

*Corresponding author. Tel.: +66 4375 4359
Email address: olarik.s@msu.ac.th
doi: 10.14456/easr.2022.50

Engineering and Applied Science Research 2022;49(4):505-520 Research Article

 Engineering and Applied Science Research

 https://www.tci-thaijo.org/index.php/easr/index

 Published by the Faculty of Engineering, Khon Kaen University, Thailand

CycleAugment: Efficient data augmentation strategy for handwritten text recognition in

historical document images

Sarayut Gonwirat and Olarik Surinta*

Multi-agent Intelligent Simulation Laboratory (MISL), Department of Information Technology, Faculty of Informatics, Mahasarakham

University, Mahasarakham 44150, Thailand

Received 24 November 2021

Revised 4 February 2022

Accepted 25 February 2022

Abstract

Predicting the sequence pattern of the handwritten text images is a challenging problem due to various writing styles, insufficient

training data, and also background noise appearing in the text images. The architecture of the combination between convolutional

neural network (CNN) and recurrent neural network (RNN), called CRNN architecture, is the most successful sequence learning

method for handwritten text recognition systems. For handwritten text recognition in historical Thai document images, we first trained

nine different CRNN architectures with both training from scratch and transfer learning techniques to find out the most powerful

technique. We discovered that the transfer learning technique does not significantly outperform scratch learning. Second, we examined

training the CRNN model by applying the basic transformation data augmentation techniques: shifting, rotation, and shearing. Indeed,

the data augmentation techniques provided more accurate performance than without applying data augmentation techniques. However,

it did not show significant results. The original training strategy aimed to find the global minima value and not always solve the

overfitting problems. Third, we proposed a cyclical data augmentation strategy, called CycleAugment, to discover many local minima

values and prevent overfitting. In each cycle, it rapidly decreased the training loss to reach the local minima. The CycleAugment

strategy allowed the CRNN model to learn the input images with and without applying data augmentation techniques to learn from

many input patterns. Hence, the CycleAugment strategy consistently achieved the best performance when compared with other

strategies. Finally, we prevented image distortion by applying a simple technique to the short word images and achieved better

performance on the historical Thai document image dataset.

Keywords: Convolutional recurrent neural network, Handwritten text recognition, Data augmentation, Deep learning, Training

strategy

1. Introduction

 The offline text recognition system is a vision-based application that automates extracting information from handwritten and printed

manuscripts and transforms images into digitally readable text that is editable and comfortable to store and retrieve. Earlier research

focused on character recognition which recognized isolated characters [1-4]. However, a few studies concentrated on the recognition

of handwritten text. This is because it takes more effort to segment handwritten text into individual characters [5-7]. Due to messy

handwriting, various writing styles, and cursive texts, as shown in Figure 1, it is difficult to solve by segmenting characters and then

recognizing them by traditional optical character recognition (OCR). Character sequence learning is more suitable for word recognition

[8, 9]. Hence, an effective feature-based sliding window and sequence learning methods are applied to recognize each character and

then transcript to words [10-12]. However, handwritten text recognition (HTR) methods mainly focus on word recognition and have

become a more prominent research domain nowadays.

 Deep learning methods have become the principal method in various computer vision applications, such as object detection, object

recognition, speech recognition, and natural language processing. Further, convolutional neural network (CNN) architectures, one of

the deep learning methods, are widely proposed for feature extraction and image classification. CNN is also proposed to address the

challenge of word recognition [13-15]. In addition, CNN and recurrent neural networks (RNNs), which are the famous sequence learner

architectures, were proposed to recognize both printed and handwritten words [14, 15] and achieved a high accuracy performance.

Consequently, state-of-the-art in handwritten character recognition is a combination of CNN and RNN, called convolutional recurrent

network (CRNN). The CRNN also proposed solving problems in many text recognition fields such as scene text and video subtitle

recognition.

 Moreover, handwritten text recognition has been applied in many languages, such as English, Chinese, Arabic, Indian, and Amharic

[13, 14, 16-19]. Particularly, historical manuscripts contain cursive writing, noisy background, and differing word spelling from an

ancient and insufficient lexicon for transcription. The challenge of Thai handwritten character recognition is that the Thai language

does not have an exact rule to split the sentences and no space between words. For explicit prediction, it is demanding to segment

sentences into tokenized words.

506 Engineering and Applied Science Research 2022;49(4)

(a)

 (b) (c)

Figure 1 Examples of historical Thai handwritten texts from (a) Thai archive, (b) Phra Narai Medicine, and (c) King Rama V, volume

1, medicine manuscripts

 The main contribution of this paper is to present the new data augmentation strategy, namely CycleAugment. The proposed data

augmentation strategy mainly focuses on minimizing the validation loss and avoiding overfitting. We achieve our goal with a simplistic

strategy and implementation. Our research is motivated by Huang et al. [20], who proposed the cyclic cosine annealing method that

calculated the learning rate in every epoch and then started the new learning rate at the beginning of a new cycle.

 Furthermore, training the CRNN model usually allows choosing only to train the CRNN model with or without applying data

augmentation techniques. We offer the CycleAugment strategy that provides the ability to train the CRNN model with and without

applying data augmentation techniques simultaneously. Importantly, our CycleAugment strategy confirms that it can handle every

CRNN architecture.

 We evaluate the efficiency of the CycleAugment strategy on several CRNN architectures for handwritten word recognition on Thai

archive manuscripts. To show the importance of the CycleAugment strategy, we compared it to the original data augmentation strategy.

The results showed that the CycleAugment strategy significantly decreased the character error rate (CER). The CycleAugment strategy

achieved the CER value of 5 .4 3 and the original data augmentation strategy obtained the CER value of 7 .3 1 on the Thai archive

manuscript.

 The remainder of this paper is organized as follows. The related work is briefly described in Section 2. Section 3 deeply explains

the proposed CRNN architecture and proposed CycleAugment strategy. Section 4, present the Thai historical document dataset, training

strategy, and experimental evaluation. The discussion is presented in Section 5. Finally, the last section gives the conclusion and future

direction

2. Related work

 In this section, we survey the HTR task based on deep learning techniques. We also study the transfer learning and data

augmentation techniques that improve the performance of deep learning.

2.1 Handwritten text recognition

 Text recognition systems have been proposed for several applications, such as scene text recognition [21-24], video subtitle

recognition [17, 25], and handwritten text recognition in many languages [14, 16, 19]. Currently, most of the proposed HTR methods

are based on the CNNs and RNNs architectures.

 For HTR, Abdurahman et al. [16] proposed a convolutional recurrent neural network architecture, called AHWR-Net, to recognize

Amharic words. The AHWR-Net architecture was divided into feature extraction, sequence modeling, and classification. First, they

created a CNN model and compared their proposed CNN model with state-of-the-art CNN models: DenseNet-121, ResNet-50, and

VGG-19. These CNN models were also proposed to extract the feature from the Amharic word images. Second, the RNN architecture

was proposed as the sequence model to train spatial features extracted from the previous step. Finally, the probability distributions,

which was the output of the RNN method, were classified using a connectionist temporal classification algorithm (CTC). In addition,

Butt et al. [19] built a robust Arabic text recognition system using the CNN-RNN attention model from natural scene images. Their

Arabic text recognition system addressed the challenge of working with texts in different sizes, fonts, colors, orientation, and brightness.

 Furthermore, Ameryan & Schomaker [14] proposed a high-performance word classification using homogeneous CNN and long

short-term memory (LSTM) networks. First, for the CNN model, they created five CNN layers. Each CNN layer contained a

convolutional layer, normalization method, nonlinear rectified linear unit (ReLU), and max-pooling layer. Second, for the LSTM,

bidirectional-LSTMs with three layers were used. Third, the CTC decoding was attached as the output of their network. Finally,

invented ensemble system was proposed, which included five networks. The outputs of each network were sent to vote using the

plurality vote method.

2.2 Thai handwritten text recognition

 There is a small amount of research that focuses on Thai handwritten text recognition. In 2019, Chamchong et al. [26] proposed

hybrid deep neural networks that combined three convolutional layers and two bidirectional gated recurrent unit (BiGRU) layers,

namely 3CNN+BiGRU. The 3CNN+BiGRU was followed by softmax and CTC loss functions. The computational time was compared

for both bidirectional LSTM (BiLSTM) and BiGRU revealing that BiGRU is faster than BiLSTM. Therefore, the 3CNN+BiGRU

showed the best character error rate (CER) of 12.1% on the Thai archive dataset when time step and RNN size were set as 32 and 128.

 In 2020, Srinilta & Chatpoch [27] proposed a deep learning method for multi-task learning on three scripts: Thai, Devanagari, and

Latin. The deep learning method was divided into three main layers: CNN, RNN, and CTC. First, the CNN layer was trained based on

ResNet50 architecture for multi-task learning, followed by the BiGRU layer. Second, the output of the BiGRU layer in the first step

was trained using different BiGRU layers and then followed by the CTC layer. For example, the BiGRU-Thai layer was aimed to train

and recognize only Thai scripts.

