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Abstract 
 

Drought has extensively affected Thailand because agriculture is an important source of the country’s income. Upper Nan River Basin 

(U-NRB) is an important basin for agriculture in Thailand. This research studies future drought hazard in U-NRB under climate and 

land use change projection by considering into three future period: 2020s (2011-2040), 2050s (2041-2070) and 2080s (2071-2100). 

This study analyzed the drought hazard under three parameters that are the standardized precipitation-evapotranspiration index (SPEI), 

Streamflow Drought Index (SDI), and ground water yield. The three Regional Climate Models (RCMs) are used to compute and figure 

out the SPEI under two Representative Concentration Pathway (RCP4.5 and 8.5). The SDI is calculated from future streamflow data 

which obtain from hydrological model. The weighting factors of each drought parameter are efined with Analytic Hierarchy Process 

(AHP). SPEI has more significant effect than SDI and ground water yield. Moreover, the drought period depends on standing shortage 

of rainfall at 1, 3, and 6 months. The future drought hazard maps are displayed as drought hazard levels which are very low, low, 

medium, and high. The results found that SPEI1 and SPEI3 under RCP4.5 and 8.5 change from very low to low, low to medium and 

medium to high but they do not change much in 2050s for RPC4.5. For SPEI6, the results show that drought hazard level has trended 

to decrease severity under RCP4.5 both in 2050s and 2080s but the drought hazard level under RCP8.5 has trended to increase severity 

as medium and high in 2050s and 2080s.  Therefore, Most of the areas in U-NRB are low and medium hazard level in 2050s. Whereas, 

medium and high hazard levels are found in the U-NRB in 2080s. 
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1. Introduction 

 

 The Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC) has given that the climate and land 

use change are factors that contribute to the changing hydrological cycle and probably to be severe in the future [1]. This is the cause 

of flood and drought disasters in many regions around the world [2, 3]. Currently, Thailand is a country experiencing increasing severity 

of flood and drought disasters every year and is expected to be more serve in the future. In the past five years, extreme drought disaster 

occurred in Thailand that has affected the agricultural production, which has lost billions bath. U-NRB is one the basin which is 

vulnerable drought problem in future. 

 There are many previous researches about climate change impact on water cycle under different greenhouse gas emission level    

[4, 5]. These studies found that rainfall and temperature were factors affecting streamflow in basin. In addition, the climate change of 

streamflow depends on the land use change [6, 7]. HEC-HMS is one the hydrological model which is widely used for studying climate 

change impact on streamflow [8, 9]. The streamflow is predicted under climate and land use change projections in U-NRB. For studying 

drought hazard, previous studies [10-13] indicated that the standardized precipitation evapotranspiration index (SPEI) is more able to 

reflect the impact of drought on agriculture and suitable for short- and long-term drought-monitoring. SPEI combines precipitation and 

potential evapotranspiration. Moreover, the Stream Drought Index (SDI) is widely used to study drought hazard [14, 15]. Therefore, 

this study objectives to study the climate and land use change for evaluating impacts on the hydrological drought hazard in U-NRB 

based on the rainfall and evapotranspiration under climate change condition (SPEI and SDI) and ground water yield. 

 

2. Materials and methods 

 

2.1 Study area  

 

The U-NRB is one of sub-basins of the greater Chao Phraya basin. The U-NRB is located in Northern Thailand which covers 

latitude 17°42'12"-19°37'48" N and longitude 100°06'30"-101°21'48" E as shown in Figure 1. The elevation ranges between 7 to 2,061 

meters above mean sea level. The lower part of U-NRB is Sirikit Dam with a capacity of 9,500 million cubic meters. The catchment 

area of U-NRB is 13,130 km2 [16] that includes 65% of forest area, 31% of agricultural area and 4% of water body and built-up area. 

In this basin, field crops and rice are the dominant products in agriculture sector.  The tropical climate of U-NRB has three seasons: a 
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rainy season (Jun-Oct), a winter season (Nov-Feb) and a summer season (Mar-May). The average maximum, minimum temperatures 

and rainfall of U-NRB are 36.6℃, 15.3℃ and 1,371 mm, respectively. 

