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Abstract 

 

The capability of powder metallurgy (PM) process to produce high quality components/parts is largely dependent on the control of 

process parameters. To obtain the desirable quality characteristics or properties in the produced part, an appropriate combination of 

process parameters is required. This paper presents a detailed review of powder metallurgy process parameters and their effects on a 

wide range of properties while developing a wide range of metallic and composites products. Key process parameters in this study 

include compaction pressure, sintering temperature, sintering time, sintering atmosphere, lubrication and reinforcement percentage 

volume. Their influence on physical properties, mechanical properties and microstructure of PM parts are extensively discussed. An 

extensive literature study as reported in this paper reveals that compaction pressure, sintering temperature, time and sintering 

atmosphere highly influence part density and strength, whereas part hardness and wear are greatly affected by hard ceramic 

reinforcement addition, compaction pressure, sintering temperature and time. Die wall lubrication greatly improve the physical, 

mechanical properties and microstructure of PM components compared to powder mass lubrication. It is observed that the powder 

metallurgy process conducted at optimum parameters produce quality products. This paper aims to facilitate researchers and scholars 

by providing a detail knowledge of PM process parameters and their effects, for them to conduct research and development to establish 

the field further. 

 

Keywords: Composites, Mechanical properties, Microstructure, Powder metallurgy 

 

 
1. Introduction 

 

 The demand for high-quality products for automobiles, biomedicine, and other engineering applications has ensured the continued 

growth of the powder metallurgy (PM) industry. Due to its flexibility, environmental friendliness and excellent process control, this 

processing technology is most suitable for producing high density and high strength-to weight components [1-4]. Parts made of metallic 

alloys and composites have been manufactured through the PM process. Examples include; surgical implants, tungsten filaments for 

incandescent lamp bulbs, oil-impregnated bearings and gears, connecting rods, piston rings, gears, cams, bushings, bearings, and cutting 

tools [2, 5]. PM is one of the solid processing routes developed to overcome the problems associated with other fabrication methods. 

It is well suited for advanced processing, a vital requirement for high-performance, cost-effective products for the present-day global 

competitive market [6]. PM uses metallic powder to produce parts; it maximizes the use of materials and can be used to transform 

metals that seem impossible by other fabrication and processing techniques. Sources of powder are metals and ceramics. The most 

commonly used metals are aluminum, steel, iron, magnesium, and copper, while widely used ceramics are Al2O3, TiC, SiC, B4C, WC, 

and fly ash [7-9]. The process can be designed to produce net shape or near-net shape components/parts. In near-net-shape, secondary 

operations such as machining, finishing, or grinding are necessary to improve dimensional accuracy, appearance, and surface finish, 

etc. Some of the advantages of the PM process include controlled microstructure, uniform distribution of powder particles, and little 

or no interfacial reaction [10]. Some of the limitations include not being suitable for parts with large and complex geometry. This is 

because the flow property of metallic powder restricts the complexity of part shape. Most PM products are simple and weigh less than 

3.0 kg, but parts that weigh as much as 40 kg can be produced. It is also not suitable for low volume production due to the high setup 

cost. It is preferable for medium to mass production of parts [11]. 

 The basic steps involved in a PM process are (i) powder mixing/blending (ii) powder compaction and (iii) sintering of green 

compacts (Figure 1). Each operation has unique parameters which can be controlled to obtain the best property of the part. Powder 

mixing involves the mingling of different powders to achieve homogeneity. This prepares the powder for compaction. During mixing, 

magnesium can be added in a small amount to serve as a binder [12] and wax or zinc stearate as a lubricant to reduce friction during 

compaction. Die wall lubrication improves the properties and microstructure of PM parts compared to powder lubrication [13, 14]. 

Powders with mixed particle sizes reduce porosity compared to powder with uniform particle size [15, 16]. An accurate combination 

of powder particle sizes is essential for improved microstructure and mechanical properties.  

 Applied compaction pressure transforms the loose powder into a solid mass to form the required shape. It can be performed cold 

or warm [17-19], and pressure applied may be in a uniaxial or biaxial direction [20, 21]. Conventional compaction can be modified 
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into isostatic pressing, where parts can be produced in a flexible mould using pressure applied from all directions. Components made 

from hot isostatic pressing exhibited higher density, mechanical strength and improved microstructure [22-24].  

