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Abstract 

 

There is a global increase in health awareness. The awareness of changing eating habits and choosing foods wisely are key factors that 

make for a healthy life. In order to design a food image recognition system, many food images were captured from a mobile device but 

sometimes include non-food objects such as people, cutlery, and even food decoration styles, called noise food images. These issues 

decreased the performance of the system. Convolutional neural network (CNN) architectures are proposed to address this issue and 

obtain good performance. In this study, we proposed to use the ResNet50-LSTM network to improve the efficiency of the food image 

recognition system. The state-of-the-art ResNet architecture was invented to extract the robust features from food images and was 

employed as the input data for the Conv1D combined with a long short-term memory (LSTM) network called Conv1D-LSTM. Then, 

the output of the LSTM was assigned to the global average pooling layer before passing to the softmax function to create a probability 

distribution. While training the CNN model, mixed data augmentation techniques were applied and increased by 0.6%. The results 

showed that the ResNet50+Conv1D-LSTM network outperformed the previous works on the Food-101 dataset. The best performance 

of the ResNet50+Conv1D-LSTM network achieved an accuracy of 90.87%. 

 

Keywords: Food image recognition, Deep feature extraction method, Long short-term memory, Convolutional neural network, Spatial 

temporal features 

 

 
1. Introduction 

 
 Overweight and obesity are the most significant factors for chronic diseases such as diabetes and cardiovascular diseases. The 

easiest way to avoid chronic diseases is to monitor and control people’s dietary behavior. The advancement of artificial intelligence 

might help people to monitor and estimate daily calorie intake. Hence, food recognition systems are the most straightforward solution. 

Many systems can recognize several foods based on images. However, when people take a photograph several food characteristics 

(e.g. the shape and decoration of food, brightness adjustment, and non-food objects, called noise food images) are sent to the system 

to compute and predict the food type and calorific content. These issues can be a cause of weaknesses of food imaging systems.  

Computer vision and machine learning techniques are proposed to address the problems mentioned above. Many researchers employ 

computer vision techniques to generate hand-crafted visual features and send robust features to the novel machine learning techniques, 

such as support vector machine (SVM), multilayer perceptron (MLP), random forest, and Naive Bayes techniques [1-3] to classify 

objects [4, 5]. 

 Furthermore, many studies have extracted the robust features, called the spatial features, using convolution neural network (CNN) 

architectures. The greatest benefit of this technique is that we can extract robust features with various CNN architectures. The robust 

features, however, are sent to be classified using traditional machine learning techniques. Additionally, the CNN architecture combined 

with a long short-term memory (LSTM) network has been applied for classification tasks. Nevertheless, a few researchers have invented 

CNN architectures and LSTM networks for food image recognition. In this research, we focus on improving the accuracy performance 

of the food image recognition based on CNN architectures and LSTM networks. 

 The significant contributions of this research are summarized in the following: 

 1. We propose the deep learning framework that combines state-of-the-art ResNet50, which is the convolutional neural network 

(CNN) and long short-term memory (LSTM) network, called ResNet50+Conv1D-LSTM network. This framework can extract robust 

features that are spatial and temporal features, from the food images. Mixed data augmentation techniques are also involved while 

training the CNN model. The data augmentation technique insignificantly increases the performance of food image recognition. 

 2. In these experiments, LSTM and Conv1D-LSTM networks were proposed to create robust temporal features. For the Conv1D 

network, various layers were combined, including zero padding, batch normalization, Convolution 1D, ReLU, batch normalization, 

dropout, and average pooling layers. In the training scheme, batch size, which was the number of training examples, were applied as 

16, 32, and 64. The LSTM network results showed that a batch size of 32 provided a better result than batch sizes of 16 and 64.  
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 Paper Outline. This paper is organized as follows. Section 2 briefly explains deep learning researches in food image recognition 

systems and describes the different deep learning techniques. Section 3 describes the proposed approach for the food image recognition 

system. In Section 4, the experimental settings and the results of the deep learning methods are presented. The conclusion and directions 

for future work are given in Section 5. 

 

2. Literature review 

 

 In this section, we review the research that has applied different techniques to solve image recognition, especially food images.  

 In previous studies, many researchers have proposed using feature extraction methods based on handcrafted methods to extract 

features from images. Novel feature extraction methods such as local binary patterns (LBP) [6], the scale-invariant feature transform 

(SIFT) [7] the histogram of oriented gradients (HOG) [8], the speed-up robust features (SURF) [9] and a bag of visual words (BoVW) 

[10, 11] methods became popular and were proposed in many applications. Also, they achieved high accuracy performance. Secondly, 

the robust features extracted from the novel methods, are then given to machine learning algorithms such as support vector machine 

(SVM) [12], K-nearest neighbor (KNN) [13], and multi-layer perceptron (MLP) for a task of classification. 

