  
 

Fall is one of the most critical accidents resulting in serious injuries and significant financial losses among people in all ages. This 

paper presents the application of full factorial design (FFD) to investigate fall detection algorithms that have multiple hyperparameters 

which are very difficult to identify the best values for the dataset. In this study, the algorithm factors are investigated from two motion 

sensors and six artifact neural network (ANN) parameters on seven possible outcomes of signal detection theory (SDT). It is found that 

only one accelerometer and one gyroscope and small size ANN with scaled conjugate gradient (SCG) and radial basis function (RBF) 

provide a higher performance classification with lower computational complexity. Experimental outcomes show the new method using 

statistical theory for the selection of the most effective performance of fall detection algorithm parameters. Findings from the current 

study could be applied to various types of classification model problems in engineering applications, such as the design of products 

and systems. 
 

Keywords: Falls detection, Wearable sensor, Artifact Neural Network (ANN), Signal Detection Theory (SDT), Full factorial design 
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1. Introduction 
 

 Fall accident is recognized the second major cause of unintentional injuries and deaths worldwide. Adults aged 60 years and older 

have the greatest number of fatal falls [1]. Falls can lead to serious quality of life problems such as hip fractures, joint sprains, or even 

death, and result in a financial crisis to their family and community [2]. Thus, an automatic monitoring approach for fall detection is 

of crucial importance for older adults and people with physical and mental disabilities [3]. 

 During the past decades, the wearable fall detection devices are becoming generally more popular and used in many field 

applications due to their availability and affordable price [4]. Most wearable devices recognize falls with motion sensors such as 

accelerometers, gyroscopes, and magnetometers [5] by identifying the body part locations of head, trunk, and ankle [6]. In fact, the 

most critical part of fall detection systems is the algorithm for detecting falls and ADLs with the sensor data [7]. Detection performance 

relies on complexity and accuracy of threshold-based method which influences the reliability of results [8]. As such, ANN is recognized 

due to their ability to perform a powerful classification of pattern recognition. A prior study has revealed that ANN has a good 

performance in choosing the right answer and have been used for creating fall detection algorithms [9]. 

 Sensor is a major part of fall detection wearable devices. Benefits of using wearable sensors include the ease of use, the convenience 

to attach the body, and the low price as compared to external sensors [10]. The characteristics of the wearable devices such as size, 

shape, and weight enable them to be worn easily by users [11] and depend upon characteristics of sensors.  

 ANN has numerous parameters. The major problem in applying ANN is the optimization of their parameters using a trial-and-error 

process. It usually takes a certain period of time [12] and only one factor can be studied at a time. As such, unreliable and misleading 

results with wrong conclusions would be found [13]. However, the trial-and-error method has been used for fall detection analysis and 

design in a recent study where ANN parameters are tuned manually [14].  

 The evaluation of system accuracy has utilized statistical techniques to assist in making decisions under various conditions of 

uncertainty to improve the design and the performance of algorithm [15]. For example, the SDT has been used for examining human's 

ability to detect a signal from noises in various situations [16] and are applied for performance improvement of fall detection algorithms 

[9]. Four outcomes (hit, miss, false alarm, and correct rejection) of SDT have occurred, but 𝐴′ and 𝐵" are not used for evaluating the 

performance of fall detection algorithms. For example, the work of Lin et al. [17] implements the FFD to explore factors affecting SDT 

outcomes for designing the product. 

 FFD is a mathematical and statistical approach which is helpful and necessary for complex simulation analysis that allows an 

analyst to have a better understanding of unique situations and form desired process results as needed [18]. The FFD concept can be 

extended to an ANN design when defining the network parameters [19, 20]. In general, the FFD is used for investigating all possible 

combinations of factors and levels [21], leading to more reliable outcomes in realistic circumstances. Interestingly, it has been 

mentioned that FFD offers the best configuration for improving the performance of ANN models [22, 23]. 
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 In sum, motion sensor and ANN parameters are major factors for designing wearable fall detection systems [11, 24]. The objective 

of this study is to design the fall detection algorithm based upon FFD findings from the investigation of influencing factors (both 

motion sensor and ANN parameters) on SDT outcomes. The contribution of this study provides the framework by focusing on 

parameters that have a significant effect on the performance of classification models for selecting optimal parameters of ANN models. 

