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Abstract 

 

Among low level gradient-based edge detection techniques, boundary extraction algorithms based on particle motion yield superior 

continuous edge map results. However, these methods sequentially tracing particle trajectories to obtain continuous edges can be slow 

in the case of images having a number of objects or spurious edges. In order to accelerate such an edge tracking process, this paper 

proposes the use of negative divergence of a normal compressive vector field to enable fast edge detection. By exploiting the 

compressive property and negative divergence of the normal compressive vector field, prominent edges can be rapidly detected in a 

raster scan manner. The remaining incomplete or broken boundaries are later fixed using the boundary extraction algorithm based on 

particle motion. Image segmentation performance of the proposed algorithm was evaluated using the BSDS500 benchmark dataset 

with the F-measures for ODS and OIS, with average precision and computation time used as performance measurements. Experimental 

results indicated that the proposed algorithm provided results comparable to those of the well-known low-level methods, while the 

average computation time was drastically reduced by a factor of 2 when compared to that of the original particle motion based method. 
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1. Introduction 

 

 Image segmentation partitioning of images into several regions possessing homogenous properties (color, texture, etc.) is essential 

for solving problems of computer vision such as: object detection/tracking /recognition, image classification and image retrieval. 

Among image segmentation techniques, region-based techniques focus on grouping pixels, having the same properties, into regions 

while edge-based techniques focus on locating the boundaries between regions where pixel properties are abruptly changed. Edge-

based methods have an advantage over region-based methods as, in edge-based methods, extracting boundaries requires reduced pixel 

searching compared to extracting all the pixels, of the entire region, in region-based methods. In edge-based methods, boundary 

information is retrieved by means of edge detection or boundary extraction to locate the transitions of pixel properties such as light, 

color, shade, and texture. Boundary extraction can be broadly categorized into three main approaches: low-level methods, machine-

learning and deep-learning [1]. The low-level methods utilize low-level features such as Canny [2], graph searching[3], and particle 

motion [4, 5] which are the classic boundary extraction methods to determine boundaries based on image gradient or changes of pixel 

properties. Extracted boundaries can be in the form of discretized paths obtained from edge pixel tracing [6], or edge weight graph 

searching [3], or particle trajectories in the vector fields derived from image derivatives[4-8].  

 In contrast to the low level methods, machine learning approaches such as probabilistic decision tree [9], support vector machine 

[10], random forest [11] utilize varieties of relevant features such as light, color, shade, texture and transform the coefficients to 

determine object boundaries. For example, the global probability of the boundary proposed in [12] combines the oriented gradients of 

histograms of color and texture channels, at multiple scales, to represent contour images. Complex relations between input features and 

extracted results are implicitly obtained by training the models with user-provided training data. The decision tree models in [9], with 

multi-scale input features including image gradients, difference of histograms, and Haar wavelets of image patches, are trained using 

the ground truths of edges provided by users,  deliver output in the form of probabilities of pixels belonging to edges. The method in 

[10] uses the sparse coding gradient adapted from the global probability of boundary [12] as the main feature of the support vector 

machine classifier. Although, machine learning approaches can outperform classical boundary extraction methods, the efficiency of 

machine learning approaches inarguably depend on the selection of features and the separability of training data sets provided by users. 

In most machine learning approaches, training data sets must be composed of large numbers of feature image patches containing 

various edge patterns [11]. 

 The latest approaches to boundary extraction methods, such as [13-18], are applications of deep learning networks, especially 

convolution neural networks (CNN), which disruptively arose in the field of computer vision a few years ago. The CNNs are one type 

of feature-representative artificial neural networks capable of creating their own features in the beginning layers by using adaptable 

convolutional masks and utilize such data in the ending layers, for detection/classification proposes, by using fully connected, artificial 

neural networks.  Superior to classical image segmentation, CNN approaches are capable of performing semantic image segmentation, 



Engineering and Applied Science Research 2022;49(2)                                                                                                                                                  169 

 

for example, general images [13, 18, 19] and medical image segmentation [20-25], which cannot be achieved by rule based classical 

image segmentation techniques. To apply CNNs for contour/edge detection, training data sets are usually composed of various classes 

of image patches, whose centers pass through contours, or image patches containing structured edges as well as none edge image 

patches [14, 15]. Since structures of CNNs are naturally multi-scale encoded, multi-scale or holistic edge detection, that can resolve 

ambiguity of edges at multiple scales, can properly be integrated into CNN techniques by means of both network architectures [16, 17] 

and training data sets [15]. 