 

 
 

 
 

Figure 1 Illustration of powder metallurgy process  

 

 Sintering increases the density and strength of the green compact and eliminate lubricants and binders used during mixing and 

compaction. The heat applied during sintering causes solid-state bonding of powder particles. An increase in sintering temperature and 

time increases metallic powder particle diffusion, followed by part shrinkage resulting in pore size reduction and denser structure [25]. 

During sintering, there is a need to control the furnace atmosphere to prevent the contamination of PM parts and improve quality. 

Widely used furnace atmosphere are nitrogen, hydrogen, argon, and vacuum furnace atmosphere. 

 Process parameters significantly influenced the physical properties, mechanical properties and microstructure of PM parts. The 

effects of these parameters such as compaction pressure, sintering temperature, time and atmosphere, lubrication, particle size and 

reinforcement percentage volume on density, strength, hardness and wear have been extensively investigated [26-28]. Most research 

focus in PM has been on increasing the density and improving the microstructure of PM parts which ultimately increases mechanical 

properties. According to Li et al [26], Bardhan et al [29], PM compact density depends on compaction pressure, sintering temperature 

and powder type. Pani and Khuntia [30] observed that the surface smoothness of PM compacts increases with a rise in compaction 

pressure and temperature. 

 This review investigates the process parameters and performance of the PM method to produce metallic and composites parts. The 

influences of processing parameters such as compaction pressure, sintering temperature, time and atmosphere, reinforcement volume, 

etc., on density, porosity, mechanical properties, and microstructures have been reviewed and discussed. Effects of Optimal processing 

parameters on the overall quality of PM components are also highlighted. 

 

2. Powder metallurgy process parameters 

 

 The quality of PM components is dependent on the control of process parameters. Several parameters have been identified as 

factors that can influence the outcome of PM products. Parameters such as milling time, compaction pressure, compaction temperature, 

compaction duration, sintering temperature, sintering duration, sintering atmosphere, lubricant concentration, reinforcement 
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concentration and powder particle size, and their effects on product quality have been widely investigated [31-36]. For instance, Stalin 

[37], Umasankar [38] reported that compacting pressure and reinforcement concentration influenced density and hardness significantly. 

Leszczyńska-Madej [39] observed that the tribological properties of metal matrix composites were greatly enhanced by sintering 

temperature and hard ceramic addition. Table 1 shows workable ranges of some PM parameters used for different studies. It will 

facilitate the selection of process parameters for future work.  

 
Table 1 A summary of ranges of powder metallurgy process parameters used by different researchers 

Materials 

PM process parameters 

Ref 
Comp. 

pressure 

Pc (MPa) 

Comp. 

Temp. 

(o C) 

Particle 

size (Ps) µm 

Sintering 

temp (Ts) 

(oC) 

Sintering 

time (ts) 

(min) 

Optimal 

Ts, ts 

Sintering 

Atmosphere 

Al-GNP 

composites. 
600 RT 8-15 550-630 60-300 630, 180 vacuum [25] 

Al/SiC/B4C 150 RT - 610 15 - Nitrogen [40] 

Al/zircon 440 CIP - 600-650 65 650, 65 Argon [41] 

Al alloy/ fly ash 200-515 RT 20/150 575-625 90 - Nitrogen, vacuum [20] 

Al/Mg 489 28-150 122 /144 400-460 60 - Argon [18] 

Cu-Re 350-650 100-160 - 300-900 60-180 - Argon [42] 

Iron powder 400-850 RT 
5, 45, 63, 

80nm 
500-1120 20-30 900, 20 Vacuum, Nitrogen [36] 

Al-Al2O3 440 RT 30/ 3, 12, 48 500-600 30-90 600, 45 Argon [27] 

Cu/graphite 700 RT  900 60 - Argon [43] 

Al/fly ash 414 RT 70-106 600-645 30-360 - Nitrogen [44] 

Al/Pb/fly-ash 200-400 RT - 500-590 45 - Argon [10] 

AA6061/SiC 350-550 RT  400-600 60-180 - Nitrogen [38] 

Al/xGnP 500 RT - 400-600 300 - - [35] 

MWCNTs/Al 30 RT 20-40nm/25 500-650 120-360 590, 240 Argon, Vacuum [26] 