 

2. Materials and methods 

 

 The research methodology is shown in Figure 1 where FFD and SDT principles are used to explore the effects of motion sensors 

(accelerometer and gyroscope) and ANN factors on SDT outcomes. The findings of this concept provide a better understanding of the 

effects of each parameter on ANN algorithm performance [22, 23] and analyze the optimal setting configuration [25]. 

 

 
 

Figure 1 The research methodology 

 

2.1 Data preparation 

 

2.1.1 Acquisition and management of SisFall dataset 

 

 The SisFall dataset is one of the largest public datasets [26, 27] available for research projects and has been applied in previous fall 

detection studies [28] since it includes activities before a fall occurred or unoccurred during dangerous situations [29].  

 This study employs the SisFall dataset because it has the largest amount of data, both on number and   heterogeneity of ADLs and 

subjects [30, 31]. Details of all participants and their movement characteristics obtained from a total of 38 participants (19 males and 

19 females) which are divided into two age groups (adult and elderly). The adults (11 males and 12 females; ages mean = 23.39 years, 

standard deviation = 3.39 years) and elderly (8 males and 7 females; ages mean = 65.87 years, standard deviation = 3.78 years) have 

taken part in this study. The SisFall dataset consists of 19 types of ADLs and 15 types of falls found among the adult and elderly 

participants. 

 In fact, elderly people have more risk of falls when walking and trying to get up from a chair. These types of falls are included in 

the current study and used to investigate in the previous study [28]. Examples of falls are (1) fall forward while walking caused by a 

slip, (2) fall backward while walking caused by a slip, (3) lateral fall while walking caused by a slip, (4) fall forward while walking 

caused by a trip, (5) fall forward while jogging caused by a trip, (6) fall forward when trying to get up, etc. However, the SisFall dataset 

has a variety of highly dynamic ADLs (quick lie-to-bed and sit-to-stand) that could lead to many false alarms when using the threshold 

technique [32]. Table 1 presents details of the participants. 

 

Table 1 The characteristics of the participants 

 

Age Group (n) Gender (n) 
Age (yr) 

Height (m.) Weight (kg.) 
Range Mean SD 

Adult (23) 
Male (11) 19–30  23.55 3.31 1.65–1.83 58–81 

Female (12) 19–30  23.25 3.32 1.49–1.69 42–63 

Elderly (15) 
Male (8) 60–71  65.75 3.20 1.63–1.71 56–102 

Female (7) 62–75  66 4.11 1.50–1.69 50–72 

 

2.1.2 Conceptualization of fall events 

 

 Fall events are divided into four phases [33]. Firstly, the pre-fall phase describes the ADLs performed before falls. Secondly, the 

critical phase is just a short time that body suddenly moves toward, backward, or towards the side and impinges on the ground. Thirdly, 
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the post-fall phase is commonly represented by a body resting on the ground with no movement after the fall has happened. Finally, 

the recovery phase is the time after post fall phase that the person gets up without help from another person.  

 

2.1.3 Data pre-processing 

 

 The raw motion sensor data are segmented by the impact point-based method in the magnitude of acceleration for falls [34] and 

ADLs [35] with a time interval of 6 seconds [35, 36]. At a fall, the posture of body is changed and has influenced on the acceleration 

value as captured by motion sensors in individual axes within 2 seconds [37].  

 This study focuses on only the first three phases of falls (pre fall, critical, and post fall) with the impact point-based method where 

each phase has a same time interval of 2 seconds as presented in Figure 2. For the feature extraction, seven descriptive statistics 

(maximum, mean, median, smallest, most frequent, standard deviation, and variance value) of each phase are prepared and fed into the 

feedforward neural network (FFANN). Figure 3 (a) and (b) show examples of acceleration and angular velocity data, respectively. 