 Despite the success of today’s machine-learning and deep-learning image segmentation techniques, the main drawback of these 

techniques is the requirement for enormous training data sets; as an example, a set of 2,000,000 image patches [15], which is difficult 

to prepare and requires massive computational resources for training the models.  Alternatively, this paper focuses on improving the 

low-level boundary extraction method based on the particle model which is still one of the most robust low-level boundary extraction 

methods. The particle motion based method was first proposed by Eua-Anant and Udpa [4, 5] for extracting object edges in a grayscale 

image and later extended to extract edges in a color/multispectral image [8]. The effects of parameters controlling particle motion in a 

vector image field was investigated in [7] using the c-evolute model to describe the behavior of a particle under influence from vector 

fields. Similar to particle models, the point flow model [6] also utilizes vector fields derived from image derivatives to force random 

points to flow along edges. The main disadvantage of all particle motion based methods is that the methods sequentially tracing particle 

positions, step-by-step, to obtain consecutive edges are time consuming. In order to reduce processing time, in this paper, the fast 

boundary extraction algorithm utilizing negative divergence property of a normal compressive vector field is introduced. Later, 

discontinuous and incomplete extracted edges can be extended to achieve close boundaries using the traditional particle motion based 

boundary extraction technique. Complete details are given as follows. Previous work on boundary extraction is given in Section 2. The 

proposed algorithm is presented in Section 3. Next, experimental results and discussion are shown in Sections 4-5. Finally, the 

conclusion is provided in Section 6.  

 

2. Previous works 

 

 The original boundary extraction algorithm based on particle motion, namely the Particle Motion in a Vector Image Field (PMIVF) 

[4, 5], utilizes two orthogonal vector fields: the edge vector field (EVF), 𝑒 = −
𝜕𝑃

𝜕𝑥
𝑖̂ +

𝜕𝑃

𝜕𝑦
𝑗̂, forcing the particle to travel along object 

edges and the normal compressive vector field (NCVF), 𝑛⃗⃗ =
1

𝐶
∇𝑃 ∙ ∇𝑃2, forcing the particle to stick to object edges, to drive the 

particle and obtains particle trajectories as the extracted boundaries. These two vector fields have their unique features in which vectors 

in 𝑒 form currents flowing around object edges while vectors in 𝑛⃗⃗ are orthogonal to the closest object edges. Using 𝑒 and 𝑛⃗⃗ as driving 

forces, the consecutive particle position is given by 

 

𝑃⃗⃗𝑘+1 = 𝑃⃗⃗𝑘 + 𝛼𝑒𝑘 + 𝛽𝑛⃗⃗𝑘                                                                                                                                                                                                (1) 

 

 where 𝑃⃗⃗𝑘 is the kth particle position vector; 𝑒𝑘 and 𝑛⃗⃗𝑘 are, respectively, edge vector and normal compressive vector, interpolated 

at the kth particle position; 𝛼 and 𝛽 are tangential and normal stepping factors respectively. 

The PMVIF algorithm is simple, effective and provides continuous extracted boundaries. In addition, by using polynomial 

interpolation, the extracted boundary in Equation 1 can be achieved at subpixel resolution. However, the main drawback of the original 

method is that it cannot be applied to a color/multichannel image since all vector fields are computed from partial derivative operations 

that are defined only for a scalar field. 