 The food image recognition, Anthimopoulos et al. [4] proposed an automatic food recognition system to recognize 11 different 

central European foods. In the food recognition system, the features, namely visual words, are computed from the bag-of-features 

method and the k-means clustering algorithm. Then the linear SVM is used as a classifier. This method obtained a recognition 

performance of 78%. Furthermore, Martinel et al. [14] introduced an extreme learning committee approach. This approach was divided 

into three parts; feature extraction methods, extreme learning committee, and supervised classification. First, various feature extraction 

methods were proposed to extract color, shape, texture, local, and data-driven features. Second, each feature vector was given to the 

extreme learning machine (ELM). Finally, the output from each ELM was sent to the SVM algorithm for classification. The extreme 

learning committee outperformed the state-of-the-art methods on four benchmark food image datasets. 

 Deep learning techniques are becoming increasingly popular in food image recognition. In this section, we describe the research 

that has applied deep learning to solve the image recognition problem, including 1) deep learning for food image recognition and 2) 

deep feature extraction methods. 

 

2.1 Deep learning for food images recognition  

 

 Convolution Neural Networks (CNNs) have been extensively used in food image recognition research. In 2016, Hassannejad et al. 

[15] and Liu et al. [16] used Google’s image recognition architecture Inception. Hassannejad et al. [15] proposed a network composed 

of 54 layers with fine-tuned architecture for classifying food images from three benchmark food image datasets: Food-101, 

UECFOOD100, and UEC-FOOD256. On these datasets, the achieved accuracy was 88.28%, 81.45%, and 76.17%, respectively. Liu 

et al. [16] invented the DeepFood network that modified the Inception module by introducing a 1×1 convolutional layer to reduce the 

input dimension to the next layers. It allows a less complicated network. The accuracy achieved was 77.40% with the Food-101 dataset, 

76.30%, and 54.70% with UEC-FOOD100, and UEC-FOOD256, respectively. In addition, the Inception architecture, the ResNet 

architecture is widely popular for food image recognition. Pandey et al. [17] used ResNet, AlexNet, and GoogLeNet to propose an 

ensemble network architecture. The network consisted of three fine-tuned CNN in the first layer. All of the output was concatenated 

before being fed into ReLU nonlinear activation and passed to a fully connected layer followed by a softmax layer for image 

classification. Aguilar, Bolaños, & Radeva [18] proposed the CNN Fusion methodology, which is composed of two main steps. First, 

training with state-of-the-art CNN models consisting of ResNet and Inception. Second, fusing the CNN outputs using the decision 

template scheme for classifiers fusion. The two proposed methods achieved accuracies of 72.12% and 86.71% with the Food-101 

dataset, respectively. Table 1 summarizes different food classification approaches. The accuracies reported along with the food 

databases used in the evaluation and the underlying CNN architecture. 

 

Table 1 Performance evaluation of classification results on the food datasets using deep learning techniques. 

 

Datasets Architectures Accuracy References 

UEC-FOOD100 [19] DeepFood 76.30 Liu et al. [16] 

InceptionV3 81.45 Hassannejad et al. [15] 

WISeR 89.58 Martinel et al. [20] 

UEC-FOOD256 [21] DeepFood 54.70 Liu et al [16] 

GoogLeNet 63.16 Bolanos and Radeva [22] 

InceptionV3 76.17 Hassannejad et al. [15] 

WISeR 83.15 Martinel et al. [20] 

Food-101 [23] Inception 77.40 Lie et al. [16] 

GoogLeNet 79.20 Bolanos and Radeva [22] 

InceptionV3 88.28 Hassannejad et al. [15] 

Ensemble Net 72.12 Pandey et al. [17] 

CNNs Fusion 86.71 Aguilar et al. [18] 

ResNet152 64.98 McAllister et al. [2] 

WISeR 90.27 Martinel et al. [20] 

 

2.2 Deep feature extraction methods 

 

 Many researchers have focused on extracting features using several CNN architectures, called deep feature extraction [24, 25] that 

have been applied in many image recognition systems. With the deep feature extraction method, the pre-trained models of the state-of-

the-art CNN architectures are employed to train a set of images. Then, the deep features are extracted from the layer before the fully 

connected layer. After that, we can use the deep features as the input vector to a traditional machine learning algorithm, such as SVM, 

KNN, and MLP. Indeed, the state-of-the-art CNN architectures, such as VGG, ResNet, and Inception, have been proposed and widely 

used in the food image recognition system [2, 15]. 
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Table 2 Performance evaluation of classification results on the food datasets using deep feature and machine learning techniques 

 

Datasets Classes Deep feature methods Classifiers Accuracy References 

PFID  7 AlexNet SVM-linear 94.01 Farooq et al. [1] 

PFID  61 AlexNet SVM-linear 70.13 Farooq et al. [1] 

UNICT-FD889 2 AlexNet SVM-sigmoid 94.86 Ragusa et al. [3] 

Food-5K 2 ResNet152 SVM-RBF 99.4 McAllister et al. [2] 

Food-11 11 ResNet152 ANN 91.34 McAllister et al. [2] 

RawFooT-DB 46 ResNet152 ANN 99.28 McAllister et al. [2] 

Food-101 101 ResNet152 SVM-RBF 64.68 McAllister et al. [2] 

 

 To classify the food and non-food images, Ragusa et al. [3] proposed to use three deep feature methods called the Network in 