 

 
 

Figure 2 Four phases of falls 

 

 

 
Figure 3 Examples of acceleration (a) and angular velocity (b) data from motion sensors 
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2.2 Experimental design 

 

2.2.1 Determination of dependent and independent variables 

 

2.2.1.1 Dependent variables 

 

 The seven outcomes of SDT are investigated as the hit, miss, false alarm, correct rejection, 𝐴′, 𝐵", and zROC plot. Examples of 

SDT applications have found in various categories, such as visual and audio detections [38], audio alarm systems [39], screening tool 

[40], hybrid inspection system [41], radial menus [42], feed-water monitoring system [43], cargo security screeners [44], and 

customers’ creditworthiness [45]. A similar and recent study is conducted for examining baseball games with SDT and ROC space 

[17]. 

 General definitions of the seven dependent variables as described in the SDT framework for fall detection system can be given as 

follows. Hit is determined by detecting a fall when it happens. Miss refers to a fall that has occurred, but the system does not detect it. 

A false alarm relates to a fall that has not occurred but it is detected. Correct rejection indicates that the system does not detect a fall 

when it does not exist. 

 Measures of nonparametric index of 𝐴′ and 𝐵" are most popular because they are assumed to be free from normal distribution 

assumptions. These indexes have been methodologically and computationally well developed by Grier (1971) and generally applied in 

SDT based research [44, 46].  

 𝐴′ can be determined by the equation (1) and generally covers the ranges from 0 to 1. For example, if 𝐴′ is 0.5, it is implied that 

the system cannot differentiate signals from the noise. In case of 𝐴′ less than 0.5, it may result from response confusion or sampling 

error, and if 𝐴′ equals 1, it shows the perfect performance of the system.  

 

𝐴′ = .5 + [𝑠𝑖𝑔𝑛(𝐻 − 𝐹)
(𝐻−𝐹)2+|𝐻−𝐹|

4𝑀𝐴𝑋(𝐻,𝐹)−4𝐻𝐹
]                                                                                                                                  (1)                                                                                   

 

Where .5 is a constant number. 𝐻 and 𝐹 refer to hit and false alarm rates, respectively. As given; if (𝐻 − 𝐹) > 0 (i.e., 𝐻 > 𝐹), sign 

(𝐻 − 𝐹) = +1; if 𝐻 = 𝐹, sign (𝐻 − 𝐹) = 0; and otherwise (i.e., 𝐻 < 𝐹), sign (𝐻 − 𝐹) = -1; 𝑀𝐴𝑋(𝐻, 𝐹) equals either H or F, whichever 

is greater.  

 𝐵" is a well-known nonparametric measure concerning response bias [47] as shown in equation (2). 𝐵" can cover from - 1 (severe 

bias in yes response approval) to 1 (severe bias in no response approval). If 𝐵" = 0, it refers to no response bias. 

 

𝐵" = 𝑠𝑖𝑔𝑛(𝐻 − 𝐹)
𝐻(1−𝐻)−𝐹(1−𝐹)

𝐻(1−𝐻)+𝐹(1−𝐹)
                                                                                                                                   (2)

                                                                                                          

 zROC plot draws z-score of false alarm rate on the x-axis and z-score of hit rate on the y-axis to show the mean performance in all 

experiments [48]. Thus, the point in the top-left corner of the zROC plot is the best possible detection, describing 100% hit and 0% 

false alarm probability. 

 

2.2.1.2 Independent variables  

 

The following independent variables are described as follows: 

 

a) Motion sensors 

 

 Two motion sensors (accelerometer and gyroscope) are critical parts of fall detection systems. The data of three axes of the 

accelerometer and gyroscope (see Figure 4) are measured from the sensor's linear acceleration and angular velocity parameters 

concerning the gravitational characteristics. The participants’ movement characteristics appeared in the SisFall dataset are collected 

from motion sensors at 200 Hz of wearable device attached to their waist. The sensors have consisted of an ADXL345 accelerometer 

(configured for ±16 g, 13 bits of analog to digital converter (ADC)), a Freescale MMA8451Q accelerometer (configured for ±8 g, 14 

bits of ADC), and an ITG3200 gyroscope (±2000º/s, 16 bits of ADC, Texas Instruments, Dallas, Texas, USA).  