 In order to overcome this limitation, W. Phornphatcharaphong and N. Eua-Anant [8] proposed a new scheme, namely the particle 

motion in a vector image field derived from local color distance images (PMLCD), to compute the normal compressive and edge vector 

fields of a color/multichannel image. A local color distance image 𝐿𝐶𝐷(𝑥 − 𝑖, 𝑦 − 𝑖) is defined as an image patch centered at Pixel 

(𝑖, 𝑗) in which the value of each pixel is the distance in the color space between Pixel (𝑥, 𝑦) and Pixel (𝑖, 𝑗). Later, the collection of the 

center-to-centroid vectors of all local color distance images, i.e, 

 

𝑛⃗⃗(𝑖, 𝑗) = [
𝑛𝑥(𝑖, 𝑗)

𝑛𝑦(𝑖, 𝑗)
] =

1

𝐶

[
 
 
 
 ∑∑(𝑥 − 𝑖) ∙ 𝐿𝐶𝐷(𝑥 − 𝑖, 𝑦 − 𝑗)

𝑦𝑥

∑∑(𝑦 − 𝑗) ∙ 𝐿𝐶𝐷(𝑥 − 𝑖, 𝑦 − 𝑗)

𝑦𝑥 ]
 
 
 
 

                                                                                                                              (2) 

 

where 𝐶 is a normalization factor making 𝑚𝑎𝑥|𝑛⃗⃗| = 1, is used as the new normal compressive vector field. 

 Figure 1 illustrates an example of 𝑛⃗⃗ obtained Equation (2) that possesses the normal compressive property in which all vectors 

point to the nearest edges. In other words, a direction of a vector on one side of the object is always opposite to that of a vector on 

another side of the object. 

 For the edge vector field, 𝑒 used in the PMVIF method is derived from a Hamiltonian gradient vector field which cannot be applied 

to a multichannel image. Phornphatcharaphong and Eua-Anant proposed a linearization technique, based on the number base system 

[8], to transform an original multichannel image into a scalar auxiliary image 𝐴𝑢𝑥(𝑖, 𝑗). Finally, the edge vector field 𝑒 is given by 

 

𝑒(𝑖, 𝑗) = [
𝑒𝑥(𝑖, 𝑗)

𝑒𝑦(𝑖, 𝑗)
] =

1

𝐶

[
 
 
 
 −∑∑(𝑦 − 𝑗) ∙ 𝑠𝑖𝑛𝑔(𝐴𝑢𝑥(𝑥, 𝑦) − 𝐴𝑢𝑥(𝑖, 𝑗)) ∙ 𝐿𝐶𝐷(𝑥 − 𝑖, 𝑦 − 𝑗)

𝑦𝑥

∑∑(𝑥 − 𝑖) ∙ 𝑠𝑖𝑛𝑔(𝐴𝑢𝑥(𝑥, 𝑦) − 𝐴𝑢𝑥(𝑖, 𝑗)) ∙ 𝐿𝐶𝐷(𝑥 − 𝑖, 𝑦 − 𝑗)

𝑦𝑥 ]
 
 
 
 

                                                                  (3) 

 

where 𝐶 is a normalization factor making 𝑚𝑎𝑥|𝑒| = 1. 

 Figure 2 illustrates an example of 𝑒 obtained from Equations (3) where edge vectors form currents flowing around object edges. 

This new computing scheme, applicable to both scalar and multichannel images, has enabled the particle-motion based boundary 
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extraction algorithm to be applied to all image types. Nevertheless, the weak point of the boundary extraction algorithms based on 

particle motion is that the processing time is mainly consumed by the particle trajectory tracking step. These algorithms sequentially 

tracking particle positions step-by-step can be slow in cases where images have many objects or noisy images have many spurious 

edges. In order to accelerate the boundary extraction process, the boundary tracking process can be substituted by the swift raster scan 

method utilizing the unique property of the normal compressive vector field, described in the next section. 