 

 
 

Figure 1 Location of study area in the Upper Nan River Basin (U-NRB), Thailand 

 

2.2 Input data 

 

 The data of this study include the meteorological data and groundwater discharge data that obtained by Thai Methodological 

Department, Royal Irrigation Department, and Department of Groundwater Resources. The daily rainfall, minimum and maximum 

temperatures are the observed meteorological data for method of bias correction in order to consider standardized precipitation 

evapotranspiration index (SPEI). Whereas, groundwater discharge data were gauged by groundwater wells in this and surrounding 

basin. Moreover, ACCESS-CSRO-CCAM, CNRM-CM5-CSIRO-CCAM and MPI-ESM-CSIRO-CCAM under Representative 

Concentration Pathways (RCP4.5 and 8.5) are regional climate models which were used as data for future climate prediction. 

 

3. Methodology  

 

In this study, the methodology can be separated into five steps for drought hazard assessment in U-NRB. The first step is a bias 

correction and projection of daily rainfall, maximum and minimum temperatures by using linear regression method. The second step 

is the evaluation of land use change in the future under conservation and economic scenarios by using spatial dynamic modeling (FLUS 

model). The third step is a calibration and validation of hydrological model (HEC-HMS). Nash-Sutcliffe coefficient (NSE), the 

coefficient of determination (R2), Normalized Root Mean Square Error (NRMSE) and Volume Ratio (Vr) are used as metrics for 

measuring the performance accuracy of this hydrological model. The fourth step is an analysis the drought index. Three drought indexes 

were analyzed, namely standardized precipitation-evapotranspiration index (SPEI), streamflow drought index (SDI) and ground water 

yield. The last step is the future drought hazard map prediction into three period: near future (2020s), mid future (2050s) and far future 

(2080s) under RCP4.5 and RCP8.5. 

 

3.1 Bias correction for climate data projection 

 

Bias correction method is a process of scaling climate data in order to improve these climate data matching with observed data. In 

this study, the linear scaling was selected to adjust the daily rainfall, maximum and minimum temperature between RCMs data and 

observed data, as this method is a perfect for increasing accuracy of simulated data from previous studies [17-19]. U-NRB covers 6 

intersects which are inaccurate and insufficient for the simulated climate characteristics. The linear scaling equations (1) and (2) were 

used for adjustment and fitting of the historical and simulated rainfall data of RCMs with the observed rainfall data. For maximum and 

minimum temperature, data of RCMs were adjusted and fitted with observed temperature data by using the equations (3) and (4)           

[4, 5]. Moreover, the dispersion and central tendency were examined for accuracy of the data with SD and mean value. 

Rainfall correction formulas:  
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Temperature correction formulas: 
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 Where, P is rainfall, T is temperature, d is daily unit, 𝜇𝑚 is monthly unit, obs is observed data, his and sim are historical and 

simulated RCMs data respectively, and ′ is corrected value. 

 

3.2 Land use change model 

 

The land use change model as mentioned in this study is Future Land Use Simulation model (FLUS), which is widely used for 

future land use projection [20-22] FLUS model is an integrated spatial model to simulate expected multiple land use scenarios under 

human activities and environment effect. The principle of FLUS model has two components that are multiple cellular automata (CA) 

allocation model and artificial neural network (ANN) algorithm [22]. The multiple CA allocation model is used for simulated future 

spatial land use pattern under various conditions. ANN algorithm is used to process the complex relationship of parameters that affect 

future land use types. The future land use map is simulated under conditions of economic and conservation pattern. In this study, the 

land use change projection from 2020-2100 was defined and evaluated from land use map in 2016 and 2019 of LDD by considering 

the land use types as agriculture, forest, miscellaneous, water body and built-up. The resolution of maps is 30x30 meter. While 

conservation scenario was estimated according to the Thailand Government Strategy on conserving and rehabilitating biological 

diversity to protect and increase forest area. The accuracy of model was assessed by Kappa statistical analysis (K) as shown in equation 

(5). The K has a value range 0 to 1 which 1 means the strong agreement between simulated and observed [5]. 
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 Where, Pr(a) is observed relative agreement amongst all raters and Pr(e) is the hypothetical probability of chance of agreement. 