 The advantage of using both motion sensors is that one sensor compensates for limitations of another. For example, the mistake of 

drift from integrating gyroscope data can be corrected by the accelerometer-based orientation estimates and the mistake of orientation 

by earth’s gravity in the accelerometer can be corrected by gyroscope-based rotation estimates [49]. The type and the number of sensors 

are introduced based upon the characteristics of wearable fall detection devices employed to collect motion data [31]. As such, a 

combination of one accelerometer and one gyroscope is set as a low level and two accelerometers and one gyroscope is set as a high 

level in this study. 

 

b). Artificial neural network (ANN) 

 

 The hidden layer is found among the input and output layers. There is a specific number of neurons in all layers. Usually, the 

number of hidden layers is 1, 2, or 3. However, the zero layer can be found but are not being generally utilized [13] because the ANN 

with zero hidden layers cannot represent nonlinear separable decisions or functions [50]. 

 Each epoch refers to one cycle of training the model through a training data set. The number of epochs allows an increase in the 

model's accuracy and training time. This study evaluates three levels (100, 500, and 1000) of epoch which have been used in fall 

detection systems [51-53].  

 The number of neurons in the hidden layers performs a vital role in classification. The determination of number of neuron in the 

hidden layers equals to K × (N+1); where N = the number of neurons in the input layer, and K=1, 1.5, 2 [13]. 

 The learning rate is a hyperparameter or adjustable parameter to determine step size for finding the optimal solution of problems. 

Learning rate should be seriously taken into consideration as a high value can cause a fast convergence of algorithm but might miss an 
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optimal solution. A low value may result in a long period of time for training process and might get stuck at a local minima. Three 

levels (0.1, 0.5, and 1) of learning rate are investigated in the current study [54].  

 The training algorithm is used to update network weights and bias values [55]. In this study, two algorithms are selected for training 

ANNs in all experiments. The first algorithm is a SCG which is usually found in the training process [56]. The second algorithm is a 

RP which has an excellent performance for training FFANN [57]. 

 Transfer (or activation) function is recognized for the calculation of the layer outputs of data coming from the previous hidden 

layer. In this research, two functions are examined: the HTG [58] and the RBF [59].  

 

2.2.1.3 Control variables 

 

 All participants have no mobility problems. The position of motion sensors is fixed with a wearable device similar to a belt buckle 

as shown in Figure 4. Orientation of the motion sensors displays the positive x-axis guiding to the right side of the participant, the 

positive y-axis in the gravity direction, and the positive z-axis in the forward direction. 

 

 
 

Figure 4 The orientation of motion sensors, modified from [28]  

 

2.2.2 Design of mixed-level full factorial experiments 

 

 The current research explores the process of designing fall detection algorithm with the considerations of motion sensor and ANN 

characteristics using SDT and FFD principles. In addition, FFD can determine detailed insight fall detection algorithm performance 

with an emphasis on seven critical factors (1 motion sensor and 6 ANNs) with different levels as shown in Table 2. The evaluation of 

effect of seven SDT outcomes (hit, miss, false alarm, correct rejection, 𝐴′ and 𝐵", and zROC plot) is performed. A mixed-level full 

factorial design is conducted where all sensor and ANN factors serve as within-subject design. Three replicates are performed in each 

treatment which includes training and testing trials for each treatment with FFANN configuration, so there is a total of 1,944 runs in 

MATLAB. 

 

Table 2 Sensor and ANN factors and levels 

 

    Factors 

 

 

Level 

Type and the 

number of sensor 

(A) 

Hidden 

layer (B) 

Epoch 

(C) 

Number of 

neuron (D) 

Learning 

rate (E) 

Training 

function (F) 

Transfer 

function (G) 

(1) 1 accelerometer, 1 

gyroscope 

1 100 1 0.1 scaled conjugate 

gradient (SCG) 

hyperbolic 

tangent 

sigmoid 

(HTG) 

 

(2) 2 accelerometers, 1 

gyroscope 

2 500 1.5 0.5 resilient 

backpropagation 

(RP) 

radial basis 

function 

(RBF) 

 

(3) - 3 1000 2 1 - - 

 

 

2.2.3 Formation of fall detection algorithms 

 

 The FFANN is classification algorithms that have been used for training and testing the SisFall dataset collected from motion 

sensors (acceleration and angular velocity data) attached on the waist to differentiate falls from ADLs. In FFANN, the feature extracted 

data feeds in only one direction moving forward from the input nodes, through the hidden nodes and to the output nodes. There are no 

cycles or loops in the network. The FFANN in this study is the multi-layer perceptron class where the network consists of multiple 

layers of neurons interconnected in forward direction. Each neuron in each layer has connected with neurons in the subsequent layer. 