Engineering and Applied Science Research 2022;49(4) 507

 In 2021, Chamchong et al. [28] created four CNN layers: convolutional, ReLU activation, max-pooling, and dropout layers. Then,

two BiGRU and dropout layers were added to the last CNN layer. In their method, the dropout layers were set as 0.2. Furthermore, to

decrease the training loss value, they compared results based on two optimization algorithms: SGD and RMSprop. The experimental

results showed that the RMSprop optimization outperformed the SGD optimization algorithm on the standard Thai handwritten dataset.

2.3 Improve the deep learning performance with transfer learning and data augmentation techniques

 In deep learning, achieving high performance is generally accompanied by various convolutional layers and training images [29].

The very deep convolutional layers and limited training samples often attend to the overfitting problem [30]. The deep convolutional

layers directly affect the deep learning model that makes it hard to generalize new samples. Transfer learning, data augmentation,

dropout, and reducing the complexity of the deep learning architecture are suggested to address the overfitting problem [31-34].

 Gonwirat & Surinta [31] trained CNN models (including Inception-ResNetV2 and VGG19 architectures) based on two training

methods, scratch learning and transfer learning. The comparison results showed that the transfer achieved high accuracy when evaluated

using 5-fold cross-validation (5-cv) and 10-cv methods. As a result, the VGG19 architecture, which included 19 layers and was

designed as a stacked network, outperformed Inception-ResNetV2 when training with transfer learning on the THI-C68 dataset. It also

improved the recognition speed.

 Pawara et al. [33] applied six data augmentation techniques: rotation, blur, scaling, contrast, illumination, and projective to the

original image. In their method, first, the training examples increased 10 to 25 times larger than the original data. Second, they trained

the CNN models with original and augmentation images, called offline training strategy. Moreover, Enkvetchakul & Surinta [34]

trained the CNN models using three training strategies: offline, online, and mixed training. Six data augmentation techniques were

applied with an online training strategy while training the CNN model: width and height shift, rotation, zoom, brightness, cutout, and

mixup. The online training strategy was much faster than training with offline strategy. This did not increase the number of training

examples, however, it transformed the original image using augmentation techniques while training. Hence, the CNN models could

learn from the new images in each epoch.

3. The convolutional recurrent neural network

 In this section, we present the convolutional recurrent neural network (CRNN) framework for Thai handwritten text recognition of

historical document images with a new data augmentation strategy. Firstly, convolutional neural networks (CNNs) are described.

Secondly, two recurrent neural networks (RNNs) (long short-term memory and gated recurrent unit) are briefly detailed. Thirdly, detail

of the connectionist temporal classification (CTC) decoding is presented for the evaluation metric. Finally, the proposed cyclical data

augmentation strategy, namely CycleAugment, is presented. The proposed framework is explained as follows.

3.1 Overview of the CRNN architecture

 The CRNN network is illustrated in Figure 2. The CRNN has only one input. Our framework also supports both images of a group

of words and short words as for the input. In the CNN architecture, we propose eight different CNN architectures to find the best base

CNN model. For the RNN network, we propose two layers of bidirectional RNN networks and connect them to the CNN architecture.

Hence, the outputs of the bidirectional RNN network are then classified using the softmax function. The output of the CRNN is a

matrix containing character probabilities for each time step. Further, the CTC decoding is attached at the last layer to decode the

probability of characters to make the final text output. Our framework can predict a maximum of 94 members in total, including

characters, numbers, and blanks (space). The configurations of all CRNN architectures are shown in Table 1.

 Furthermore, we propose the cyclical data augmentation strategy (CycleAugment). The CycleAugment strategy provides the

CRNN model to train handwritten text images concurrently with and without applying data augmentation techniques. CycleAugment

is a powerful strategy for obtaining various local optimal loss values in each cycle until they reach a minimum value at the end of

training.

Figure 2 Overview framework of convolutional recurrent neural networks

Input image

Feature of sequence input

Feature extraction Sequence modeling CTC Decoding

String output

508 Engineering and Applied Science Research 2022;49(4)

Table1 Configuration details of CRNN architectures

CCNet mCCNet-

64

mCCNet-

512

mVGG16 mVGG19 mResNet50 mDenseNet-

121

mMobileNet-

V2

mEfficientNet-

B1

6 weighted

layers

7 weighted

layers

7 weighted

layers

14 weighted

layers

16 weighted

layers

26 weighted

layers

43 weighted

layers

23 weighted

layers

29 weighted

layers

Input image (64, 504, 1) Input image (64, 504, 3)

Conv3-16

Maxpool2-

s2

Conv3-16

Maxpool2-

s2

Conv3-16

Maxpool2-

s2

Conv3-16

Conv3-16

Maxpool2-s2

Conv3-64

Conv3-64

Maxpool2-s2

Conv7-64

Maxpool3-s2

Conv7-64

Maxpool3-s2

Conv3-32-s2

DwConv3-32

Conv3-32-s2

DwConv3-32

Conv3-32

Maxpool2-

s2

Conv3-32

Maxpool2-

s2

Conv3-32

Maxpool2-

s2

Conv3-128

Conv3-128

Maxpool2-s2

Conv3-128

Conv3-128

Maxpool2-s2

[
Conv1 − 64
Conv3 − 64
Conv1 − 256

]

x3

[
Conv1 − 128
Conv3 − 32

]

x6
Conv1-128

Avgpool2-s2

Conv1-16

Conv1-96

DwConv3-96

Conv1-16

Conv1-96

DwConv3-96

SE

Conv3-32

Maxpool2-

s2

Conv3-32

Maxpool2-

s2

Conv3-32

Maxpool2-

s2

Conv3-256

Conv3-256

Conv3-256

Maxpool2-s2

Conv3-256

Conv3-256

Conv3-256

Conv3-256

Maxpool2-s2

[
Conv1 − 128
Conv3 − 128
Conv1 − 512

]

x4

[
Conv1 − 128
Conv3 − 32

]

x12
Conv1-512

[
 Conv1 − 24
 Conv1 − 144
DwConv3 − 144

]

x2

[

 Conv1 − 24
 Conv1 − 144
DwConv3 − 144

SE

]

x2

- - - Conv3-512

Conv3-512

Conv3-512

Conv3-512

Conv3-512

Conv3-512

Conv3-512

- -
[

 Conv1 − 32
 Conv1 − 192
DwConv3 − 192

]

x3

[

 Conv1 − 40
 Conv1 − 240
DwConv5 − 240

SE

]

x2

- Conv1-64 Conv1-512 Conv1x1-512

Global average pooling

Bidirectional RNN-(N)

Bidirectional RNN-(N)

FC, Softmax (94)

CTC decoding

3.2 Convolutional neural network

 In recent years, many CNN architectures have been proposed to enhance the performance of image classification. This section

describes the configuration of the different CNN architectures evaluated in this paper to solve handwritten text recognition. First we

explain the CNN architecture proposed by Chamchong et al. [26], especially for handwritten text recognition, called CCNet. Second,

we describe modification of CCNet (mCCNet) by adding a 1x1 convolutional layer (Conv1) that mainly reduced the parameters of

model CC. Finally, we describe modification of state-of-the-art CNN architectures, including VGG16 and VGG19, ResNet50,

DenseNet121, MobileNetV2, and EfficientNetB1.

3.2.1 CCNet

 Chamchong et al. [26] proposed a simple CNN that included three blocks of convolutional and max-pooling layers. Each block

contained a convolutional layer with 3x3 kernel sizes (Conv3), a max-pooling layer using 2x2 kernel sizes (Maxpool2), and a stride of

2 (s2), in order. The convolutional layers in the first, second, and third blocks were 16, 32, and 32 feature maps. Also, the ReLU

activation function and batch normalization (BN) were added to the last block.

3.2.2 Modified CCNets

 We modified CCNet (mCCNet) by attaching Conv1x1 to reduce the CNN parameters and introduce new nonlinearity into the

network. For the mCCNet-64 and mCCNet-512 models, we implemented the Conv1 layer with feature map sizes of 64 and 512,

respectively.

3.2.3 Modified VGGs

 The modified VGG16 (mVGG16) and VGG19 (mVGG19) were built based on the VGG16 and VGG19 [35], respectively. These

networks comprised a convolutional layer with 3x3 kernel sizes and followed by a max-pooling layer using 2x2 kernel sizes. However,

the mVGG16 and mVGG19 were cut at the end of the fourth block and we also replaced them with Conv1 of 512 feature maps.

3.2.4 Modified ResNet50

 He et al. [36] proposed deep residual learning to construct a deeper network without facing the gradient vanishing problem, called

ResNet. ResNet50 included five convolutional blocks in which the output of each convolutional block decreased to half size when

compared to the input. For the modified ResNet50 (mResNet50), we removed convolutional blocks 4 and 5 from the network. Also,

we added Conv1 with 512 feature maps at the end of convolutional block 3.

Engineering and Applied Science Research 2022;49(4) 509

3.2.5 Modified DenseNet121

 The DenseNet architecture [37] was proposed to collect knowledge from all previous layers and pass them to the next layer using

the densely connected operation. It required long computational time. The DenseNet121 contained two major layers: dense block and

transition layer. The main network consisted of a convolutional layer, max-pooling layer, dense block, three times transition layer and

dense block, and classification layer. The output of each layer decreased by half size, the same as for ResNet. For the modified

DenseNet121 (mDenseNet121), however, we removed layers from the second transition layer. Hence, we attached Conv1x1 with 512

feature maps.