6711Al/SiC 400 RT  570-630 60 630, 60 Vacuum [45] 

316L stainlesssteel 800 RT  1300 30 - Nitrogen, Argon [46] 

Iron powder ASC 

10.29 
400 120-180 20-180 900-990 30 990, 30 Argon [47] 

Al/SiC 300 RT 63/40-60 580-620 60 620, 60 Nitrogen [39] 

AA6061/SiC 350-550 RT 35 400-600 60-180 - Nitrogen [38] 

Al6061/SiC/Gr 250-750 RT - 620-630 60 - Nitrogen [48] 

AISI 316L stainless 

steel 
600 RT - 

1200-

1400 
60 - Hydrogen [49] 

Mg/SiC 125 RT - 465 60 - Argon [32] 

Mg/TiC/MoS2 740 RT  530 60 - - [50] 

Mg/WC/Gr 200 RT 50 500 60 - - [51] 

Mg/SiC 650 RT - 500-670 30 - - [52] 

Cu/Co/Mo 600 RT 44/1.8/44 1000 30 - - [53] 

Cu/WC/SiC 45KN - <80/49 870-984 90 - - [54] 

Ti alloy (Ti-6Al-

4Zr-0.5Mo-0.6Si) 
200 CIP - 1300 240 - Vacuum [55] 

Al/MoO3 200-300 RT - 400-600 60-180  - [37] 

Cu matrix 

composites 
550-650 -  800-900 60-90 

800-

900, 60-

90 

- [56] 

RT-Room Temperature, CIP-Cold Isostatic Pressing 

 

2.1 Powder particle size distribution and mixing 

 

 According to Prem Prakash Seth [31], particle shapes and sizes significantly enhance PM parts’ mechanical properties and 

microstructure. Some of the unique shapes include triangular, spherical, irregular, etc. [57-59]. Commonly used powder particle sizes 

are in the micro-scale i.e.,~(1-200µm) and currently the nano-scale i.e.,~(1-200nm) is also in application [32, 60]. Generally, powder 

with fine particle sizes produces parts with high density, enhanced microstructure and mechanical properties compared to larger particle 

sizes. A correct combination of powder particle sizes reduces porosity and significantly improves microstructure and mechanical 

properties [15, 36]. Powder with mixed particle sizes perform better than powder with uniform distribution [22, 61]. For example, a 

mixture of particle size of 20µm Al7075 (matrix) and 20wt% 120µm Al2O3 (reinforcement) produced composite with the highest 

density, hardness and compressive strength [15]. 

 Powder mixing/milling is the first step in the PM processing sequence and it is performed using a ball mill. Milling of powder 

particles results in a homogeneous mixture, preventing agglomeration, a significant problem associated with powder processing [62]. 

Generally, As percentage reinforcement/alloying volume increases, particle clustering increases. A recent study by Ponhan et al [32] 

observed that a more homogeneous powder mixture was achieved even at a higher volume fraction of reinforcements at a longer milling 

time using a ball mill.  The use of ball milling during PM can be said to achieve two significant purposes; firstly, to ensure homogeneity 

of the powder mixture and secondly to break down powder particles into more acceptable sizes. This ultimately results in higher 

mechanical properties and improved microstructure. This finding is consistent with previous investigations [63, 64]. 
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 In an earlier study, Wang et al. [65] used a two-step processing method to improve the homogenous distribution of reinforcing 

particulates over the magnesium matrix. Microstructural characterization of the magnesium composites showed a homogeneous 

distribution of the particulates over the matrix, but with increased porosity. 

 During milling, a control agent such as alcohol is added to the powder mixture to prevent agglomeration [27]. For ease of mixing, 

the container should be less than 90% capacity [40, 43, 66]. For higher efficiency of mixing, appropriate selection of mixing parameters 

is necessary. Commonly used milling parameters are mixing speed, mixing time and ball-to-powder weight ratio (BPR). The mixing 

speed should be within the range of ~(150-200) rpm and the mixing/milling time should be long enough for the powder particles to 

attain uniformity to prevent particle clustering [48, 67]. 