 

  

 

(a) 

 

(b) 

 

Figure 1 (a) RGB Color image example, (b) 𝑛⃗⃗ obtained using Equation 2 

 

 
 

 

Figure 2 Example of obtained using Equation (3) 

 

3. The proposed fast edge detection algorithm 

 

 As mention earlier, edge tracking is a time consuming process where a sequential boundary extraction computer program can track 

only one edge at a time. Moreover, in Equation 1, if a tangential stepping factor 𝛼 is small, a particle will need several steps in order 

to travel across each edge pixel resulting in unnecessary lengthy computation time. On the other hand, as demonstrated in Figure 1b, 

in the normal compressive vector field 𝑛⃗⃗, all vectors near object edges always point to the nearest edges. This phenomenon can be 

reflected by negative divergence of the field. Therefore, in this paper, some prominent edges can be obtained without requiring the 

boundary extraction process simply by detecting pixels of 𝑛⃗⃗ having large negative divergence. Afterward, the obtained results may 

contain discontinuous edges which can be corrected by applying the boundary extraction algorithm to the remaining undetected edges.  

 

3.1 The overall method 

 

 Figure 3 displays the overall block diagram of the proposed method. First, a color image is filtered using a smoothing filter to 

reduce noise. Next, 𝑛⃗⃗ and 𝑒 are computed, using Equations 2 and 3 respectively, followed by calculating ∇ ∙ 𝑛⃗⃗. Later, the fast edge 

detection algorithm, based on the negative divergence, is performed to obtain an edge map. Finally, the obtained edge detection result 

is improved by connecting discontinuous edges by using the PMLCD algorithm. 

 

3.2 Divergence estimation 

 

 Divergence is a vector operator performing on a vector field representing the density of the outward flux of a vector field at a given 

point, defined in a 2-dimensional space as ∇ ∙ 𝐹⃗ =
𝜕𝐹𝑥

𝜕𝑥
+

𝜕𝐹𝑦

𝜕𝑦
. In other words, divergence measures the quantity of the vector field which 

diverges from a point (positive divergence) or converges to the point (negative divergence) as demonstrated in Figure 4. For a discrete 

vector field 𝑛⃗⃗, divergence of 𝑛⃗⃗ can be estimated as follows: 
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∇ ∙ 𝑛⃗⃗(𝑖, 𝑗) =
1

𝐶
∑ (𝑥 − 𝑖) ∙ 𝑛𝑥 + (𝑦 − 𝑗) ∙ 𝑛𝑦

(𝑥,𝑦)∈𝑁(𝑖,𝑗)

                                                                                                                                              (4) 

 

where (𝑥, 𝑦) is a pixel inside the neighboring area 𝑁(𝑖, 𝑗) of a pixel (𝑖, 𝑗) and 𝐶 is a normalization factor making 𝑚𝑎𝑥|∇ ∙ 𝑛⃗⃗| = 1. 

Figure 5 illustrates an example of 𝑛⃗⃗ and ∇ ∙ 𝑛⃗⃗ computed using Equations 2 and 4 respectively. As seen in Figure 5a, all vectors in 𝑛⃗⃗ 

always point to the nearest edges forming the “compression” characteristic. In other words, the normal compressive vectors near object 

edges always converge to the closest edges resulting in a strong negative divergence at the object boundaries, as demonstrated on 

Figure 5b. Hence, strong negative divergence of 𝑛⃗⃗ can be used as a criterion for screening candidates of edge pixels. Furthermore, the 

directions of 𝑛⃗⃗ at edge pixels on one side of the edge are opposite to those on the opposite side of the edge. Therefore, to pinpoint 

exactly the locations of object edges, pairs of adjacent pixels, having large negative values of ∇ ∙ 𝑛⃗⃗ and 𝑛⃗⃗ having opposite direction to 

its counterpart, can be selected as boundary pixels. 

 

 
 

Figure 3 Block diagram of the proposed algorithm 

 

  
 

(a) 

 

(b) 

 

Figure 4 Divergence of a vector field: (a) positive divergence and (b) negative divergence 

 

  
 

(a) 

 

(b) 

 

Figure 5 (a) 𝑛⃗⃗ and (b)  ∇ ∙ 𝑛⃗⃗ obtained using Equation 4 
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3.3 Fast edge detection based on negative divergence of 𝑛⃗⃗ 

 

 To exploit the idea described above, in this research, the algorithm for fast edge detection based on negative divergence is proposed. 