3.2.6 Modified MobileNetV2

 MobileNetV2 was proposed by Sandler et al. [38] to reduce weighted parameters of a lightweight network using depthwise

separable convolutional (DwConv) layers and inverted residuals of the bottleneck block. The main network comprised two block types:

residual block with a stride of 1 and block with a stride of 2 to reduce the dimensionality of the feature map. The activation function

used in MobileNetV2 was the ReLU with the maximum value of 6 (ReLU6). The MobileNetV2 network consisted of DwConv,

convolutional layers, seven bottleneck blocks with different repeated times, 1x1 convolutional layer, and global average pooling (GAP)

layer. Since the output of layers is decreased by half size, for modified MobileNetV2 (mMobileNetV2), we removed the fourth

bottleneck block and replaced them with Conv1 with 512 feature maps.

3.2.7 Modified EfficientNetB1

 Tan & Le [39] designed EfficientNets to search hyperparameters of the CNN architectures, including width scaling, depth scaling,

resolution scaling, and compound scaling. In addition, the squeeze-and-excitation (SE) optimization was attached to the bottleneck

block of EfficientNet to construct an informative channel feature by summation with GAP. Correlation features are then found by

reducing to small dimensions and transforming them to the original dimension. EfficientNet was created based on the MobileNetV2,

but it varies with resolutions, channels, and repeated times. The modified EfficientNetB1 (mEfficientNetB1) is similar to

mMobileNetV2, which removed the fourth bottleneck block and replaced Conv1 with 512 feature maps.

3.3 Recurrent neural network

 Recurrent neural network (RNN) was a successful architecture that was proposed to create a robust model from sequential data,

such as speech [40], video [41], and brain signals [42]. RNN was designed by combining feedback loop connections that allow the

output from the previous states to be applied as inputs of the current state. The feedback loop was performed in the hidden layers.

However, RNN also had the limitation that constructs the output from only the previous context. The RNN is computed according to

the following Equation.

𝑦𝑡 = 𝑓(𝑉ℎ𝑡 + 𝑏𝑦) (1)

ℎ𝑡 = 𝜎(𝑊𝑥𝑡 + 𝑈ℎ𝑡−1 + 𝑏ℎ) (2)

where 𝑦𝑡 is the output of the RNN, ℎ𝑡 is the hidden state of the recurrent cell at time step (𝑡) which is calculated by current input (𝑥𝑡)

and the previous hidden state (ℎ𝑡−1). To calculate the ℎ𝑡, RNN can be able to learn by adjusting the weighted parameters, including

weighted matrices (𝑊,𝑈 and 𝑉) and bias (𝑏ℎ and 𝑏𝑦). Additionally, the output function 𝑓(𝑥) is an activation function and the sigmoid

function 𝜎(𝑥) is applied for hidden states.

3.3.1 Bidirectional recurrent neural network

 Bidirectional recurrent neural network (BiRNN) was proposed to understand sequence data better than the RNN architecture. It

contained the backward (ℎ⃐
𝑡
) and forward (ℎ⃑

𝑡
) states connected to the same output layer that helped the network effectively increase

the information context. The BiRNN architecture is shown in Figure 3 and is calculated as follows.

ℎ⃗ 𝑡 = 𝜎(𝑊⃗⃗⃗ 𝑥𝑡 + 𝑈⃗⃗ ℎ⃗ 𝑡−1 + 𝑏⃗ ℎ) (3)

ℎ⃐
𝑡
= 𝜎(𝑊⃐𝑥𝑡 + 𝑈⃖ℎ⃐

𝑡−1
+ 𝑏⃖ℎ) (4)

𝑦𝑡 = 𝑓(𝑉⃐ℎ⃐
𝑡
+ 𝑉⃗ ℎ⃗ 𝑡 + 𝑏𝑦) (5)

3.3.2 Long short-term memory

 Long short-term memory (LSTM) was invented by Hochreiter & Schmidhuber [43]. It was proposed to address the limitation of

the RNN architecture that could not learn a long sequence and solve the vanishing and exploding gradient problems. The gates were

designed to increase the memory capacity of the cell, including the forget gate, input gate, and output gate, as shown in Figure 4(a).

The output 𝑜𝑡 of the LSTM is computed using Equation (6) which has three input vectors, including input state 𝑥𝑡, previous hidden

state ℎ𝑡−1, and adding new cell state 𝑐𝑡. The output of the hidden state is calculated by the element-wise product (⨀) between the

current output of LSTM and the hyperbolic tangent function 𝜙(x) of the cell state (𝑐𝑡) by Equation (7). The LSTM is computed from

the following Equation.

510 Engineering and Applied Science Research 2022;49(4)

Figure 3 Illustration of bidirectional recurrent neural network

Figure 4 Illustration of the recurrent neural networks: (a) long short-term memory and (b) gated recurrent unit

Outputs

Forward layer

Backward layer

Inputs

𝒉⃗⃗⃖𝒕−𝟏

𝒚𝒕−𝟏

𝒇() 𝒇() 𝒇()

𝛔()

𝒚𝒕+𝟏 𝒚𝒕

𝒉⃗⃗⃖𝒕 𝒉⃗⃗⃖𝒕+𝟏

𝒉⃗⃗ 𝒕−𝟏 𝒉⃗⃗ 𝒕 𝒉⃗⃗ 𝒕+𝟏

(a)

𝒙𝒕−𝟏 𝒙𝒕+𝟏 𝒙𝒕

𝛔() 𝛔() 𝛟()

𝛟()

𝛔()

+

⊙

⊙

⊙

𝒃𝒄 𝒃𝒇 𝒃𝒊 𝒃𝒐

Outputs

Hidden state

Next cell state

Inputs

𝒄𝒕−𝟏 𝒄𝒕

𝒉𝒕−𝟏

𝒉𝒕−𝟏

𝒙𝒕

𝒉𝒕

𝒉𝒕

Cell state

Next hidden state

Outputs gate Forget gate Input gate

(b)

+ ⊙

⊙

⊙

𝒃𝒉

𝒃𝒓 𝒃𝒛

𝛟()

𝛔()

−𝟏

𝒙𝒕

𝒉𝒕

𝒉𝒕

𝒇𝒕 𝒊𝒕 𝑶𝒕 𝒄̂𝒕

Outputs

Hidden state Next hidden state

Update gate Reset gate

𝒓𝒕 𝒛𝒕

𝒉̂𝒕

Engineering and Applied Science Research 2022;49(4) 511

𝑜𝑡 = 𝜎(𝑊𝑜𝑥
𝑡 + 𝑈𝑜ℎ

𝑡−1 + 𝑉𝑜𝑐
𝑡 + 𝑏𝑜) (6)

ℎ𝑡 = 𝑜𝑡⨀ 𝜙(𝑐𝑡) (7)

where 𝑐𝑡 is the cell state at time step (𝑡) computed by Equation (8) which is designed to update the new cell state by filtering of the

previous cell state (𝑐𝑡−1) and cell candidate 𝑐̂𝑡. The filtering operation is the sum of two element-wise products of the forget gate and

previous cell state, and input gate and cell candidate.

𝑐𝑡 = 𝑓𝑡⨀ 𝑐𝑡−1 + 𝑖𝑡⨀ 𝑐̂𝑡 (8)

where forget gate (𝑓𝑡), input gate (𝑖𝑡) and cell candidate (𝑐̂𝑡) are computed from the following Equation.

𝑓𝑡 = 𝜎(𝑊𝑓𝑥
𝑡 + 𝑈𝑓ℎ

𝑡−1 + 𝑉𝑓𝑐
𝑡−1 + 𝑏𝑓) (9)

𝑓𝑡 = 𝜎(𝑊𝑓𝑥
𝑡 + 𝑈𝑓ℎ

𝑡−1 + 𝑉𝑓𝑐
𝑡−1 + 𝑏𝑓) (10)

𝑐̂𝑡 = 𝜙(𝑊𝑐𝑥
𝑡 + 𝑈𝑐ℎ

𝑡−1 + 𝑉 𝑐𝑐
𝑡−1 + 𝑏𝑐) (11)

 In the LSTM, 𝑊𝑜, 𝑊𝑓 ,𝑊𝑖 ,𝑊𝑐 , 𝑈𝑜, 𝑈𝑓 , 𝑈𝑖 , 𝑈𝑐 , 𝑉𝑦, 𝑉𝑓, 𝑉𝑖 , and 𝑉𝑐 are weight matrices and 𝑏𝑜 , 𝑏𝑓 , 𝑏𝑖, and 𝑏𝑐 are bias parameters which

are required to adjust during training.

3.3.3 Gate recurrent unit

 The gate recurrent unit (GRU) was proposed by Cho et al. [44] and designed to reduce the complexity of the LSTM architecture.

The GRU architecture is shown in Figure 4(b). In the GRU, the input and forget gates were replaced with a reset gate (𝑟𝑡). GRU is

computed from the following Equation.