 

2.2 Powder compaction and lubrication  

 

 Powder mixtures are compacted in a die cavity using a punch to form green compact. The compaction pressure transforms the 

loose metallic powder into rigid mass to form shape. As the applied pressure increases, powder particle consolidation increases such 

that certain degree of cold welding occurs [18, 19, 68]. The green compact should have high density and strength to prevent breakage 

during ejection. When the actual or measured density is almost equal to theoretical density i.e. relative density (RD) close to 100%, it 

means that sufficient compaction has been performed, as density increases porosity decreases [61, 69]. 

 Compaction can be performed cold or warm [70]. Cold compaction is performed at room temperature. In warm compaction, the 

die or powder mixture is heated to a suitable temperature usually below 200oC before the application of pressure.  The different 

compaction temperature used by different authors are shown in Table 1. Xiao et al [19], compared the effect of cold and warm 

compaction on the properties of PM parts. Results reveal that green density and strength were higher with warm compaction. This 

finding is consistent with other investigations [42, 66]. The applied compaction pressure not only enabled the shaping of green compact 

but also to overcome friction between metal particles and die wall. Friction causes density variation and pressure loss during powder 

compaction [21]. To increase the effectiveness of the applied pressure, the use of lubricants is recommended [67]. Base powder types, 

lubricant types and concentration are key considerations during lubrication, their effects can significantly impact on product quality 

[71, 72]. Several lubricants have been used for PM studies, they include: zinc stearate (or) stearic acid, lithium stearate, mixture of 

silicon fluid and graphite powder, ethylene bis-stearamide (EBS), polystyrene wax, and paraffin wax [73, 74].  

 The use of lubricant for powder compaction offers both advantages and limitations. The advantages include: (i). prevention of die 

wall friction, (ii). minimization of interparticle friction (iii). prevention of density variation, (iv). improvement in the flow properties 

of powder particles (v). easy ejection of green compacts, and (vi). prevention of tool wear. The major limitation is the reduction in 

density and mechanical properties of sintered compacts for lubricant mixed with powder mass. Lubricants can be applied either on the 

die walls or admixed with the metallic powder mass. Studies conducted to investigate the effects of lubrication on the physical and 

mechanical properties of PM parts revealed that parts with die wall lubrication exhibited higher density and mechanical properties 

compared to parts produced from powder mixed with lubricants [75, 76]. For higher physical and mechanical properties of PM products, 

no lubricants should be added to the powder mass [21]. In the case where the use of lubricant on the powder mass is unavoidable a low 

melting lubricant with optimal concentration should be used [71, 77]. Optimal lubricant concentration improves product quality, but 

excess lubrication can have a deleterious effect on microstructure. High lubricant concentration in the powder mass can obstruct particle 

to particle contact necessary for strong bonding as well as create problem of overly protracted burnout time to remove the lubricant 

from the sintered compact. When the lubricant is eventually burnt out, it creates micro-voids in the microstructure which results in poor 

mechanical properties of the final products [77]. Lubricant concentration less or equal to 0.5wt% has been recommended for optimal 

performance [78, 79]. 

 

2.3 Sintering temperature, time and atmosphere 

 

 To further consolidate on the properties of green compacts, they are subjected to heat treatment known as sintering. During 

sintering, the grains of the green compacts get welded together at a temperature usually below the melting point of the matrix metal to 

form stronger bond. Notable properties that can be affected by sintering include density, volume, strength, hardness etc. [20, 26]. 

 Temperature, time and furnace atmosphere are important sintering parameters that can impact on the quality of PM parts [25, 80]. 

To obtain the highest density and mechanical properties, sintering temperature and time should be optimized. Too low or too high 

sintering temperature and too short or too long sintering time may cause grain growth and weak interparticle bond which can undermine 

the properties of final product [57, 81]. Table 1 shows the different sintering temperature, time and furnace atmosphere used for 

different studies. 

 Most sintering processes are solid phase sintering where the powder constituent remains solid throughout the heat treatment 

process. However, there are instances where the melting point of one of the powder constituents is far below that of the matrix metal. 

At high temperature, the metal particles with lower melting point melt while the rest constituents remain solid. The melted metal wets 

other solid particles to form a strong bond with a dense structure. Padmavathi et al [45] observed that during the sintering of          

6711Al-SiC composite compacts, a liquid phase of AlMg2Si was formed at 586oC before attaining the sintering temperature of 630oC. 