 

3.3 Hydrological model 

 

 HEC-HMS is hydrological model which is developed by US Army Corps of Engineering [16]. HEC-HMS is widely used because 

it can be simulated runoff both in short and longtime events and it uses common methods [23]. Therefore, HEC-HMS is applied to 

simulate runoff under different climate and land use scenarios in this study. The data and parameters for using the simulation in HEC-

HMS was prepared through HEC-GeoHMS which is extension of HEC-HMS. Infiltration loss method was considered from SCS curve 

number and impervious percentage. Simple canopy and surface storage equations were used to define water detention and surface 

storage, respectively. The surface runoff simulation given time of concentration and storage coefficient computed by Clark unit 

hydrograph equation. The base flow method was defined from streamflow discharge data by using as constant monthly flow data. The 

weighting factor of each weather stations in sub-basin was computed by Thiessen polygon modification method. These method were 

used in HEC-GeoHMS to obtain input data in HEC-HMS. The results from HEC-HMS include daily streamflow discharge from daily 

rainfall data, maximum and minimum temperature. These results were compared with observed data from 1999-2007 for calibration 

and 2008-2017 for validation. Moreover, HEC-HMS were investigated performance by using standard statistical performance indices, 

namely, NSE, the R2, NRMSE and Vr. 

 

3.4 Drought indices 

 

 The Standardized precipitation-evapotranspiration index (SPEI) is an extension of the widely used Standardized Precipitation Index 

(SPI). The SPEI is based on the difference between precipitation and potential evapotranspiration (PET). The drought level was 

classified as five levels: no drought, light drought, moderate drought, severe drought, and extreme drought [13]. The SPEI was analyzed 

considering monthly precipitation during historical period (1950-2010) and three future periods (2020s, 205s0s, and 2080s). The 

Streamflow drought index (SDI) has the same concepts as the SPI, but unlike SPI, the SDI is computed from streamflow series. In this 

study, the streamflow, which is used to calculate SDI, was obtained from HES-HMS. The drought classification of SDI can be divided 

into five levels as well as SPEI. Moreover, the ground water yield was considered for analysis of drought hazard level with Analytical 

Hierarchy Process (AHP). 
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3.5 Determination of drought weighting factors 

 

 In this study, three parameters (SPEI, SDI, and ground water yield) were computed to delineate drought hazard level in U-NRB. 

The SPEI and SDI values were classified into five levels. The ground water yield was separated into four levels. Analytical Hierarchy 

Process (AHP) was classified as five level drought hazard (very low, low, medium, high and very high) for calculating the drought 

weighting factors. For AHP, the rank factors from 1 to 9 levels are determined on relative significant scales. Comparison of two drought 

parameters was also shown by taking no. 1, 5, 7 and 9 which represent as equally, moderately, strongly, very strongly, and extremely 

preferred, respectively. The study found that SPEI has more effective than SDI and ground water yield. After that, the judgment matrix 

is created by using significant scales to weight each parameter. The AHP was determined for the computational weight weights 

accuracy of the drought parameters from using consistency parameters. The equations (6)-(8) show the equation of consistency 

parameters calculation. The equation (9) was used to calculate the drought hazard index. 

 

max

1 1

n n

ij i

i j

a W
 

 
  

 
              (6) 

 

   max / 1CR n n              (7) 

 

/CI CR RI              (8) 

 

 Where CI is the consistency index, CR is the consistency ratio, RI is the random inconsistency index [24], 𝜆𝑚𝑎𝑥 is the Eigen value, 

aij is the judgment matrix data, Wi is the drought parameter weight i, n is the number of factors. 

 

Hazard index = 1 1 2 2 3 3cW c W c W            (9) 

 

Where ci is the scores, and Wi is the weight (W1+W2+W3=1). The ranges of score from 1-100% are defined in accordance with the 

ranges of drought hazard parameter. The values of W1, W2, and W3 are determined according to the relative influence, which are 

achieved from survey and field data, among the SPEI, SDI, and ground water yield (as shown in Table 1). 