𝑟𝑡 = 𝜎(𝑊𝑟𝑥
𝑡 + 𝑈𝑟ℎ

𝑡−1 + 𝑏𝑟) (12)

where the hidden state ℎ𝑡 is computed using (13).

ℎ𝑡 = (1 − 𝑧𝑡)⨀ ℎ𝑡−1 + 𝑧𝑡⨀ ℎ̂𝑡 (13)

where the update gate (𝑧𝑡) and the candidate of hidden state (ℎ̂𝑡) are computed from the following Equation.

𝑧𝑡 = 𝜎(𝑊𝑧𝑥
𝑡 + 𝑈𝑧ℎ

𝑡−1 + 𝑏𝑧) (14)

ℎ̂𝑡 = 𝜙(𝑊ℎ𝑥
𝑡 + 𝑈ℎ(𝑟

𝑡⨀ ℎ𝑡−1) + 𝑏ℎ) (15)

where 𝑊𝑟 , 𝑊𝑧 , 𝑊ℎ, 𝑈𝑟 , 𝑈𝑧 , and 𝑈ℎ are weight matrices and 𝑏𝑟 , 𝑏𝑧, and 𝑏ℎ are bias parameters which are required to adjust during

training.

 BiRNN with high-capacity memory was shown to be more efficient at learning a sequence of context information than was a single

RNN layer. The BiRNN was also proposed to better understand sequence data that link the content from the backward state and link

to the forward state.

 In our proposed CRNN networks, the two bidirectional RNN layers were stacked on state-of-the-art CNN architectures. Two

specials bidirectional RNNs, including BiLSTM and BiGRU, with diverse hidden unit sizes, were investigated.

3.4 Connectionist temporal classification

 Connectionist temporal classification (CTC) is a conditional probability proposed to support RNN architecture that tackles various

sequence problems [45], such as speed recognition and handwritten text recognition. The output of the CTC algorithm is the sequence

probabilities that are decoded from the RNN output at each time step. The condition probability 𝑝(𝑙|𝑥) is calculated by the sum of

probabilities of all possible paths, as described in Equation (16).

𝑝(𝑙|𝑥) = ∑ 𝑝(𝜋|𝑥)

𝜋∈𝐺−1(𝑙)

 (16)

where 𝑝(𝜋|𝑥) is probability of possible path (𝜋), when 𝑥 is sequence input that is predicted to sequence label (𝑙), 𝑥 = 𝑥1, 𝑥2, … , 𝑥𝑇, 𝑇

is the length of the sequence, is member of 𝐿. In the handwritten text recognition problem, 𝐿 is defined as 94 alphabets as shown in

Table 2, and 𝐺 is mapping function for transforming to 𝑙 . For example, 𝐺(“ − − H H − e l l − l − o o − −”) = “Hello” or

𝐺(“ − − ส ส − ว ัส ส − ด ดี −”) = “สวสัดี” (in Thai). The 𝑝(𝜋|𝑥) is computed as in the following equation.

𝑝(𝜋|𝑥) = ∏𝑥𝜋
𝑡

𝑇

𝑡=1

 (17)

512 Engineering and Applied Science Research 2022;49(4)

where 𝑥𝜋
𝑡 is probability of having label 𝜋𝑡 of time (𝑡). CTC loss function is applied for training set (𝐷) of pair input image and sequence

label (𝑥𝑖,, 𝑙𝑖) ∈ 𝐷. The CTC loss function is defined as in the following equation.

𝐶𝑇𝐶 𝑙𝑜𝑠𝑠 = − ∑ 𝑙𝑜𝑔 (𝑝(𝑙𝑖|𝑥𝑖))

(𝑥𝑖,,𝑙𝑖)∈𝐷

 (18)

3.5 The proposed cyclical data augmentation strategy

 In this section, we propose a cyclical learning method, a novel data augmentation strategy called CycleAugment, that cooperates

between training the CRNN model with applying data augmentation technique and without applying data augmentation technique. The

transformation data augmentation technique and the CycleAugment strategy are described as follows.

3.5.1 Transformation data augmentation technique

 We applied the basic transformation data augmentation techniques that include random shifting, rotation, and shearing, called

𝐷𝐴(𝑤, ℎ, 𝑟, 𝑠), where 𝑤 and ℎ are parameters of the maximum random percent of width and height shifting, respectively, 𝑟 is an

orientation rotation in the range of 0 to 360 degrees, and 𝑠 is orientation shearing in the range of 0 to 360 degrees. In our experiments,

the default parameters of the 𝐷𝐴() were defined as 𝑤𝑚𝑎𝑥 = 0.15, ℎ𝑚𝑎𝑥=0.2, 𝑟𝑚𝑎𝑥=5, and 𝑠𝑚𝑎𝑥=5.

 In addition, we computed the scaling factor (α) to the 𝐷𝐴(). The scaling factor affected the image directly by increasing and

decreasing the image transformation.

3.5.2 CycleAugment strategy

 Data augmentation is a fundamental process that can reduce overfitting but optimizing the data augmentation parameters is

necessary to effectively minimize the loss during training. Therefore, we proposed the new cyclical data augmentation strategy, called

the CycleAugment, to minimize effectively the validation loss and handle the overfitting problem. It was motivated by Huang et al.

[20]. In their method, the cyclic learning rate, which is the cycle of the adaptive learning rate, starts at the maximum number in each

cycle and then decreases until the minimum number. Instead of adjusting the learning rate, our proposed method presents another

approach to improve the performance of the data augmentation technique. It can achieve higher efficiency by taking the form of a cycle

of adaptive data augmentation.

 In the CycleAugment strategy, we first trained the CRNN model by applying the data augmentation techniques in the first half of

the cycle. Hence, the training and validation losses became high at the beginning and decreased to the local minima value in each cycle.

Second, we performed training without applying the data augmentation technique in the second half of the cycle to minimize the loss

in the local space with low data variants. As with cyclic learning rate [20], a high learning rate at the start of the new cycle produced a

high gradient for climbing out from the current local minima. As a result, the training and validation losses increased again and were

ready to find new local minima. For our work, we focused on applying the data augmentation technique to increase the loss and the

chance to escape the local minima. Finally, we repeated this step many times until the last cycle. We used the scaling factor as the

linear decrement that starts from the maximum and decreases to the minimum values in each cycle. The equation and algorithm of the

CycleAugment strategy are described in Equation (19) and Algorithm 1.

Algorithm 1. CycleAugment strategy for training CRNN

1: Input: model (𝑚), number of max epochs (𝑇), number of cycles (𝑁)

2: 𝑀 = ⌊
𝑇

𝑁
⌋ is the number of epochs per cycle.

3: for epoch 𝑡 = 1 to 𝑇 do:

4: if 𝑚𝑜𝑑(𝑡,𝑀) >
𝑀

2
 : // determine the half of the cycle.

5: Training model 𝑚 without data augmentation

6: else:

7: 𝛼𝑡 = 𝑎(𝑡) // calculate a scaling factor (𝛼) using Equation (19)

8: Adjust the scaling factor (𝛼𝑡) of 𝑤, ℎ, 𝑟, and 𝑠

9: Training model 𝑚 with data augmentation 𝐷𝐴(𝑤, ℎ, 𝑟, 𝑠)
10: end for

11: Output: trained model 𝑚

𝑎(𝑡) = 2 ∗ (𝛼𝑚𝑎𝑥 − 𝛼𝑚𝑖𝑛)(
𝑇 − 𝑡

𝑇
) (19)

where 𝛼 is the scaling factor, 𝑡 is the epoch, 𝑇 is the maximum epoch.

4. Experimental results

4.1 Thai archive manuscript dataset

 The handwritten text manuscripts used in our experiments were Thai archive manuscripts [26] collected from Thailand's national

library. They were written in approximately 1902 AD using 94 Thai characters and contained in 140 manuscripts. The 94 characters

are shown in Table 2. A sample of the Thai archive manuscripts is shown in Figure 5. In this dataset, the handwritten text images were

extracted from 140 manuscripts and contained 3,446-word images.

Engineering and Applied Science Research 2022;49(4) 513

Ground Truth: ท่ี ๑๔/๔๔

Ground Truth: พระท่ีนัง่วิมานเมฆ

Ground Truth: วนัท่ี ๕

Ground Truth: เมษายน

Ground truth: รัตนโกสินทรศก๓๕๑๒๑

(a) (b)

Figure 5 Illustrated of Thai archive manuscript dataset. Examples (a) of the Thai archive manuscript and (b) word images and ground

truths

Table 2 The categories of Thai characters and other symbols

Types Number of members Members

Consonants 44

ก ข ฃ ค ฅ ฆ ง จ ฉ ช
ซ ฌ ญ ฎ ฏ ฐ ฑ ฒ ณ ด
ต ถ ท ธ น บ ป ผ ฝ พ
ฟ ภ ม ย ร ล ว ศ ษ ส
ห ฬ อ ฮ

Vowel 19
ัั ะ า ั า ัิ ั ี ั ั ั ั
เ แ โ ใ ไ ๅ ฤ ฦ ั

Tones 4 ั ั ั ั

Special symbols 17
ฯ ๚ ๆ ั ั " () + ,
- . / x _ – (blank)

Numeral 10 ๐ ๑ ๒ ๓ ๔ ๕ ๖ ๗ ๘ ๙
Total 94

4.2 Training strategy

4.2.1 Optimization algorithms

 In the deep learning algorithms, various optimization algorithms were proposed to calculate the gradients of the error function

while the network back-propagation. We evaluated three optimization algorithms, that were stochastic gradient descent (SGD), Adam,

and RMSprop, to converge the deep learning model and reduce the loss value while training with the same learning rate of 0.001,

suitable for handwritten text recognition problem s. For other parameters, here, we used the parameters momentum = 0.9 and decay

rate = 0.001 as for the SGD optimizer, discounting factor (𝛾) = 0.9 as for the RMSprop optimizer, and the first estimate (𝛽1) = 0.9, the

second estimate (𝛽2) and epsilon (𝜀) = 1e-07, for the Adam optimizer.