FFANN is trained by training dataset. The testing dataset is used to test FFANN on a different person for supporting realistic evaluation 

[34]. 

 

Z 

X 

Y 
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2.3 Data analysis 
 

2.3.1 Computation of experimental results 
  

 All computations are conducted on a computer equipped with Intel(R) Core(TM) i7-6700 at 3.40 GHz, 16 GB of RAM, and a 

GeForce GTX1060 GPU with 6 GB of memory with Minitab Version 17 software (Minitab, Inc., State College, PA, USA), and 

MATLAB version R2020a (Mathworks, Inc., Natick, MA, USA) for experimental design, data analysis, and ANN architectures 

(creating, training, and testing). The 𝐴′, 𝐵′, and zROC plot are calculated in Excel. The zROC plot is utilized to recognize the z-score 

of hit and false alarm of all experiments. 
 

2.3.2 Analysis of variance (ANOVA) 
 

 Previous studies reveal that ANOVA is the most efficient, conceptually simple, powerful, and popular statistical analysis method 

for determining the optimal configuration by evaluating statistically significant factors [25, 60, 61]. Main effects and interactions of 

motion sensor and ANN factors are investigated by ANOVA. Fisher's least significant difference (LSD) is applied to define statistical 

differences in the levels of factors. Statistical analysis is performed with a 95% confidence interval (α = 0.05) and computed by Minitab.  
 

2.3.3 Selection of optimal parameters 
 

 The trial-and-error method is the traditional method for selecting optimal parameters. However, it causes problems such as taking 

a long time [12] and not focusing on the optimal solutions as expected [13, 62]. Therefore, this study uses the FFD to prove the statistical 

difference of parameters based on SDT outcomes for the selection of optimal parameters in the proposed fall detection algorithm. 
 

3. Results 
 

 After manipulating mixed-level FFD with 3 replicates, leading to 1,944 runs, it has been found that a motion sensor and four of six 

ANNs (hidden layer, epoch, number of neuron, learning rate, training function, and transfer function) have significantly influenced 

seven SDT outcomes (hit, miss, false alarm, correct rejection, 𝐴′, 𝐵", and zROC) in different ways. In fact, the epoch and learning rate 

become noise factors and can be eliminated which has been done in the previous publication [13]. Therefore, only five crucial factors 

are investigated for the further study.  

 Another mixed-level FFD experiment on a motion sensor and four ANN factors, serving as within-subject design is conducted. 

The experiment is replicated three times, giving a total of 216 experimental runs. Additionally, the epoch = 100, and learning rate = 1 

are fixed for having the faster training time as both of them have no significant impact on SDT outcomes. The Table 3 shows ANOVA 

results (F value) of significant dependent variables. Two-way and three-way interactions have tested. Interestingly, there is no 

significant four way and five-way interactions found among these five factors at a 95% confidence level (𝑝 > 0.05). 
 

Table 3 ANOVA results of significant dependent variables 
 

Source Hit/Miss FA/CR 𝑨′ 𝑩" 

Type and the number of sensor (A) 0.43  1.76  1.10 0.05 

Hidden layer (B) 1.50  0.13  0.92 2.25 

Number of neuron (D) 2.78  1.56  3.98* 1.59 

Training function (F) 37.80**  8.88**  58.52** 64.43** 

Transfer function (G) 13.07**  1.23  20.98** 11.66** 

A*G 0.17  5.02*  1.99 0.05 

B*G 3.42*  0.87  2.35 0.19 

D*F 2.60  1.16  3.32* 0.94 

F*G 12.14**  2.87  8.52** 36.17** 

B*F*G 4.19*  0.83  2.08 2.64 
*𝑝 < 0.05; **𝑝 < 0.01. 
FA = false alarm; CR = correct rejection. 
 