 

Table 1 Weighting factor and coefficient of drought hazard factors 
 

No (i) Parameters Drought Hazard Classification Drought Hazard Level ci Wi 

1 SPEI <-2 

-1.50 to -1.99 

-1.00 to -1.49 

-0.01 to -0.99 

>0 

Extremely dry 

Severely dry 

Moderately dry 

Near normal 

Wet 

1.00 

0.80 

0.60 

0.40 

0.20 

0.63 

2 SDI <-2 

-1.50 to -1.99 

-1.00 to -1.49 

-0.01 to -0.99 

>0 

Extremely dry 

Severely dry 

Moderately dry 

Near normal 

Wet 

1.00 

0.80 

0.60 

0.40 

0.20 

0.26 

3 Ground water yield 

(𝑚3/ℎ𝑟) 
<2 

2 to 10 

10 to 20 

>20 

Very high 

high 

Moderate 

Low 

1.00 

0.75 

0.50 

0.25 

0.11 

 

4. Results and discussion 

 

4.1 Climate bias correction and projection 

 

 In this study, the average daily rainfall, maximum and minimum temperatures from three RCMs, which are ACCESS, CNRM, and 

MPI, were projected the future climate under RCP4.5 and 8.5 in U-NRB. The six weather stations of TMD in U-NRB including 330201, 

331201, 331301, 331401, 331402, and 351201 were used as baseline rainfall and temperatures to adjust in bias correction method 

(linear scaling). The mean and standard deviation (SD) were implemented to compare between simulated and observed climate 

characteristics as shown in Table 2. The mean and SD values were considered the dispersion measurement and central tendency of 

baseline and three RCMs. The results found that the rainfall data of CNRM has the higher accuracy and precision than ACCESS and 

MPI because the CNRM mean and SD values were relatively close to baseline values in almost all TMD stations. For the maximum 

and minimum temperatures, the mean and SD values of three RCMs were quite near the baseline values in all TMD stations. The input 

data of hydrological model for future streamflow projection was used as average daily rainfall, maximum and minimum temperatures 

from three corrected RCMs under RCP4.5 and 8.5. The data average method can increase the accuracy of predicted data and decrease 

the central tendency. 

 The results of future climate projection of station 331301 in U-NRB is discussed in this study. Table 3 shows the rainfall, maximum 

and minimum temperatures projection with different RCPs in near 2020s (2011-2040), mid 2050s (2041-2070), and far 2080s (2071-

2100) future at Nan Agricultural Meteorological Station (331301). The results of projection indicated that the rainfall projection on 
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2020s, 2050s and 2080s under RCP4.5/8.5 have changed from 341-407 (increasing +19.35%) / 377-412 (+9.28%) mm (summer), 933-

871 (decreasing -6.65%) / 982-833 (-15.17%) mm (rainy), 33-35 (+6.06%) / 28-41 (+46.43%) mm (winter), and 1,308-1,313 (+0.38%) 

/ 1,387-1,286 (-7.28%) mm (annual), respectively. Moreover, the maximum and minimum temperatures projection of both RCPs 

showed a slight increase of about 2-3℃ from 31-32/31-34℃ and 20-21/20-23℃, respectively. 

 

Table 2 Performance of bias correction method of three RCMs 

 

Station ID 330201 331201 331301 331401 331402 351201 

 Mean 

(mm) 

SD 

(mm) 

Mean 

(mm) 

SD 

(mm) 

Mean 

(mm) 

SD 

(mm) 

Mean 

(mm) 

SD 

(mm) 

Mean 

(mm) 

SD 

(mm) 

Mean 

(mm) 

SD 

(mm) 