 In the experiments, we found that the Adam optimizer outperformed other optimizers. Further, all the experimental results shown

in the following section were evaluated based on the Adam optimizer.

4.2.2 Transfer learning

 Training the CNN model usually starts with random parameters, called scratch learning, and adjusts the weighted parameters by

error gradient. Hence, the weighted parameters can extract high discriminative features from input images. Furthermore, transfer

learning is derived from weighted parameters that learn from a large image dataset, called a pre-trained model. The pre-trained model

contains prior knowledge of convolution filters. We can remove some top layers in the pre-trained model and attach a few new layers

to the last layer of the pre-trained model.

514 Engineering and Applied Science Research 2022;49(4)

 For the transfer learning, we could train six CNN architectures: VGG16, VGG19, ResNet50, DenseNet121, MobileNetV2, and

EfficientNetB1, using the pre-trained models, except only CCNet, because CCNet architecture did not provide the pre-trained model.

In the RNN architectures, however, the random weighted parameters consist of Conv1x1 of 512 feature maps, global average pooling

layer, BiRNN, and dense layer.

4.3 Quantitative evaluation

 In this section, we evaluate CRNN architectures on the Thai archive manuscript dataset using character-level error rate (CER) as

the evaluation metric. We also compare nine state-of-the-art CRNN models regarding the number of parameters and training time.

Moreover, we evaluate the new data augmentation strategy (CycleAugment) and compare our CycleAugment strategy with the original

data augmentation strategy. Both strategies apply data augmentation techniques based on transformation techniques, including random

shifting, rotation, and shearing. In addition, we evaluate the CRNN models that train from scratch and use the transfer learning

technique to understand wherewith the transfer learning technique affects the CRNN models.

 The performance of the handwritten text recognition was evaluated based on the CER. CER was calculated as the minimal

Levenshtein distance, which is the number of single-character modifications that change the predictive text from the ground truth

transcription of the word [46]. There are three operations of the CER metric: insertion, deletion, and substitution. The CER is calculated

by the following Equation:

𝐶𝐸𝑅 =
𝐼 + 𝑆 + 𝐷

𝑁
 (20)

where 𝐼 is the number of character insertions, 𝑆 is the number of character substitutions, 𝐷 is the number of character deletions, and 𝑁

is the total number of characters in the target text.

4.4 Performance of different combination of CRNNs

 To evaluate the performance of CRNN architectures, we resized all images to 64x496 pixels and used them as the input to the

CRNN architectures. We trained all the CRNN models using the Keras framework with TensorFlow backend and trained on Google

cloud with NVIDIA Tesla P100 GPU with 16GB of RAM.

 For the training process, we divided the Thai archive manuscript dataset with the ratio of 70:10:20 for training, validation, and test,

respectively. The nine CRNN networks (see Table 1) were combined with two types of BiRNNs: BiLSTM and BiGRU. The number

of RNN sizes with 128, 256, and 512 neurons was evaluated.

 The CRNN networks were trained with the following parameters: 200 epochs, batch size of 32, Adam optimizer with learning rate

of 0.001, the first- and second-moment estimate values of 0.9 and 0.999, and epsilon of 1e-07.

Table 3 Comparison of the parameters and computational time between different backbones CNNs and RNN sizes

Models

No. of parameters Training time (hh:mm) Character error rate (%)

 RNN sizes

128 256 128 128 256 128 128 256 128

CCNet-BiGRU [26] 0.49M 1.75M 6.62M 00:26 00:27 00:30 13.32 14.54 14.43

CCNet-BiLSTM [26] 0.64M 2.30M 8.78M 00:26 00:27 00:34 14.54 14.81 15.29

mCCNet-64-BiGRU 0.50M 1.75M 6.62M 00:26 00:27 00:33 15.19 16.23 16.48

mCCNet-64-BiLSTM 0.64M 2.31M 8.78M 00:26 00:27 00:30 16.09 16.64 14.36

mCCNet-512-BiGRU 0.87M 2.47M 8.03M 00:26 00:27 00:30 14.48 16.15 15.70

mCCNet-512-BiLSTM 1.13M 3.26M 10.65M 00:26 00:26 00:33 14.26 12.69 11.35

mVGG16-BiGRU 8.72M 10.32M 15.87M 00:50 00:54 01:00 11.41 11.37 14.05

mVGG16-BiLSTM 8.98M 11.10M 18.49M 00:50 00:54 01:00 9.04 12.03 14.01

mVGG19-BiGRU 11.67M 13.27M 18.82M 00:54 00:57 01:00 13.32 20.01 19.56

mVGG19-BiLSTM 11.97M 14.05M 21.44M 00:57 01:00 01:07 12.30 15.01 15.10

mResNet50-BiGRU 2.54M 4.14M 9.70M 00:37 00:40 00:43 8.40 8.22 10.77

mResNet50-BiLSTM 2.80M 4.92M 12.31M 00:37 00:40 00:47 11.16 7.29 8.21

mDenseNet121-BiGRU 2.39M 3.99M 9.55M 00:40 00:43 00:50 10.08 8.07 7.44

mDenseNet121-BiLSTM 2.65M 4.78M 12.17M 00:40 00:43 00:50 7.72 7.13 7.65

mMobileNetV2-BiGRU 0.98M 2.58M 8.14M 00:40 00:43 00:50 13.95 15.08 13.04

mMobileNetV2-BiLSTM 1.24M 3.36M 10.76M 00:40 00:43 00:50 10.91 9.13 9.73

mEfficientNetB1-BiGRU 1.06M 2.66M 8.22M 01:04 01:07 01:14 47.41 45.94 41.17

mEfficientNetB1-BiLSTM 1.32M 3.45M 10.84M 01:04 01:07 01:14 27.61 54.30 20.47

 Table 3 shows a comparison of the number of parameters and computation time between different CRNN backbones. The results

showed that the CCNet-BiGRU proposed by Chamchong et al. [26] provided 0.49M with the fewest parameters. It also spent less

computation time of only 26 minutes. Because CCNet-BiGRU had only six weighted layers. In comparison, except mVGG16 and

mVGG19 which had 14 and 16 weighted layers, other CRNN architectures had more than 20 weighted layers. When comparing the

number of parameters and time spent while training the CRNN model between BiGRU and BiLSTM, we found that the BiGRU always

provided fewer parameters than the BiLSTM. Therefore, the time spent while training the CRNN with BiGRU and BiLSTM was

approximately the same.

Engineering and Applied Science Research 2022;49(4) 515

 In terms of the handwritten text recognition, Table 3 presents the CER value (%) in different RNN sizes (128, 256, and 512). The

lowest CER value represents the best performance. In our experiments, the mDenseNet121-BiLSTM with the RNN size of 256 showed

the fewest CER value of 7.13%. However, the mEfficientNetB1-BiGRU and -BiLSTM performed the worst with a CER value above

40% with BiGRU.

 In the following experiments, we will continue experiments based on the best performance in each CNN architecture.

4.5 Performance of CRNN with CycleAugment strategy

 In this experiment, we tested our CycleAugment strategy with all CRNN architectures to show that the proposed CycleAugment

strategy obtains robust performance when training with every CRNN architecture. To discover the best CycleAugment strategy, we

trained all CRNN models with 200 epochs in total and with 200 epochs, a network training of five cycles (number of epochs per cycle

M =200/5). Network training using transformation data augmentation technique 20 epochs (M/2) was used and then switched to train

the model without using data augmentation techniques in the following 20 epochs. Hence, it continued in the loop until the last epochs.

 Table 4 presents the performance of the CycleAugment strategy. We achieved worthwhile performance when using CycleAugment

with N=5. As a result, the CER value of the mEfficientNetB1-BiLSTM enormously decreased from 27.6% to only 7.74%.

Consequently, the mResNet50-BiLSTM was the best CRNN model that achieved a 5.47% CER value using the CycleAugment strategy.