ANOVA results of significant dependent variables are discussed as follows:  
 

3.1. Hit rate 
 

 The training function (F = 37.80, 𝑝 < 0.01) and transfer function (F = 13.07, 𝑝 < 0.01) have significantly different effect on the 

hit. However, no significant difference is found for the type and number of sensor (F = 0.43, 𝑝 > 0.05), hidden layer (F = 1.50, 𝑝 >
0.05), and the number of neurons (F = 2.78, 𝑝 > 0.05).  Interactions between hidden layer and transfer function (F = 3.42, 𝑝 <
0.05), training function and transfer function (F = 12.14, 𝑝 < 0.01), and hidden layer, training function and transfer function (F =
4.19, 𝑝 < 0.05) are significant difference, as shown in Table 3. 

 The LSD test shows that the SCG (Mean = 0.952, 𝑝 < 0.01) has a significantly higher hit than the RP (Mean = 0.754;  𝑝 <
0.01) that yields network weights and bias values with higher hit for falls detection algorithm. The hit of RBF (Mean = 0.910, 𝑝 <
0.01) is significantly higher than hit of HTG (Mean = 0.794;  𝑝 < 0.01). Hidden layer interacts significantly with transfer function 

(F = 3.42, 𝑝 < 0.05). Figure 5 (a) shows that the RBF has a higher hit than the HTG in every hidden layer and can provide the proper 

layer outputs calculated from the previous hidden layer, leading to the improvement of fall detection algorithm. As such, the SCG with 

any transfer functions can detect falls with high accuracy as shown in Figure 5 (b).  

 The three-way interactions of hidden layer, training function, and transfer function are shown in Figure 5 (c). FFANN is trained by 

the SCG provide a high hit at every hidden layer and transfer function. The LSD test also indicates no significant difference of hit when 

SCG is used (𝑝 > 0.05). It can be implied that ANN with small size of hidden layers and SCG can be employed in fall detection 

algorithm. 
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Figure 5 Interaction between hidden layer and transfer function (a), training function and transfer function (b), and hidden layer, 

training function and transfer function (c) for the hit rate 

 

3.2. Miss rate 

 

 The training function (F = 37.80, 𝑃 < 0.01) and transfer function (F = 13.07, 𝑃 < 0.01) have significantly influenced on the 

miss, as shown in Table 3. The LSD test shows that the miss of the SCG (Mean = 0.048, 𝑝 < 0.01) is significantly lower than the 

miss of the RP (Mean = 0.246, 𝑝 < 0.01), and the miss of RBF (Mean = 0.09, 𝑝 < 0.01) is significantly lower in comparison to the 

miss of the HTG (Mean = 0.206; 𝑝 < 0.01), as shown in Figure 6 (a) and (b). Therefore, the SCG and the RBF produce the lowest 

miss in a small ANN structure. Furthermore, a three-way interaction between hidden layer, training function, and transfer function are 

found on the miss (F = 4.19, 𝑝 < 0.05) as shown in Figure 6 (c), corresponding to the findings of the hit rate in Section 3.1 as the hit 

and miss rates are opposite indicators [17]. 
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Figure 6 Interaction between hidden layer and transfer function (a), training function and transfer function (b), and hidden layer, 

training function and transfer function (c) for the miss rate 

 

3.3. False alarm rate 

 

 Training function (F = 8.88, 𝑝 < 0.01) has a significant impact on the false alarm rate, as shown in Table 3. The false alarm of 

the SCG (Mean = 0.225, 𝑝 < 0.01) is significantly lower than the false alarm of the RP (Mean = 0.336, 𝑝 < 0.01). The false alarm of 

the RBF with one accelerometer and one gyroscope, gives the lowest false alarm, as shown in Figure 7. The interaction leads to the 

reduction of the size, weight, memory and computational complexity of device. 
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Figure 7 Interaction between type and number of sensor and transfer function for the false alarm rate 

 

3.4. Correct rejection rate 

 

 Based upon the LSD test, the SCG allows the higher correct rejection as it (Mean = 0.775, 𝑝 < 0.01) is significantly greater than 

the correct rejection of the RP (Mean = 0.664; 𝑝 < 0.01). Figure 8 shows that the sensor (one accelerometer and one gyroscope) with 

the RBF provides the highest correct rejection. This could be implied that the fall detection algorithm can differentiate falls from ADLs. 