Rainfall 

Baseline 

ACCESS 

CNRM 

MPI 

3.04 

3.12 

3.02 

3.13 

9.62 

7.37 

7.70 

6.80 

3.44 

3.56 

3.72 

3.42 

9.94 

8.53 

9.94 

9.17 

3.44 

3.58 

3.95 

3.69 

9.92 

8.73 

9.63 

9.18 

3.89 

4.09 

4.10 

3.81 

10.93 

10.48 

12.53 

10.51 

4.91 

4.81 

4.50 

4.58 

12.23 

10.65 

11.78 

12.26 

3.88 

3.85 

4.06 

3.90 

11.53 

7.27 

10.06 

8.84 

Maximum temperatures 

Baseline 

ACCESS 

CNRM 

MPI 

32.84 

33.03 

33.01 

33.04 

3.31 

3.81 

3.78 

3.61 

32.50 

32.70 

32.68 

32.70 

3.42 

3.88 

3.86 

3.83 

31.58 

30.31 

30.25 

30.29 

3.48 

3.89 

3.87 

3.80 

31.67 

31.87 

31.84 

31.86 

3.34 

3.94 

3.91 

3.88 

31.21 

32.30 

31.36 

31.32 

3.87 

4.47 

3.87 

3.69 

33.69 

33.87 

33.87 

33.88 

3.24 

3.57 

3.52 

3.66 

Minimum temperatures 

Baseline 

ACCESS 

CNRM 

MPI 

21.25 

21.45 

21.45 

21.45 

4.11 

4.02 

4.03 

4.02 

20.23 

20.41 

20.41 

20.40 

4.43 

4.35 

4.37 

4.39 

19.39 

18.65 

18.62 

18.63 

4.58 

4.09 

4.13 

4.12 

19.80 

19.98 

19.98 

19.97 

4.71 

4.59 

4.61 

4.63 

19.61 

20.53 

19.69 

20.00 

4.16 

4.35 

4.37 

4.17 

22.03 

22.23 

22.23 

22.22 

3.45 

3.49 

3.50 

3.58 

 

Table 3 Rainfall, maximum and minimum temperatures projection under RCP4.5 and 8.5 in three period future at Nan Agricultural 

Meteorological Station (331301) 

 

Season 2020s 2050s 2080s 

RCPs 4.5 8.5 4.5 8.5 4.5 8.5 

Rainfall 

Summer 340.97 377.39 423.72 392.47 407.23 412.21 

Rainy 933.34 981.80 885.73 913.19 871.28 832.72 

Winter 33.33 28.30 28.97 28.22 34.81 41.27 

Annual 1,307.63 1,387.49 1,338.42 1,333.88 1,313.31 1,286.20 

Maximum temperatures 

Annual 31.35 31.41 31.81 32.62 32.41 34.15 

Minimum temperatures 

Annual 19.59 19.73 20.16 20.89 20.66 22.53 

 

4.2 Land use projection 

 

The future land use projection in U-NRB was simulated under conditions of economic and conservation pattern. The last land use 

trend was considered from land use maps in 2016 and 2019. This study was projected the land use map in 2020 which was compared 

with observed land use based on Kappa statistical analysis (K). The K value is 0.92, which is very highly acceptable and sufficiently 

accurate for future land use projection. Figure 2 shows the projected land use maps in 2040, 2060, 2080, and 2100. The results indicated 

that the largest percentage changes are the forest and agricultural area. While, the built-up area has a very small percentage of change 

and the water body area was unchanged. 

 

4.3 Hydrological model calibration and validation 

 

The HEC-HMS model was used to simulate daily streamflow which was compared with observed data at stations N.1 and N.13a 

during 1999-2007 calibration period and 2008-2017 validation period. The location of stations N.1 and N.13a are in the middle and 

lower parts of U-NRB and upstream of inlet point to Sirikit reservoir. The reliability of this model was evaluated by statistical 

performance parameters, namely, R2, NRMSE, NSE, and Vr. Table 4 shows values of statistical performance parameters during 

calibration and validation periods at N.1 and N.13. The R2, NSE and Vr values should be close to 1 that means the model provides high 

performance. The NRMSE value should be less than 10%. The results show that the all statistical performance parameters during 

calibration period at both stations are satisfactory of value. Whereas, during validation period at both stations show a good agreement 

between simulated and observed data. Besides, Figure 3 displays graphs of comparison between observed and simulated daily 

streamflow at station N.1 and N.13a. These graphs show that the values simulated from HEC-HMS model are consistent with observed 

data during both calibration and validation periods. Therefore, this model can be used to predict future streamflow under different 

climate and land use change scenarios. These results, which are cumulative streamflow per monthly, are used to calculate as SDI value. 
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Figure 2 Projected land use maps in 2040, 2060, 2080, and 2100, respectively 

 

Table 4 Performance of hydrological model (HEC-HMS) 

 

Period Station N.1 Station N.13a 

Calibration Validation Calibration Validation 

R2 0.85 0.79 0.80 0.77 

NRSE 3.29 5.30 6.16 6.85 

NSE 0.78 0.68 0.75 0.67 

Vr 1.12 1.05 1.17 1.22 

 

   
 

Figure 3 Comparison between observed and simulated streamflow with calibration (1999-2007) and validation (2008-2017) periods 

at station N.1 and N.13a, respectively. 
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4.4 Drought hazard assessment 

 

4.4.1 Drought indices determination 

 

 The estimation of SPEI and SDI values are mentioned in this section. This study considered a drought period depending on standing 

shortage of rainfall. The paddy field (rice) can rainfall stand shortage not more than one month. The field crops (cassava, sugarcane, 

and corn) can rainfall stand shortage more than 1-3 months. For fruit crops, they can rainfall stand shortage more than 1-6 months. 