Table 4 Performance of different number of cycles in CycleAugment strategy

Models (RNN sizes)

Character error rate (%)

Number of cycles (N)

N=1 N=2 N=3 N=4 N=5 N=6

CCNet-BiGRU (128) [26] 11.40 10.12 10.89 10.14 9.46 10.26

mCCNet-64-BiLSTM (512) 10.47 13.07 13.03 12.57 13.55 12.41

mCCNet-512-BiLSTM (512) 12.97 11.17 9.74 9.21 9.66 9.14

mVGG16-BiLSTM (128) 9.50 5.70 6.20 6.59 6.29 6.03

mVGG19-BiGRU (128) 9.87 9.26 9.52 7.84 7.51 7.18

mResNet50-BiLSTM (256) 5.79 5.97 5.64 5.54 5.47 5.71

mDenseNet121-BiLSTM (256) 6.02 5.97 6.46 6.29 5.64 6.29

mMobileNetV2-BiLSTM (256) 7.75 9.35 7.95 7.73 7.64 8.36

mEfficientNetB1-BiLSTM (128) 31.46 19.83 18.52 8.17 7.74 7.30

Table 5 Performance of scratch learning different data augmentation strategies

Models (RNN sizes)

Character error rate (%)

No augmentation Data augmentation CycleAugment

5-cv Test 5-cv Test 5-cv Test

CCNet-BiGRU (128) [26] 13.79 ± 0.58 13.32 13.99 ± 0.97 12.29 10.33 ± 0.67 9.46

mCCNet-64-BiLSTM (512) 18.26 ± 1.36 14.36 17.70 ± 1.71 13.78 13.34 ± 1.07 13.55

mCCNet-512-BiLSTM (512) 11.93 ± 0.76 11.35 11.55 ± 0.72 11.18 9.73 ± 0.64 9.66

mVGG16-BiLSTM (128) 8.94 ± 0.78 9.04 10.37 ± 0.74 11.71 6.77 ± 0.40 6.29

mVGG19-BiGRU (128) 13.34 ± 2.15 10.25 12.74 ± 0.56 10.10 7.62 ± 0.27 7.51

mResNet50-BiLSTM (256) 9.54 ± 1.39 7.29 7.89 ± 0.43 7.85 6.65 ± 0.40 5.47

mDenseNet121-BiLSTM (256) 7.15 ± 0.57 7.13 7.57 ± 0.60 7.44 6.55 ± 0.75 5.64

mMobileNetV2-BiLSTM (256) 10.83 ± 0.87 9.13 11.64 ± 0.88 10.47 7.93 ± 0.52 7.64

mEfficientNetB1-BiLSTM (128) 29.75 ± 2.17 27.61 29.01 ± 2.28 26.19 12.19 ± 0.78 7.74

Table 6 Performance of transfer learning different data augmentation strategies

Models (RNN sizes)

Character error rate (%)

No augmentation Data augmentation CycleAugment

5-cv Test 5-cv Test 5-cv Test

mVGG16-BiLSTM (128) 9.00 ± 0.83 7.63 10.24 ± 0.60 7.31 6.88 ± 0.32 5.43

mVGG19-BiGRU (128) 13.61 ± 2.39 15.05 14.60 ± 1.45 14.89 7.64 ± 0.52 7.37

mResNet50-BiLSTM (256) 8.19 ± 0.73 7.15 7.67 ± 0.51 7.54 6.17 ± 0.53 5.69

mDenseNet121-BiLSTM (256) 7.04 ± 0.40 7.18 7.62 ± 0.40 7.48 5.82 ± 0.40 5.69

mMobileNetV2-BiLSTM (256) 10.72 ± 0.85 9.62 11.12 ± 1.17 10.18 7.88 ± 0.58 7.44

mEfficientNetB1-BiLSTM (128) 24.34 ± 3.25 27.68 24.38 ± 2.67 28.29 10.77 ± 1.12 7.60

 Furthermore, to demonstrate that our CycleAugment strategy outperforms the original data augmentation strategy, we trained

CRNN architecture with two different data augmentation strategies using a 5-fold cross-validation technique (5-cv). We also trained

the CRNN model using the learning from scratch and transfer learning techniques. All the experimental results are shown in the

following section.

 We compared scratch learning and transfer learning, as shown in Table 5 and Table 6, with different training strategies, including

training without applying data augmentation, training with applied transformation data augmentation techniques with scaling factor α

= 1, and training with applying CycleAugment strategy with the number of cycles N= 5, 𝛼𝑚𝑖𝑛 = 0.5, and 𝛼𝑚𝑎𝑥= 2.5.

 As a result, the CycleAugment strategy outperformed other data augmentation strategies on both scratch learning and transfer

learning. For scratch learning, the CycleAugment achieved the best CER value of 5.47% on the test set when training with mResNet50-

516 Engineering and Applied Science Research 2022;49(4)

BiLSTM (256). For transfer learning, we found that the mVGG16-BiLSTM (128) outperformed all the CRNN architectures with the

CER value of 5.43% on the test set.

 Consequently, we evaluated the CRNN architectures using the 5-fold cross-validation (5-cv). We found that both scratch and

transfer learning provided nearly similar CER values because we could transfer a few parameters of the CNN pre-trained models. For

example, only 1 million parameters could transfer from the pre-trained ResNet50 model, while the total parameters of the mResNet50-

BiLSTM (256) was 4 million.

Figure 6 Illustration of the training loss and validation loss values of (a) original data augmentation technique, (b) CycleAugment

strategy, and (c) best loss value

 In Figure 6, we illustrate the loss values of two data augmentation strategies. The training and validation loss of the original data

augmentation strategy is presented in Figure 6(a). The training loss values reduced smoothly and approached zero, but the validation

loss was not reduced below 10. If we trained the model for more than 200 epochs, the validation loss may be increased. On the other

hand, loss values of the CycleAugment strategy, as shown in Figure 6(b), were rapidly decreased in the first cycle and then grew up at

the increased at the beginning of the next cycle. Because, firstly, the CRNN model learns without applying the data augmentation

technique, so the CRNN model tries to converge for that particular pattern. Secondly, the CRNN attempts to fit the model with the new

input data when applying the data augmentation techniques. Since the model was never trained with the new data, that is why the loss

value increased but then quickly decreased again. We then showed the performance of the CycleAugment strategy compared to the

original data augmentation strategy, as shown in Figure 6(c). Furthermore, when we trained more epochs, the loss value still could

slowly decrease, while the loss value of the original data augmentation strategy stopped decreasing from around epoch 40. This

demonstrates that the CycleAugment strategy could benefit from learning with different patterns and avoiding overfitting problems.

Training and validation loss of

data augmentation technique
Training and validation loss of

CycleAugment strategy

Improvement of validation loss value

0 25 50 75 100 125 150 175 200

Epoch

(a)

0 25 50 75 100 125 150 175 200

Epoch

(b)

0 25 50 75 100 125 150 175 200

Epoch

(c)

80

70

60

50

40

30

20

10

0

L
o
ss

 v
a
lu

e

80

70

60

50

40

30

20

10

0

L
o
ss

 v
a
lu

e

80

70

60

50

40

30

20

10

0

L
o
ss

 v
a
lu

e

Validation loss

Training loss

Validation loss

Training loss

Best validation loss value of CycleAugment

Best validation loss value of data augmentation

Engineering and Applied Science Research 2022;49(4) 517

Table 7 Results of handwritten text recognition using different CRNN models

Input image

Ground truth ให้เธอช่วยแนะน ำ อ ำเภอเมืองรำมันขึนอกีอ ำเภอหนึ่งเรียก

N
o

 d
a

ta

a
u

g
m

en
ta

ti
o

n

mVGG16-BiLSTM (128) ให เธอช วยแนะน า อ าเภอเม องรามนัจินอีกอ ำเภอหน่งเรียก
mVGG19-BiGRU (128) ให เธอช วยแนะหน าก อ าเกภอเม องรามนัจินอีกอ าเภำอหนี่ยงรียก
mResNet50-BiLSTM (256) ให เธอช วยแนะน า อ าเภอเม องรามนัจ้นอีกอ าเภอหน ่ งเรียก

mDenseNet121-BiLSTM (256) ให เธอช วยแนะน า อ าเภอเม องรามนัจิ์นอีกอ าเภอหน ่ งเรียก

D
a

ta

a
u

g
m

en
ta

ti
o

n

mVGG16-BiLSTM (128) ให เธอช วยแนะน า อ าเถอเม องรามนัขนิอีกอ าเภอหน ่ งเรียก

mVGG19-BiGRU (128) ให เธอช้วยแนนน า อ าเภอเม องรามนัินจีดซ ำเรำจหน ่ งมียกด

mResNet50-BiLSTM (256) ให เธอช วยแนะน า อ าเภอเม องถามนัข นอีกอ าเรภอหน ่ งเรียก
mDenseNet121-BiLSTM (256) ให เธอช วยแนะน า อ าเถอเม องรามนัจีนอีกอ าเภอหน ่ งเรียก

C
y

cl
e

A
u

g
m

en
t

mVGG16-BiLSTM (128) ให เธอช วยแนะน า อ าเภอเม องรามนัข นอีกอ าเภอหน ่ งเรียก

mVGG19-BiGRU (128) โ้้เอช อยแนะน า อ าเภวเม องทมนัจึนอีกต ำเภอหน ่ งเ้ือยก
mResNet50-BiLSTM (256) ให เธอช วยแนะน า อ าเภอเม องรามนัข นอีกอ าเภอหน ่ งเรียก

mDenseNet121-BiLSTM (256) ให เธอช วยแนะน า อ าเภอเม องทามนัขึ่นอีกอ าเภอหน ่ งเรียก
*Note that bold characters with an underline represent error characters.