Furthermore, during sintering of Al/Pb/10 wt% fly-ash composite compact, Reddy et al [10] noted that at the temperature range of 

500oC-560oC, a liquid phase was formed due to the melting of Pb. Beyond 590oC solid aluminum particle diffusion was prevalent, 

resulting in a denser structure. Liquid phase sintering enhances microstructure and consequently physical and mechanical properties of 

PM parts. However, caution must be taken to prevent chemical reactions that may result in the formation of undesirable chemical 

compounds. 

 During sintering, the furnace atmosphere is expected to be controlled. The need for a controlled furnace atmosphere is to prevent 

material contamination and enhance microstructure and mechanical properties.  Studies have shown that gases such as argon, nitrogen, 

hydrogen etc. can be used to control the furnace atmosphere [39, 49, 82]. A vacuum furnace atmosphere is also an effective furnace 

atmosphere for sintering. Materials such as tungsten carbide (WC), stainless steel etc. have been sintered using a vacuum furnace 

atmosphere [80]. Naci Kurgan [46], Xue et al [83] used argon and nitrogen gas as sintering furnace atmospheres for their studies. It 

was found that the specimen sintered in nitrogen furnace atmosphere showed higher physical and mechanical properties compared to 

specimen sintered in argon furnace atmosphere. 
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3. Effects of process parameters  

 

3.1 On density and porosity 

 

 High density PM compact is a result of little or no pore spaces in the powder particle arrangement. Density is significantly 

influenced by compaction pressure, sintering temperature, time, lubrication and reinforcement concentration [84-86]. Porosity in PM 

compacts is assumed eliminated when the sintered density equals the theoretical density. This cannot be practically achieved due to the 

efficiency of the PM process. Porosity increases due to inadequate milling time, compaction pressure, sintering temperature, and 

sintering time. Particle clustering adversely affects the physical/mechanical properties and microstructure of PM parts. Therefore proper 

milling is essential for enhanced properties (see Figure 2). Other factors that may increase porosity in PM compacts are lubrication, 

particle size distribution and percentage reinforcement volume [25, 44, 87]. The relationship between particle packing density and 

porosity can be explained further using equation (1) 

 

𝜌 +  𝜙 = 1.0                                                                                                                                                                                                                    (1) 
 

Where,  

       ρ is the particle packing density, and ϕ is the porosity. 

 An increase in compaction pressure increases the particle packing density. When ρ is equal to one, it means porosity is zero, and 

measured density equals theoretical density [15, 61]. In an investigation on the effect of compaction load and particle size on porosity 

of aluminum alloy compact, the lowest porosity was at a higher compaction load and mixed particle size distribution, i.e. (25µm+100µ). 

Reports have it that powder with assorted particle sizes are less porous than powder with uniform particle sizes.  

 Iron compact with die wall lubrication, sintered at 1300oC exhibited higher density compared to iron compact with powder 

lubrication. Diffusion rate and pore shrinkages increased as sintering temperature and time increased, resulting in a denser structure 

[35]. Furthermore, Gokçe and Fındık [88] compared the green and sintered density of Al-Mg compact prepared from powder with and 

without admixed lubricant. Aluminum compacts without admixed lubricant gave the highest density.  

 The use of ceramic reinforcement increases porosity in metal matrix composites. This may be due to the porous nature of ceramic 

materials. As the percentage volume reinforcement increases, porosity increases [87, 89]. Porosity in Al/Gr/SiC composites 

significantly increased when the percentage volume of SiC reinforcement was above 10%. This finding is consistent with the studies 

of Venkatesh and Harish [90] and Padmavathi et al. [45]. 

 

 

 
 
 

 

 

Figure 2 Effect of milling time on the density and porosity of Al/Al2O3 nanocomposites [91] 

 

3.2 On strength and ductility  

 

 The porosity and strength of inter-particle bonds primarily influence PM parts’ mechanical properties and microstructure. Effects 

of compaction pressure, sintering temperature, time and atmosphere, powder particle size, reinforcement concentration, and lubrication 

on strength and ductility of PM parts have been investigated [57, 92-94]. Increasing compaction pressure reduces pore spaces in powder 

particle arrangement by increasing particle-to-particle contact area, allowing cold welding to take place. Increasing sintering 

temperature increases the diffusion rate of metallic particles, thereby filling vacant positions. This results in a denser structure and 

consequently reduced porosity [95]. For example, GX40CrNiSi25-20 stainless steel compact sintered at 1300oC for 3hrs exhibited 

higher tensile strength compared to compacts sintered at 1200oC [82]. In another instance, increasing the sintering temperature of 

MWCNTs/Al compact from 590oC to 650oC, a sintering time of 4hrs, increased the tensile strength from 156MPa to 167MPa. Materials 

respond to sintering temperature and duration differently; this may be due to their chemical composition and phase characteristics. 