First, candidates of edge pixels are selected from pixels having the negative values of divergence ∇ ∙ 𝑛⃗⃗ larger than a predefined 

threshold 𝑇. Such pixels represent the areas of strong edges. Nevertheless, this threshold-based method normally yields multiple-pixel-

wide edges which are undesirable. In order to locate object edges more precisely, another feature of 𝑛⃗⃗ is used. As seen in Figure 5a, 

since the vectors 𝑛⃗⃗ in the proximity of object edges always converge to the closest edges, the directions of vectors 𝑛⃗⃗ inside the object 

are opposite to those on the background side. This phenomenon can be reflected by the negative value of dot product between vectors 

𝑛⃗⃗ on the opposite sides of the object. Practically, for a 2-dimensional discrete image, dot products between 𝑛⃗⃗ at adjacent pixels in both 

horizontal and vertical directions are evaluated for locating edge pixels. In summary, the pseudo code for the proposed fast edge 

detection is as follows: 

 

For a given pixel(𝑖, 𝑗) with −∇ ∙ 𝑛⃗⃗(𝑖, 𝑗) > 𝑇 

 

𝐼𝑓 ∙ 𝑛⃗⃗(𝑖, 𝑗) ∙ 𝑛⃗⃗(𝑖, 𝑗 + 1) < 0 𝑡ℎ𝑒𝑛 𝑚𝑎𝑟𝑘 𝑃𝑖𝑥𝑒𝑙𝑠 (𝑖, 𝑗) 𝑎𝑛𝑑 (𝑖, 𝑗 + 1) 𝑎𝑠 𝑒𝑑𝑔𝑒 𝑝𝑖𝑥𝑒𝑙𝑠

𝐼𝑓 ∙ 𝑛⃗⃗(𝑖, 𝑗) ∙ 𝑛⃗⃗(𝑖 + 1, 𝑗) < 0 𝑡ℎ𝑒𝑛 𝑚𝑎𝑟𝑘 𝑃𝑖𝑥𝑒𝑙𝑠 (𝑖, 𝑗) 𝑎𝑛𝑑 (𝑖 + 1, 𝑗) 𝑎𝑠 𝑒𝑑𝑔𝑒 𝑝𝑖𝑥𝑒𝑙𝑠
                                                                                     (5) 

 

 The advantage of this algorithm is that it can be performed swiftly in a raster scan manner. Figure 6d illustrates the edge detection 

result of a color image obtained using the proposed algorithm where most prominent edges are detected. 

 

  
 

(a) 

 

 

(b) 

 

  
 

(c) 

 

(d) 

 

Figure 6 Fast edge detection result: (a) a color image from the BSDS500 data set, (b) |𝑛⃗⃗| , (c) −∇ ∙ 𝑛⃗⃗(𝑖, 𝑗) and (d) the edge map obtained 

using the proposed fast edge detection algorithm. 

 

3.4 Connecting discontinuous edges 

 

 Although the proposed method can rapidly extract strong edges, the obtained edge map still contains several undesirable 

discontinuous edges, especially at object corners, as indicated by the end points of broken edges in Figure 7a. In order to connect 

discontinuous edges, the PMLCD algorithm [8] is subsequently employed for extracting the remaining undetected edges using the end 

points of broken edges, shown in Figure 7a, as the starting points of the particle trajectories. In the PMLCD algorithm, the particle 

motion expressed by Equation 1, containing an edge vector field forcing the particle to move along an object edge, will extend the 

discontinued boundaries to reach other extracted edges resulting in the completely closed boundaries as shown in Figure 7b. Since 

most dominant edges are already detected by using the previous fast edge detection algorithm, only a fraction of edge detection results 

are obtained using the PMLCD boundary extraction algorithm. Hence, the overall computational time for boundary extraction is 

drastically reduced. 
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(a) 

 

(b) 

 

Figure 7 (a) End points of broken edges used as starting points for the boundary extraction process (b) The complete boundary 

extraction result. 