 In Table 7, the green text means the CRNN model recognizes and obtains correct output with the whole words. The blue characters

with underlining are misclassified characters.

4.6 Performance on short word recognition

 In previous experiments, we focused on the performance of the handwritten text dataset consisting of various distributions of word

length. Figure 7 presents the histogram of image width resolution in pixels on (a) the whole dataset and (b) only the test set. The image

width is distributed in the range of 36 to 1,075 pixels. Due to various ranges of the image width, we are curious whether the short word

images (image width between 36 to 186 pixels) affect the recognition performance.

 We evaluated the performance of the short word by selecting the short word images from the test set. First, we resized the short

word into 64x496 pixels and then recognized the short word images. Second, we resized the short word images into 64x346 pixels and

then added white space on the left (75 pixels) and right (75 pixels) sides to prevent the distortion of the texts in the image. Hence, the

input image was equal to 64x496 pixels.

Figure 7 Illustrated histograms of the image width resolution in pixels. (a) The Thai archive manuscript and (b) test set of the Thai

archive manuscript

Image width resolution in pixels

of the Thai archive manuscript

0 200 400 600 800 1000

Image width resolution in pixles

(a)

400

300

200

100

0

F
re

q
u

e
n

cy

Image width resolution in pixels

of the test set

0 200 400 600 800 1000

Image width resolution in pixles

(b)

80

60

40

20

0

F
re

q
u

e
n

cy

100

518 Engineering and Applied Science Research 2022;49(4)

 We examined the short word performance using mResNet50-BiLSTM (256) model. Firstly, we evaluated the performance of the

short word images (see Table 8 in the second column) and achieved the CER value of 8.07%. Secondly, the short word images were

adjusted by adding the white space (see Table 8 in the third column). The experimental results showed that adding the white space

before sending to predict by the CRNN model resulted in better performance than did resizing the image. It achieved a CER value of

7.04%. Consequently, we found that image distortion could harm the handwritten text recognition system. It was necessary to rescale

the short word images and combine a space into the images before recognizing them.

Table 8 Examples of short word recognition when resizing images into 64x496 pixels (second column) and adding white space to

prevent image distortion (third column)

Original image resolution Testing image resolution Adjusting image resolution

Ground truth = ด Prediction = ดา Prediction = ด

Ground truth = ๓ Prediction = กา Prediction = ๓

Ground truth = อะไร Prediction = อธโร Prediction = อ๐ไร

Ground truth = เม ่อ Prediction = เม อ Prediction = เม ่อ

All short word test images CER = 8.07% CER = 7.04%

*Note that characters with an underline represent error characters.

5. Discussion

5.1 CycleAugment strategy

 It is known that deep learning requires data augmentation techniques to improve performance and avoid overfitting problems. To

create the robust CRNN model, we then applied the data augmentation technique. The experimental results showed that the data

augmentation techniques did not always confirm the best performance. Consequently, the CRNN model will find only the global

minima value when training the CRNN with the original data augmentation strategy. The training loss never again increases, as shown

in Figure 6(a). Indeed, it increases the chance of encountering overfitting problems.

 We then proposed the new cyclical learning method, namely the CycleAugment strategy. The proposed strategy can effectively

improve the performance of the handwritten text recognition by escaping the trapping in global minima and overfitting problems. The

CycleAugment strategy increases the chances of discovering local minima in each cycle by switching between two training states with

and without applying data augmentation while training the CRNN model, as shown in Figure 6(b). The CRNN model adapted to the

local minima because the weight of the CRNN architecture is adjusted using a high error gradient value obtained from variation of the

input images.

5.2 Effectiveness of transfer learning technique

 We have learned from many studies that the transfer learning technique consistently performed better than scratch learning

[31, 32, 34]. Therefore, we evaluated the performance of the scratch and transfer learning, as shown in Table 5 and 6. The experimental

results were quite surprising in that the transfer learning performance did not significantly outperform the scratch learning. However,

in the CRNN architecture, we discovered that the transfer learning did not show outstanding results because the number of transfer

parameters from the pre-trained CNN model was more limited than the parameters in the RNN architecture. We have to train the RNN

model with a huge number of parameters that did not transfer from the pre-trained model. The parameters of the RNN architecture are

larger, approximately four times more than the CNN architecture.

5.3 Improvement of short word recognition

 We also observed that short word images directly decrease the performance of the handwritten text recognition system, as shown

in Table 8. We found that the short word images were always distorted when resizing to the fixed input of the CRNN architecture.

Hence, we employed the most straightforward technique that avoids distortion of text information in short word images. The simple

technique is to adjust the short word images by adding white space on both sides of the image. The performance was presented when

applying our proposed method.

Engineering and Applied Science Research 2022;49(4) 519

6. Conclusion

 In recent years, some research has attempted to address the challenge of the Thai handwritten text recognition system. This study

discovered a robust CRNN architecture, a sequence learning approach that achieves high accuracy on the Thai handwritten text

recognition system. For training the CRNN model, the original data augmentation strategy is proposed. The CRNN model was trained

by applying the transformation data augmentation techniques from the first training epoch until the last epoch. With this training

strategy, the CRNN model slowly obtained the global minima value. The model can face overfitting problems because the training loss

decreases to the lowest value. However, the validation loss sometimes does not converge to the lowest value. Nonetheless, we invented

a cyclical data augmentation strategy called CycleAugment, to avoid finding the global minima and control overfitting problems. In

our strategy, all training epochs are divided into cycles. In each cycle, we assign the CRNN model to discover the local minimal value.

Hence, it repeatedly starts at high loss value by learning new patterns from the training images when beginning a new cycle. As a

result, the weight model is adapted by a high gradient value. The benefit of our proposed CycleAugment strategy is that the CRNN

model can learn from both with and without applying data augmentation techniques.

 In the experiments, we evaluated nine CRNN architectures to recognize handwritten text on the Thai archive manuscript dataset.

The result showed that the mDenseNet121-BiLSTM (256) outperformed all the CRNN architectures. First, we performed the CRNN

architectures using scratch and transfer learning. It is quite surprising that transfer learning did not show a significant performance

when compared with scratch learning. Second, we trained the CRNN models with three different data augmentation strategies: without

data augmentation, with data augmentation, and CycleAugment. The proposed CycleAugment strategy achieved the best performance

when combined with all CRNN models. Finally, we are concerned about the performance of the CRNN model when predicting the

short word images. The text information inside the short word images is regularly distorted when transformed into the input of the

CRNN model with the same size as the long word images. We proposed the simple technique is of adding white space on both sides

of the short word images. We achieved a better result with the simple technique.

 In future work, due to insufficient handwritten text images for training the CRNN model, the model might not give generalizations.

We might need to synthesize the handwritten text images and use them as the training set. The generative adversarial network (GAN)

[47] is the best choice to study and synthesize the training set. In sequential learning, we need to investigate an attention-based model

[22, 23, 48] and word beam search [14] to better predict the handwritten text images.

7. Acknowledgments

 This research was funded under the Royal Golden Jubilee Ph.D. Program by the Thailand Research Fund (Grant No.

PHD/0210/2561).

8. References

[1] Surinta O, Karaaba MF, Schomaker LRB, Wiering MA. Recognition of handwritten characters using local gradient feature

descriptors. Eng Appl Artif Intell. 2015;45:405-14.

[2] Inkeaw P, Bootkrajang J, Marukatat S, Gonçalves T, Chaijaruwanich J. Recognition of similar characters using gradient features

of discriminative regions. Expert Syst Appl. 2019;134:120-37.

[3] Wang T, Xie Z, Li Z, Jin L, Chen X. Radical aggregation network for few-shot offline handwritten Chinese character recognition.

Pattern Recognit Lett. 2019;125:821-7.

[4] Kavitha BR, Srimathi C. Benchmarking on offline handwritten Tamil character recognition using convolutional neural networks.

J King Saud Univ Comp Info Sci. In press 2019.

[5] Choudhary A, Rishi R, Ahlawat S. A new character segmentation approach for off-line cursive handwritten words. Procedia

Comput Sci. 2013;17:88-95.

[6] Lue HT, Wen MG, Cheng HY, Fan KC, Lin CW, Yu CC. A novel character segmentation method for text images captured by

cameras. ETRI J. 2010;32(5):729-39.

[7] Inkeaw P, Bootkrajang J, Charoenkwan P, Marukatat S, Ho SY, Chaijaruwanich J. Recognition-based character segmentation

for multi-level writing style. Int J Doc Anal Recognit. 2018;21(1-2):21-39.

[8] Giménez A, Juan A. Embedded Bernoulli mixture HMMs for handwritten word recognition. 10th International Conference on

Document Analysis and Recognition; 2009 Jul 26-29; Barcelona, Spain. New York: IEEE; 2009. p. 896-900.

[9] Bluche T, Ney H, Kermorvant C. Feature extraction with convolutional neural networks for handwritten word recognition. 12th

International Conference on Document Analysis and Recognition; 2013 Aug 25-28; Washington, USA. New York: IEEE; 2013.

p. 285-9.