Rahman et al [47] reported that the strength of sintered iron compact, warm compacted at 180oC increased from 320MPa to 620MPa 

as the sintering temperature increased from 900oC to 990oC for a sintering duration of 30mins. Warm compaction reduces friction 

between powder particles and die wall and increases lubricant effectiveness [96]. Moreover, Rahimian  et al. [27] reported that the 

ductility of Al-Al2O3 composites increased as the sintering temperature and time increased. The best value of ductility was at 600oC 

and 60 mins sintering time. Increasing sintering time from 60mins to 90mins had little or no effect on specimen sintered at 600oC. Low 

sintering temperature and time result in weak inter-particle bonds and ultimately low strength and ductility. Higher tensile strength can 

be achieved when lubricants are used on the die wall only. The use of lubricants on powder mass has not produced the best results 

notwithstanding, a concentration less than or equal to 0.5wt% has been recommended [88, 97].  
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 The addition of ceramic reinforcement increases strength but decreases ductility. However, high volume reinforcement decreases 

both strength and ductility [56]. This is because of the inherent porosity and particle agglomeration associated with a high volume of 

ceramic reinforcement. According to Padmavathi et al [45], Prakash et al [98], Liu et al [99], the highest tensile strength recorded was  

at a percentage reinforcement volume of about ~10% for micro-size and much lesser for nano-size particles. In addition, fine particles 

perform better than coarse particles because they have fewer pore spaces than coarse particles. According to Rahimian et al [27], the 

best yield stress value for Al-Al2O3 composites was at a sintering temperature of 600oC and particle size less than 10µm. Hassani et al. 

[59] reported that a reduction in particle size from 16 to 12 µm caused a decreased porosity by 3.7%, increasing tensile strength and 

ductility.  

 The concentration of furnace atmosphere can impact strength and ductility of PM parts. More so, some furnace atmospheres are 

more effective than others. Butkovic et al. [82] and Kurgan [46] reported that Compacts sintered in nitrogen atmosphere exhibited 

higher strength but reduced ductility. In contrast, compacts sintered in hydrogen and argon showed higher ductility but reduced strength.  

More investigations are needed in this area to substantiate this finding further. 

 

3.3 On hardness 

 

 Metals and alloys can be made harder for tailored application, especially for the production of cutting tools. The addition of Ceramic 

materials such as SiC, B4C, Al2O3, and WC, to metal matrices and the optimization of processing parameters such as milling time, 

compaction pressure, sintering temperature, time, etc., increase hardness [90, 100-102]. As illustrated in Figure 3, hardness of Al/Al2O3 

composite increases as the milling time increases. Homogeneous distribution of reinforcing/alloying particulates over the matrix can 

be achieved through milling, which results in an increase in hardness. Ravi Kumar et al [51], reported a significant increase in the 

hardness of magnesium composite on the addition of tungsten carbide and graphite. However, tungsten carbide had more substantial 

effect than graphite. Gurbuz et al [25] reported the highest hardness value of sintered Al/GNP composite at a temperature of 630oC, 

sintering time of 3hrs and reinforcement percentage volume of 1wt%. In a similar study, Latief et al [35] observed that the hardness of 

Al/GNP composite sintered at 6000C for 5hrs increases as the GNP reinforcement addition increases up to 5wt%. The different hardness 

values obtained may be due to the variation in processing parameters, chemical composition and purity of phases. In a critical study 

[27, 23], the highest hardness value for sintered Al-Al2O3 composite was at a sintering temperature of 600oC. Higher temperature 

promotes faster diffusion of metallic particles, faster neck growth to form stronger inter-particle bonds.  Furthermore, reports show that 

the highest hardness value of Al/Al2O3 composites was with particle size less than 10µm and a percentage reinforcement volume of 