 

4. Experimental results 

 

 In this paper, the BSDS500 dataset [26] containing natural images such as humans, animals, plants, nature, buildings, etc., has been 

used as the benchmark dataset. The BSDS500 dataset consists of a training set of 200 images, a testing set of 200 images, and a 

validating set of 100 images. The ground-truth boundaries are hand-drawn by four different human subjects. The parameters involved 

in the proposed method consist of the radius 𝑅 of a circular moving window for computing 𝑛⃗⃗, 𝑒and ∇ ∙ 𝑛⃗⃗ using Equations 2, 3 and 4 

respectively, the threshold value 𝑇 for comparing −∇ ∙ 𝑛⃗⃗ in the formula 5, 𝛼 and 𝛽 for the boundary extraction process, based on the 

particle motion expressed by Equation 1. 

 

4.1 Selection of T 

 

 Selection of a threshold is still a challenging problem in many edge-based edge detection techniques [2, 5, 8]. In the proposed 

method, the threshold value T applied to ∇ ∙ 𝑛⃗⃗ for selecting strong edge pixels is a crucial factor affecting the result. Figure 8 shows the 

extracted results obtained using various values of T. As seen in Figure 8(b), if the value of T is too high, more strong edges are missed. 

In contrast, if the value of T is too low, more spurious edges are detected as seen in Figure 8(d). 

 

  
 

(a) 

 

 

(b) 

 

  
 

(c) 

 

(d) 

 

Figure 8 Effect of T on extracted boundaries: (a) original image results obtained using (b) T=0.4, (c) T=0.02 and (d) T=0.001.  
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Figure 9 No of edge pixels and starting points vs T 

 

 Figure 9 displays graphs between no. of edge pixels and starting points obtained during the fast edge detection process versus T of 

the image in Figure 8(a). As T decreases from 0.2, both no. of edge pixels and starting points increase steadily. Until the value of T 

reaches the points around T=0.01, the curves start to climb rapidly indicating that a lot of spurious edges have occurred in the results. 

To investigate the appropriate value of T, 100 images from the BSDS500 database were tested to determine the optimum T for each 

image that delivers the highest F-measure score compared to its ground-truths. Figure 10 shows the histogram of the optimum T 

obtained from the experiment where 95% of the optimum values of T fall within the range of 0.003-0.12. 

 

 
 

 

 

 

Figure 10 Histogram of the optimum T providing the highest F-measure score of 100 images from the BSDS500 database. 

 

 As seen, the optimum T varies differently, image by image, depending on details in each image. In order to avoid detecting spurious 

edge pixels (over segmentation) or missing important edges (under segmentation), the values of T used in this paper are obtained by 

adjusting T between 0.003-0.12 to achieve the highest F-measure score according to the ground-truths of each image. Examples of the 

boundary extraction results obtained using the proposed method are shown in Figures 11-13. 
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Figure 11 From top to bottom: original images, ground-truths, fast edge maps obtained using 𝑅= 2, 𝑇= 0.05, 𝛼=0.5, 𝛽=0.1 and the 

complete results. 
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Figure 12 From top to bottom: original images, ground-truths, fast edge maps obtained using 𝑅= 2, 𝑇= 0.02, 𝛼= 0.5, 𝛽= 0.1 and the 

complete results. 
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Figure 13 From top to bottom: original images, ground-truths, fast edge maps obtained using 𝑅= 2, 𝑇= 0.07, 𝛼= 0.5, 𝛽= 0.1 and the 

complete results. 

 

4.2 Performance evaluation 

 

 For performance evaluation, 100 images from the BSDS500 dataset for segmentation algorithm ranking [27] are used. Figure 14 

shows examples of image segmentation results along with F-measure (recall, precision) obtained using four boundary detectors and 

the proposed method. Three performance indicators [12]: the best F-measure on the data set for fixed scale (ODS), the aggregate F-

measure on the dataset for the best scale in each image (OIS) and average precision (AP) of seven algorithms are provided in Table 1. 

The average computation times of these algorithms, performed using MATLAB codes running on a computer with an Intel Core i7 

CPU (2.5GHz) with 8GB of RAM are given in Table 2. As seen, while the segmentation performance of the proposed algorithm is 

comparable to, or slightly better than, those of other methods, the obvious advantage of the proposed algorithm is that its computation 

time is much faster. Among the methods based on particle motion, the average computation time of the proposed algorithm is faster 

than those of PMVIF [5] and PMLCD [8] by factors of 1.93 and 18.93 respectively. 
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Figure 14 From top to bottom: examples of validating images, ground-truths, results obtained using Xiaofeng et al. [10], Arbelaez et 

al.[12], Maire et al. [26], Ren [28], and the proposed method. 