 

 
Figure 8 Interaction between type and number of sensor and transfer functions for the correct rejection rate 

 

3.5. 𝐴′  
 

 The Shpiro-Wilk test shows that SDT outcomes of fall detection algorithm are not normally distributed (α = 0.05). Thus, the SDT 𝑑′ 

and 𝛽 are performed with nonparametric measure of (𝐴′) and (𝐵′), and the zROC plot for the design of fall detection algorithm in FFD 

phase. Table 3 shows that the number of neurons (F = 3.98, 𝑝 < 0.05), training function (F = 58.52, 𝑝 < 0.01) and transfer function 

(F = 20.98, 𝑝 < 0.01) have a significant impact on the 𝐴′. 

 LSD test illustrates that the 𝐴′ in the low level (K=1) number of neuron (Mean = 0.89, 𝑝 < 0.05) is significantly higher than the 

𝐴′ in the middle level (K=1.5) (Mean = 0.84, 𝑝 < 0.05) and high level (K=2) (Mean = 0.82, 𝑝 < 0.05) number of neuron. The 𝐴′ of 

the SCG (Mean = 0.92, 𝑝 < 0.01) is significantly higher than the 𝐴′ of the RP (Mean = 0.77; 𝑝 < 0.01). The means of 𝐴′ for the 

RBF and the HTG are 0.89 and 0.80, respectively. It should be noted that the design of fall detection algorithm should consider the 𝐴′ 
with a high value for the more accurate and reliable performance. Figure 9 (a) shows that the interaction effect achieves the high hit 

and the low false alarm at the lowest level of the number of neurons while the RBF with the SCG provides the highest 𝐴′ among the 

other interactions, as shown in Figure 9 (b). 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 accelerometer and 1 gyroscope 2 accelerometers and 1 gyroscope

F
al

se
 A

la
rm

 R
at

e

Type and Number of Sensor

Transfer Function 

 HTG

 RBF

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 accelerometer and 1 gyroscope 2 accelerometers and 1 gyroscope

C
o

rr
ec

t 
R

ej
ec

ti
o

n
 R

at
e

Type and Number of Sensor

Transfer Function 

 HTG

 RBF



42                                                                                                                                                    Engineering and Applied Science Research 2023;50(1) 

 

 
Figure 9 Interaction between the number of neurons and training function 9 (a), and training function and transfer function 9 (b) for 

the 𝐴′ 

 

3.6. 𝐵" 

 

 The significant differences on the 𝐵"  are found for the training function (F = 64.43, 𝑃 < 0.01)  and transfer function (F =
11.66, 𝑃 < 0.01). The 𝐵" is significantly lower in the SCG (Mean =  −0.54, 𝑝 < 0.01) than the RP (Mean = −0.18, 𝑝 < 0.01). The 

ANN is trained by the SCG, resulting that fall detection makes more severe bias in yes response approval. The 𝐵" is significantly lower 

for the RBF (Mean = −0.43, 𝑝 < 0.01) than for the HTG (Mean = −0.28, 𝑝 < 0.01).  

 The effects of interaction between training function and the transfer function are observed from the plot as the 𝐵" is minimum with 

the use of the HTG and the SCG, as illustrated in Figure 10. The fall detection algorithm produces mostly yes responses on signal and 

noise trials. It is meant that the interaction produces a high hit and false alarm for the classification between falls and ADLs. 

 

 
Figure 10 Interaction plot between the training function and transfer function for the 𝐵" 

 

3.7. zROC plots 

 

 Figure 11 illustrates the zROC plot of 216 experimental runs by plotting in two coordinates (z-score of false alarm and hit rates). 

It reveals the prediction point of experimental runs appears at the top left of the second quadrant as the highest prediction accuracy and 

highest fall detection performance with lowest false alarm rate, indicating the most accurate and reliable performance for detecting 

falls. 
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Figure 11 zROC plots for fall detection 

 

4. Discussions 

 

 This study explores the effects of motion sensors (accelerometer and gyroscope) and ANN factors (hidden layer, epoch, number of 

neuron, learning rate, training function, and transfer function) on SDT outcomes (hit, miss, false alarm, correct rejection, 𝐴′, 𝐵", and 

zROC plot) for designing fall detection algorithm on wearable device. It has been found that the transfer function is significantly 

influenced the hit, miss, 𝐴′, and 𝐵". A better classification performance is achieved when a fall detection algorithm utilizes the RBF 

rather than the HTG [63] as it the RBF can show non-linear relations between input and output data [64] and be able to implement for 

multidimensional data [65]. These agree with the previous research findings [66-68] indicating that RBF has a better ability to classify 

the problem than the HTG. 