20wt% [67, 48]. Other examples of particle sizes used that have produced superior hardness include 30µm [101], (20µm+120µm) [15] 

etc. PM parts developed using fine powder particles perform better than parts produced using coarse particles. However fine powder 

particles require higher compaction pressure to achieve high green density and hardness [36]. Coarse particle sizes are easier to deform 

as compaction pressure increases, resulting in increased porosity. The addition of ceramic reinforcement such as Al2O3 to aluminum 

matrix increases hardness, this is because Al2O3 is naturally harder than aluminum. As the percentage reinforcement volume increases 

(≤ 20wt%), hardness increases [103]. Another reason for increased hardness is the strengthening mechanism of ceramic materials. The 

addition of ceramic material to metal matrix impedes dislocation motion, and this increases hardness. 

 

 
 

 

 

 

Figure 3 Effect of milling time on micro-hardness (HV) and nano-hardness (HN) of Al/Al2O3 composites [91]. 

 

 A critical study reveals that the stainless-steel compact sintered in nitrogen furnace atmosphere exhibited improved hardness than 

the stainless steel compact sintered in argon [46]. Nitrogen gas can form nitride, and the nitride formed impacts microstructure by 

decreasing pore spaces. This ultimately increases density and hardness. 

 

3.4 On wear characteristics  

 

 Wear of surfaces which is a common phenomenon associated with mating parts in relative motion is undesirable. The occurrence 

of wear causes failures of machine elements that results in material loss. Hardened materials tend to have higher wear resistance than 

softer materials. The wear properties of PM parts can be enhanced by the addition of hard ceramic reinforcement such as TiC, B4C, 

SiC, n-ZrO2, and the optimization of processing parameters such as sintering temperature, time, and reinforcement concentration [104, 

62, 50, 39]. Rahimian et al [67] discovered that the wear rate of Al/Al2O3 composite increased by 7% when the sintering temperature 

increased from 550oC to 600oC after a sintering time of 45 mins. But an increase of 22% was observed when the sintering time increased 

from 45mins to 90mins. Besides increasing wear rate by 22%, an increase in grain area from 820µm to 1723µm was also observed. 

Excess sintering time causes grain growth (increase in grain area), resulting in reduced hardness and increased wear rate. Some studies 
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discovered that the use of hybrid reinforcements such as (Gr+MoS2), (TiC+MoS2) resulted in an improvement in the tribological 

properties of magnesium composites [105, 50]. However, molybdenum disulfide (MoS2) reinforcement was more effective in reducing 

wear loss in magnesium composites when compared to graphite reinforcement.  

 In the wear mechanism of Al/Al2O3 composites, the dominant material removal modes are abrasion, adhesion, and delamination, 

contingent upon the applied load and sliding velocity [106]. Furthermore, a study by Diler et al [23] to investigate the effect of particle 

size and reinforcement volume on the wear rate of Al/SiC composites discovered that the highest wear resistance was at a particle size 

of 91μm and a reinforcement volume of 15wt%.  

 

3.5 On fracture behaviour 

 

 Generally, the fracture modes of pure metals are ductile, with surfaces characterized by small dimples. At low sintering temperature 

and high percentage volume reinforcement addition, porosity of sintered compact increases while ductility reduces. The effect of this 

on fracture behaviour is a ductile-brittle fracture mode [22, 26]. Leszczyńska-Madej [39] observed that the fractography of sintered 

aluminum at various temperatures revealed elongated small dimple colonies as evidence of ductile fracture. However, sintering at a 

temperature of 620oC was sufficient to form a stronger inter-particle bond thereby reducing porosity.  

 In a critical study investigating the effect of sintering atmosphere on fracture behaviour,  Naci Kurgan [46] observed that 

coalescence of pores was more in the ductile fracture surface of 316L stainless steel compacts sintered in argon atmosphere than those 

sintered in nitrogen atmosphere under the same processing condition. 

 

3.6 On microstructure 

 

 Microstructural characterization of sintered compacts is quite essential for the determination of microstructural features. Attributes 

such as micro and macro porosity, pore size, particle size, shape and distribution, phase structure etc. can be determined using optical 

microscope, scanning electron microscope equipped with EDS (SEM-EDS) and X-ray diffractometer (XRD). Before microstructural 

examination is performed, the surface of the compacts is polished and after which etched by Keller’s reagent. However, etching process 

is not compulsory [20, 25, 88]. 