  

Table 1 Performances of low-level boundary extraction algorithms evaluated using the BSDS500 dataset. 

 

Methods ODS OIS AP 

Human 0.80 0.80 - 

Canny [2] 0.60 0.63 0.58 

Graph-Based [29] 0.61 0.64 0.56 

Mean Shift [30] 0.64 0.68 0.56 

NCuts [31] 0.64 0.68 0.45 

PMVIF[5] 0.58 0.62 0.54 

PMLCD [8] 0.61 0.64 0.55 

Proposed method 0.61 0.64 0.60 
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Table 2 Average computational times of low-level boundary extraction algorithms tested using the BSDS500 dataset performed using 

MATLAB codes run on an Intel Core i7 CPU (2.5GHz) with 8GB of RAM. 

 

Methods Image type Computational time (s) 

Canny [2] Grayscale 0.040816385 

PMVIF[5] image 0.078083054 

Graph-Based [29]  10+ 

Mean Shift [30] Color 3.141358 

NCuts [31] image 10+ 

PMLCD [8]  0.76450303 

Proposed method  0.040385 

 

5. Discussion 

 

 When looking into details in Table 2, both the graph-based [29] and NCuts [31] methods employ the time-consuming graph 

searching techniques that literally merge pixels that match the criteria into regions resulting in the longest computation times. Also, the 

mean shift algorithm [30] estimates the density function of pixels in the feature space by iteratively computing centers of clusters of 

pixel attributes using a kernel function as weights. Such an approach requires several rounds of computation to allow the centers of 

clusters to converge to actual means before the data can be taken into account resulting in a long computation time. Due to their long 

computation time, these methods are hence impractical for real-time implementation. On the other hand, edge tracking methods, i.e., 

Canny [2], PMVIF [5] and PMLCD [8], search for edge pixels only in the transition areas instead of searching pixels in the whole 

image and hence significantly reduce computation times. Compared to Canny and PMVIF algorithms, PMLCD and the proposed 

method suffer the high overhead preprocessing computation cost for computing local color distance images while Canny and PMVIF 

methods, considering an image as a monochrome image, need only gradient information which can be quickly estimated by using 

spatial filtering with appropriate kernels.  Nevertheless, since edge tracking process, used in Canny, PMVIF and PMLCD, is a 

sequential process that requires prior knowledge of previously extracted edge pixel location, only one edge can be extracted at a time. 

In contrast, in the proposed method, finding adjacent pairs of pixels having negative values of dot products between the normal 

compressive vectors can be performed in parallel without requiring any prior knowledge about edge pixel locations. Thus, strong edge 

detection using the proposed method can be swiftly conducted resulting in less overall computation time. 

 

6. Conclusion 

 

 The method presented in this paper utilizes the unique normal compressive property of NCVF to allow fast edge detection to be 

performed. The negative divergence of the normal compressive vector field is used as the indicator for screening areas of object edges. 

Strong edge pixels are later pinpointed by using the negative dot products between the normal compressive vectors at pairs of adjacent 

pixels which can be rapidly calculated by a raster scan manner. Most strong edges are obtained during the fast edge detection step. 

Only a fraction of weak edges, mostly at object corners, remain undetected resulting in discontinuous edges. Finally, the discontinuous 

edges are extended by using the PMLCD algorithm to achieve completely closed boundaries.  Image segmentation experiments were 

conducted using the BSDS500 benchmark dataset. Segmentation performance was measured using the F-measures for ODS and OIS, 

average precision and computation time. It was shown that the proposed algorithm provided results comparable to those of well-known 

methods, while the average computation time is drastically reduced when compared to that of the particle motion based PMVIF and 

PMLCD methods. Moreover, the computation of NCVF and EVF, based on local color distance images proposed in the PMLCD [8], 

allows the method to be applicable to all types of images. 
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