Therefore, SPEI and SDI were evaluated as SPEI1/SDI1, SPEI3/SDI3, and SPEI6/SDI6. The six meteorological stations were applied 

to calculate SPEI and SDI all three scenarios during 1970-2010. Normally, the values of SPEI and SDI range between -3 and 3 [25]. 

This result shows only SPEI1, SPEI3, and SPEI6 values with three time scales which are 2020s, 2050s, and 2080s under RCP4.5 and 

8.5 as shown in Table 5. The SPEI values in 2020s and 2050s are near zero which means near drought condition. Whereas, in 2020s, 

2050s, and 2080s have the negative value which means drought condition. The results of SDI were similar to those of SPEI (show the 

same +/- value). 

 

Table 5 The SPEI1, 3, and 6 values in three future period at six meteorological stations 

 

Station ID 2020s 2050s 2080s 

4.5 8.5 4.5 8.5 4.5 8.5 

SPEI1 

330201 

331201 

331301 

331401 

331402 

351201 

0.09 

0.05 

0.06 

0.08 

0.05 

0.06 

0.21 

0.20 

0.20 

0.30 

0.18 

0.18 

0.04 

0.05 

0.04 

0.01 

0.01 

0.04 

-0.04 

0.02 

0.02 

0.07 

0.05 

-0.03 

-0.09 

-0.06 

-0.06 

-0.07 

-0.04 

-0.07 

-0.15 

-0.20 

-0.19 

-0.34 

-0.22 

-0.13 

SPEI3 

330201 

331201 

331301 

331401 

331402 

351201 

0.12 

0.02 

0.04 

0.04 

0.00 

0.07 

0.27 

0.25 

0.26 

0.36 

0.19 

0.25 

0.03 

0.06 

0.05 

0.02 

0.01 

0.05 

-0.08 

0.02 

0.01 

0.11 

0.10 

-0.05 

-0.09 

-0.02 

-0.04 

-0.03 

0.02 

-0.09 

-0.18 

-0.27 

-0.26 

-0.47 

-0.31 

-0.20 

SPEI6 

330201 

331201 

331301 

331401 

331402 

351201 

0.13 

-0.03 

0.01 

-0.01 

-0.07 

0.10 

0.33 

0.31 

0.34 

0.42 

0.19 

0.33 

0.08 

0.10 

0.10 

0.04 

0.03 

0.10 

-0.12 

0.04 

0.03 

0.15 

0.16 

-0.08 

-0.13 

0.02 

-0.02 

0.03 

0.10 

-0.15 

-0.20 

-0.35 

-0.36 

-0.58 

-0.39 

-0.27 

 

4.4.2 Weighting factor determination 

 

The weights of SPEI, SDI, and ground water yield were computed with AHP by using questionnaire surveying of U-NRB and 

meteorological stations data. These results found that the drought duration SPEI is the most effective against the rice in drought 

duration. Moreover, SPEI has more significant effect than SDI and ground water yield. Table 6 shows the pairwise comparison matrix 

which is normalized weight by setting the sum of each column equal 1 [26, 27]. The weight of SPEI, SDI, and ground water yield are 

0.63, 0.26, and 0.11 respectively as shown in Table 7. The weight can be verified by summation of weight as 1. Besides, the consistency 

parameters, which are Eigen value, consistency ratio and consistency index, used to verify the weighting. The Eigen value must be 

equal to the number of all drought parameters. Whereas, the consistency ratio and consistency index must be close to zero. This study 

shown that Eigen value has equal the number of hazard parameter, which is 3, and the consistency ratio and consistency index are very 

close zero. 