[10] Wang K, Babenko B, Belongie S. End-to-end scene text recognition. International Conference on Computer Vision; 2011 Nov

6-13; Barcelona, Spain. New York: IEEE; 2011. p. 1457-64.

[11] Lee C, Bhardwaj A, Di W, Jagadeesh V, Piramuthu R. Region-based discriminative feature pooling for scene text recognition.

IEEE Conference on Computer Vision and Pattern Recognition; 2014 Jun 23-28; Columbus, USA. New York: IEEE; 2014. p.

4050-7.

[12] Mishra A, Alahari K, Jawahar CV. Enhancing energy minimization framework for scene text recognition with top-down cues.

Comput Vis Image Underst. 2016;145:30-42.

[13] Singh S, Sharma A, Chauhan VK. Online handwritten Gurmukhi word recognition using fine-tuned deep convolutional neural

network on offline features. Mach Learn with Appl. 2021;5(article 100037):1-15.

[14] Ameryan M, Schomaker L. A limited-size ensemble of homogeneous CNN/LSTMs for high-performance word classification.

Neural Comput Appl. 2021;33:8615-34.
[15] Chen Y, Shu H, Xu W, Yang Z, Hong Z, Dong M. Transformer text recognition with deep learning algorithm. Comput Commun.

2021;178:153-60.

[16] Abdurahman F, Sisay E, Fante KA. AHWR-Net: offline handwritten Amharic word recognition using convolutional recurrent

neural network. SN Appl Sci. 2021;3(760):1-11.

[17] Yan H, Xu X. End-to-end video subtitle recognition via a deep residual neural network. Pattern Recognit Lett. 2020;131:368-75.

520 Engineering and Applied Science Research 2022;49(4)

[18] Sujatha P, Bhaskari DL. A survey on offline handwritten text recognition of popular Indian scripts. Int J Comput Sci Eng.

2019;7(7):138-49.

[19] Butt H, Raza MR, Ramzan MJ, Ali MJ, Haris M. Attention-based CNN-RNN Arabic text recognition from natural scene images.

Forecasting. 2021;3(3):520-40.

[20] Huang G, Li Y, Pleiss G, Liu Z, Hopcroft JE, Weinberger KQ. Snapshot ensembles: train 1, get M for free. International

Conference on Learning Representations (ICLR); 2017 Apr 24-26; Toulon, France. New York: DBLP; 2017. p. 1-14.
[21] Shi B, Bai X, Yao C. An end-to-end trainable neural network for image-based sequence recognition and its application to scene

text recognition. IEEE Trans Pattern Anal Mach Intell. 2017;39(11):2298-304.

[22] Shi B, Yang M, Wang X, Lyu P, Yao C, Bai X. ASTER: an attentional scene text recognizer with flexible rectification. IEEE

Trans Pattern Anal Mach Intell. 2018;41(9):2035-48.

[23] Luo C, Jin L, Sun Z. A multi-object rectified attention network for scene text recognition. Pattern Recognit. 2019;90:109-18.

[24] Chen X, Jin L, Zhu Y, Luo C, Wang T. Text recognition in the wild: a survey. ACM Comput Surv. 2021;54(2):1-35.

[25] Xu Y, Shan S, Qiu Z, Jia Z, Shen Z, Wang Y, et al. End-to-end subtitle detection and recognition for videos in East Asian

languages via CNN ensemble. Signal Process Image Commun. 2018;60:131-43.

[26] Chamchong R, Gao W, McDonnell MD. Thai handwritten recognition on text block-based from Thai archive manuscripts.

International Conference on Document Analysis and Recognition (ICDAR); 2019 Sep 20-25; Sydney, Australia. New York:

IEEE; 2019. p. 1346-51.

[27] Srinilta C, Chatpoch S. Multi-task learning and Thai handwritten text recognition. 6th International Conference on Engineering,

Applied Sciences and Technology (ICEAST); 2020 Jul 1-4; Chiang Mai, Thailand. New York: IEEE; 2020. p. 1-4.

[28] Chamchong R, Saisangchan U, Pawara P. Thai handwritten recognition on BEST2019 datasets using deep Learning. International

Conference on Multi-disciplinary Trends in Artificial Intelligence (MIWAI); 2021 Jul 2-3. Cham: Springer; 2021. p. 152-63.

[29] Wu B, Liu Z, Yuan Z, Sun G, Wu C. Reducing overfitting in deep convolutional neural networks using redundancy regularizer.

26th International Conference on Artificial Neural Networks (ICANN); 2017 Sep 11-14; Alghero, Italy. Cham: Springer; 2017.

p. 49-55.
[30] Thanapol P, Lavangnananda K, Bouvry P, Pinel F, Leprévost F. Reducing overfitting and improving generalization in training

convolutional neural network (CNN) under limited sample sizes in image recognition. 5th International Conference on

Information Technology (InCIT); 2020 Oct 21-22; Chonburi, Thailand. New York: IEEE; 2020. p. 300-5.

[31] Gonwirat S, Surinta O. Improving recognition of Thai handwritten character with deep convolutional neural networks.

International Conference on Information Science and Systems (ICISS); 2020 Mar 19-22; Cambridge, UK. New York: Association

for Computing Machinery; 2020. p. 87-7.

[32] Pawara P, Okafor E, Surinta O, Schomaker L, Wiering M. Comparing local descriptors and bags of visual words to deep

convolutional neural networks for plant recognition. International Conference on Pattern Recognition Applications and Methods

(ICPRAM); 2017 Feb 24-26; Porto, Portugal. Setúbal: SciTePress; 2017. p. 479-86.

[33] Pawara P, Okafor E, Schomaker L, Wiering M. Data augmentation for plant classification. Advanced Concepts for Intelligent

Vision Systems (ACIVS); 2017 Sep 18-21; Antwerp, Belgium. Cham: Springer; 2017. p. 615-26.

[34] Enkvetchakul P, Surinta O. Effective data augmentation and training techniques for improving deep learning in plant leaf disease

recognition. Appl Sci Eng Prog. 2021;15(3):1-12.

[35] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. 3rd International Conference on

Learning Representations (ICLR); 2015 May 7-9; San Diego, USA. New York: DBLP; 2015. p. 1-14.

[36] He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. Conference on Computer Vision and Pattern

Recognition (CVPR); 2016 Jul 27-30; Las Vegas, USA. New York: IEEE; 2016. p. 770-8.

[37] Huang G, Liu Z, van der Maaten L, Weinberger KQ. Densely connected convolutional networks. Conference on Computer Vision

and Pattern Recognition (CVPR); 2017 Jul 21-26; Honolulu, USA. New York: IEEE; 2017. p. 2261-9.

[38] Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: inverted residuals and linear bottlenecks. Conference on

Computer Vision and Pattern Recognition (CVPR); 2018 Jun 18-23; Salt Lake City, USA. New York: IEEE; 2018. p. 4510-20.

[39] Tan M, Le QV. EfficientNet: rethinking model scaling for convolutional neural networks. International Conference on Machine

Learning (ICML); 2019 Jun 9-15; Long Beach, California. New York: PMLR; 2019. p. 6105-14.

[40] Graves A, Jaitly N. Towards end-to-end speech recognition with recurrent neural networks. International Conference on Machine

Learning (ICML); 2014 Jun 21-26; Beijing, China. New York: PMLR; 2014. p. 1764-72.

[41] Donahue J, Anne Hendricks L, Guadarrama S, Rohrbach M, Venugopalan S, Saenko K, et al. Long-term recurrent convolutional

networks for visual recognition and description. IEEE Trans Pattern Anal Mach Intell. 2017;39(4):677-91.

[42] Alhagry S, Fahmy AA, El-Khoribi RA. Emotion recognition based on EEG using LSTM recurrent neural network. Int J Adv

Comput Sci Appl. 2017;8(10):355-8.
[43] Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997;9(8):1735-80.

[44] Cho K, Van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, et al. Learning phrase representations using RNN

encoder-decoder for statistical machine translation. Conference on Empirical Methods in Natural Language Processing; 2014 Oct

25-29; Doha, Qatar. USA: Association for Computational Linguistics; 2014. p. 1724-34.

[45] Graves A, Fernández S, Gomez F, Schmidhuber J. Connectionist temporal classification: labelling unsegmented sequence data

with recurrent neural networks. International Conference on Machine Learning (ICML); 2006 Jun 25-29; Pittsburgh, USA. New

York: Association for Computing Machinery; 2006. p. 369-76.

[46] Bluche T. Deep neural networks for large vocabulary handwritten text recognition networks for large vocabulary handwritten

text recognition [thesis]. Orsay: Universite´ Paris Sud-Paris XI; 2015.

[47] Fogel S, Averbuch-Elor H, Cohen S, Mazor S, Litman R. ScrabbleGAN: semi-supervised varying length handwritten text

generation. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2020 Jun 13-19; Seattle, USA. New

York: IEEE; 2020. p. 4323-32.

[48] Atienza R. Vision transformer for fast and efficient scene text recognition. In: Lladós J, Lopresti D, Uchida S, editors. Document

analysis and recognition-ICDAR 2021. Cham: Springer; 2021. p. 319-34.