 Training function has influenced all SDT outcomes. The SCG becomes a robust training algorithm due to its minimum error 

corresponding to prior publications [69, 70] since it uses the Levenberg-Marquardt method in each iteration to avoid the line search in 

scaling the step size. For the improvement of fall detection performance, the FFANN trained with the SCG algorithm have been applied 

for resolving large-scale problems [71].  

 As found in the previous publication [23], the smaller number of neurons result in a greater 𝐴′ providing a high classification 

accuracy and leading to a better detection performance (high hit and low false alarm rates). It should be noted that the SCG with the 

RBF allows the highest hit rate, 𝐴′, and lowest miss since the main effects of two factors (training function and transfer function) are 

highly significant influenced on the SDT outcomes (𝑝 < 0.01) and strong interactions among them are found [18]. Additionally, SCG 

and the RBF with all hidden layers produces the high hit and the low miss rates. The design of fall detection algorithm with a low 

complexity of computation is recognized when choosing smaller ANN at the lowest level of the number of hidden layer and neuron 

[53]. 

 The higher performance of pattern recognition classification is recognized when low complexity and less run-time consumption 

are found [53]. The analysis of FFD shows that the optimal parameters of fall detection algorithm consist of accelerometer with one 

gyroscope, one hidden layer, 100 epochs, low level (k=1) of number of neurons, 1 learning rate, the SCG, and the RBF.  

 The results obtained from this study provide the highest accuracy of 96.33% as compared to previous studies [51, 72-74] using 

ANN, as shown in Table 4. 

 

Table 4 Comparison of this study and previous studies using ANN 

 

Reference Accuracy (%) Sensitivity (%) Specificity (%) 

[72] 80.66 56.82 85.47 

[73] 84.14 83.33 84.18 

[74] 95.48 69.39 99.56 

[51] 81.40 81.80 81.00 

This study 96.33 96.76 95.41 

 

 This algorithm can be implemented in a standard general-purpose microcontroller [75]. The finding of ANN reveals the wearable 

fall detection device incorporating with only one accelerometer and one gyroscope allows the accurate and reliable performance. In 

addition, minimizing electronic components leads to small size, lightweight property, ease of use, and lower power consumption being 

consistent with the previous publication [76]. 

 The prediction points generally fall on the upper-left area of zROC plot. However, there are still many points in the right area 

implying the poor performance of remaining experimental runs. The design of fall detection algorithms should be thoroughly 

considered to find the best performance configurations [24, 77] where the traditional method of problem solving e.g. trial and error 

takes a long period of time [12] and does not systematically focus on optimal solution [13, 62]. The FFD allows identifying and 

quantifying each design factor and interaction between factor levels [25] impacting ANN performance [19] to determine the best 

parameters of ANN [62].  

 

5. Conclusions 

 

 In this study, the FFD proves the statistical difference of factors based on SDT outcomes to design a comprehensive and robust fall 

detection algorithm with minimum miss and false alarm rates [42, 77]. Therefore, the proposed method can be applied to ANN in many 

applications. 
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 Findings from this study can serve as a technical guide of systematic design for determining the optimal parameters in designing 

fall detection algorithm and saving time during product design and development phase of ANN. There are two major limitations that 

should be mentioned. Firstly, independent variables of motion sensors are derived from the SisFall dataset with the simulation of ADLs 

and falls performed by healthy subjects. In additional to this, all experiments of ADLs and falls are not conducted and investigated. 

Secondly, the proposed fall detection algorithm employs binary classification technique where all type of falls and ADLs are divided 

into only two classes (falls and ADLs). As such, the classification of types of falls and ADLs can be achieved by implementing a multi-

class classification technique [78] and should be considered for the future work. 
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