 The influence of processing parameters on the microstructure of PM parts has been extensively investigated [41, 46, 57, 82]. 

Improved microstructure of PM parts is a function of homogenous distribution of the reinforcing/alloying phase over the matrix. As 

shown in Figures 4(a-b) and Figures 5(b-c), few pore spaces are seen on the microstructure of the aluminum composite due to the 

homogenous distribution of SiC and Al2O3 reinforcement over the aluminum matrix respectively. XRD pattern analysis of Figure 4(d) 

indicates interfacial compound in the microstructure. This occurs at higher sintering temperature and longer sintering time [39, 67, 

107]. Figure 5a shows the uniform distribution of Si into Al matrix, whereas Figure 5d illustrates the occurrence of pores etc. when the 

reinforcement reaches 10wt% [108]. 

 

 
 

 
 

 

 

 

Figure 4 Microstructure of Al-Cu-Si-Mg/SiC. (a) 5wt% SiC (b) 10wt%SiC. XRD pattern of Al composite (c) 5wt% SiC (d)10wt% 

SiC [109]. 
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Figure 5 SEM Micrographs of Al-12Si/Al2O3 composites with (a) 0wt%, (b) 2wt%, (c) 5wt% (d) 10 wt% reinforcements [108] 

 

 As reported by Li et al [26], an increase in sintering time from 4hrs to 6hrs for Al/MWCNT composite specimen sintered at 590oC, 

resulted in the formation of Al4C3 brittle compound. Al4C3 compound is undesirable because it can degrade the mechanical properties 

of composites. In another study by Dhanashekar et al [104], Padmavathi et al [45], it was observed that Al4C3 interfacial compound 

was not found in the phase structure of Al/SiC composites sintered for 1hr. The reason for this may be due to optimal sintering time of 

1hr. Longer sintering time causes a chemical reaction between material phases, resulting in inter-facial compound in the microstructure. 

Another reason may be that the XRD has poor sensitivity and as such could not detect the presence of Al4C3. 

 

4. Conclusion 

 

 After careful review of several studies on powder metallurgy, its process parameters and their effects, the following conclusion can 

be drawn. As an established production process, powder metallurgy is most suitable for the production of metallic and metal matrix 

composites parts. The metals commonly used for powder metallurgy are aluminum, steels, magnesium and copper. PM processing 

parameters that can significantly influence product outcome include milling time, compaction pressure, sintering temperature, sintering 

time, furnace atmosphere, lubrication, powder particle size and reinforcement concentration. Due to excellent process control, powder 

metallurgy components are characterized by little porosity, higher density, refined microstructure and enhanced mechanical properties. 

Comparatively, Powder metallurgy products are superior to as cast products. For best values of density, strength, hardness and wear 

resistance, lubrication should be performed on the die wall only. In the case of powder mass lubrication, the lubricant concentration 

should be less than 0.5wt%. For composite production, the reinforcement percentage volume should be ≤10wt% for the best value of 

strength and ≤20wt% for the best value of hardness and wear resistance. Formation of deleterious compound like Al4C3 can be 

prevented if the sintering temperature and time are not excessive. 

 In PM process, selection of processing parameter values is dependent on the properties of base metals. For aluminum powder, 

compaction pressure of (150-650) MPa, sintering temperature of (400oC-650oC) and sintering time of (15-360) mins have been used. 

For iron and steel powder, compaction pressure of (400-850) MPa, sintering temperature of (900oC-1400oC) and sintering time of (20-

60) mins have been used. For Magnesium powder, compaction pressure of (125-740) MPa, sintering temperature of (400-670) oC, and 

sintering time of (30-60) mins have been used. For copper powder, compaction pressure of (200-800) MPa, sintering temperature of 

(300-000) oC, and sintering time of (30-180) mins have been used.  

 Sintering furnace atmosphere plays a critical role in PM process and as such should be well controlled. Property variations of 

sintered parts may be caused by sintering gas concentration in the furnace. More so, some sintering gases are more effective than others. 

More studies should be conducted to investigate the effectiveness of sintering gases in relation to base metal powder. 
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