 

Table 6 Pairwise comparison matrix of SPEI, SDI and ground water yield 

 

Drought parameters SPEI value SDI value Ground water yield 

SPEI value 1 3 5 

SDI value 1/3 1 3 

Ground water yield 1/5 1/3 1 

 

Table 7 The normalized weight of SPEI, SDI and ground water yield 

 

Drought parameters SPEI value SDI value Ground water yield Weight (Wi) 

SPEI value 15/23 9/13 5/9 0.63 

SDI value    5/23 3/13 3/9 0.26 

Ground water yield 3/23 1/13 1/9 0.11 

Summation 1.00 1.00 1.00 1.00 
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4.4.3 Drought hazard level prediction 
 

The drought hazard index was computed to create the drought hazard map in U-NRB as shown in Figure 4. The maximum and 

minimum drought hazard indices are 21-48.  Therefore, the drought hazard levels can be separated into four levels which are very low 

(21-27), low (28-34), medium (35-41), and high (42-48). Figure 4(a) shows the paddy field of future drought hazard maps with SPEI1 

under different RCPs (4.5 and 8.5) in 2020s-2080s. It indicated that hazard levels in 2020s for RCP4.5 has changed from very low 

(0.1%) and low (99.9%) hazard level to medium (70%) and high (30%) hazard level in 2080s but it has not change in 2050s. For 

RCP8.5, the very low (0.1%) and low (99.9%) change to medium (70%) and high (30%) respectively during 2020s-2080s. Figure 4(b) 

shows the field crop of future drought hazard maps with SPEI3 under different RCPs (4.5 and 8.5) in 2020s-2080s. This result found 

that the drought hazard map in 2020s under RCP4.5 has changed hazard level from very low (0.1%) and low (99.9%) to very low 

(19%) in 2050s but it has changed as medium (66%) and high (18%) in 2080s. For RCP8.5, the very low and low changed to medium 

(73%) and high (27%) respectively in 2050s and 2080s. Figure 4(c) shows of the fruit crops future drought hazard maps with SPEI6 

under different RCPs (4.5 and 8.5) in 2020s-2080s. The result showed that drought hazard level has tended to decrease severity under 

RCP4.5 both in 2050s and 2080s. Whereas, the drought hazard level under RCP8.5 has trended to increase severity as medium and 

high in 2050s and 2080s. Especially in 2080s, the map was the high hazard level. Therefore, the drought under different RCPs   (4.5 

and 8.5) are more significant in U-NRB in 2020s-2080s for every crops. 
 

5. Conclusions and discussions 
 

The U-NRB future drought hazard assessment was studied for 2020s-2080s. The three RCMs (ACCESS, CNRM, and MPI) were 

biased and used to project the future climate under RCP4.5 and 8.5. The projected future annual precipitation increased 0.38% and 

decreased 7.28% for RCP4.5 and 8.5, respectively. The drought hazard was analyzed under three parameters which are the SPEI, SDI, 

and ground water yield. The SPEI values depend on the cumulative month precipitation under different greenhouse gas emission levels 

which data obtained from results of predicted future climate. While, the SDI values depend on the cumulative streamflow per monthly 

under different greenhouse gas emission levels which obtained from the results HEC-HMS. The SPEI has more significant effect than 

SDI and ground water yield. The drought period depends on standing shortage of rainfall at 1 month for rice, 3 months for field crop, 

and 6 months for fruit crops. The SPEI were evaluated as SPEI1, SPEI3, and SPIE6. The future drought hazard maps were displayed 

as drought hazard levels which are very low, low, medium, and high in 2020s, 2050s, and 2080s under RCP4.5 and 8.5. The SPEI1 

and SPEI3 under RCP4.5 and 8.5 changed from very low to low, low to medium and medium to high but they do not change much in 

2050s for RPC4.5. For SPEI6, the results showed that drought hazard level has trended to decrease severity under RCP4.5 both in 

2050s and 2080s but the drought hazard level under RCP8.5 has trended to increase severity as medium and high in 2050s and 2080s. 

The most of areas in U-NRB are low and medium hazard level in 2050s. Whereas, medium and high hazard level are found areas of 

U-NRB in 2080s. Therefore, the future drought hazard under RCP4.5 and RCP8.5 are more significant in U-NRB in 2020s-2080s for 

every crops. Moreover, this study did not consider the impact of future climate and land use change to groundwater yield. 
 

     
 

     
 

(a) Paddy field of future drought hazard maps (SPEI1) under RCP4.5 and RCP8.5 
 

Figure 4 U-NRB Future drought hazard maps for three future periods 
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(b) Field crops of future drought hazard maps (SPEI3) under RCP4.5 and RCP8.5 

 

     
 

     
 

(c) Fruit crops of future drought hazard maps (SPEI6) under RCP4.5 and RCP8.5 

 

Figure 4 (continued) U-NRB Future drought hazard maps for three future periods 
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