Network, the AlexNet, and the VGG-s models to extract features and then use a support vector machine (SVM) as a classifier. The best 

performance result was the AlexNet model combined with a binary SVM classifier on the Food-5k dataset. For multi-class food images, 

Farooq & Sazonov [1] proposed the deep feature method called AlexNet to extract features from the PFID food image dataset. This 

method extracts the feature of 4,096, 4,096, and 1,000 channels from three fully connected (FC) layers; FC6, FC7, and FC8. Also, the 

linear SVM technique is applied as a classifier. The results showed that the features extracted from FC6 outperformed features from 

other FC layers. Moreover, McAllister et al. [2] applied ResNet152 and GoogLeNet for deep feature methods performed on five datasets 

consisting of Food-5k, Food-11, RawFooT-DB, and Food-101 dataset. The deep features were then classified using traditional machine 

learning comprising SVM, artificial neural networks, Random Forest, and Naive Bayes. The experimental result with these methods 

had accuracies above 90% on food image datasets, except for the Food-101 dataset that obtained only 64.68% accuracy. A summary 

of food classification using the deep feature methods is shown in Table 2. 

 

3. Proposed approach for the food image recognition system 

 

 This section explains the framework of food image recognition. Two main architectures, convolutional neural network (CNN) and 

long short-term memory (LSTM) network, are proposed to extract the robust features from the food images. Hence, the robust spatial 

and temporal features are extracted from state-ofthe-art ResNet architecture and the LSTM network. The temporal features extracted 

from the LSTM network are transformed into a probability distribution using the softmax function. 

 

 
 

Figure 1 Architecture of our proposed framework for food image classification 

 

 According to our framework, as shown in Figure 1, we examine the transfer learning strategy to train the ResNet architecture. 

Hence, this architecture considers only the color image and the resolution of the images is decided to be 224x224x3 pixels. We also 

normalize all food images to the values between 0 and 1 by dividing the pixel values with 255, which is the maximum value of the 

RGB color. Other schemes are described in the section of the spatial feature extraction method using CNN architecture and temporal 

feature extraction method using LSTM network, as follows. 

 

 
 

Figure 2 Diagram of the deep feature extraction technique. (1) food images are fed to the pre-processing step to resize and normalize. 

In the spatial feature extraction process, (2) food images are trained using state-of-the-art CNN architectures to find weights with low 

validation loss. Then, (3) the spatial features of the food images are extracted according to the best CNN model. 
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 In this section, we propose an effective CNN architecture to extract a robust spatial feature. According to the computation power 

and time, the transfer learning approach is applied in the training scheme, then the pre-trained models of CNN architectures are trained 

on the food image and then examined to discover the best robust spatial feature. As a result, the last pooling layer of the CNN model 

is employed as the spatial feature, as shown in Figure 2. We can also call this method a deep feature extraction technique. 

 To extract the robust spatial features, in this study, we propose state-of-the-art CNNs, VGG16, VGG19, ResNet50, DenseNet201, 

MobileNetV1, and MobileNetV2. An overview of each CNN will now be described. 

 

3.1 Spatial feature extraction using convolutional neural network architecture  

 

3.1.1 VGGNet Architecture 

 

 Simonyan and Zisserman [26] proposed a network to increase the stack of convolutional networks into 16 and 19 weight layers by 

using an architecture with a size of 3x3 pixels convolution filters, called VGGNet. With this network, the input images are the color 

image and are resized to 224x224 pixels resolution. The convolutional layers are downsized from 224x224 pixels to 7x7 pixels. 

Nevertheless, the number of feature maps is increased from 64 to 512 layers. The rectified linear unit (ReLU) is used as the activation 

function. Also, spatial pooling is computed by the max-pooling method with the size of a 2x2 pixel window. Three fully connected 

(FC) layers follow VGGNet. The first two FC layers have 4,096 channels and the last FC layer contains 1,000 channels. The VGGNet 

is designed as a plain network, but still obtained the best performance on many image classification applications, such as remote sensing 

classification [27], and plant recognition [28-30]. 

 

3.1.2 ResNet Architecture 

 

 According to the plain network, the deeper convolutional layers were performed from 34-Layer until 152-layer plain networks 

[31]. Firstly, the color image is resized to 224x224 pixels resolution and employed as the input of the deeper network. Secondly, the 

convolutional layers are divided into five convolutional blocks, namely building blocks. Remarkably, the output of each building block 

is always decreased by half of the input. For example, the output of the first, second, and fifth building blocks are 112x112, 56x56, and 

7x7 pixels resolution, respectively. Finally, the average-pooling method is applied to the last building block and followed by the FC 

layer with 1,000 channels and the softmax function. As a result, the deeper plain network gave a higher error rate on the CIFAR-10 

dataset. 

 

 
 
Figure 3 Illustration (a) a building block and the residual function and (b) a sample of bottleneck network for ResNet 50, 101, and 152. 

 
 According to the higher error rate, He et al. [31] proposed to add the residual network, which is the shortcut connection, to train 

the deeper network, called ResNet. Hence, the shortcut connections are computed using the residual function that allows the network 

to skip two convolutional layers, as shown in Figure 3a). The residual function is calculated by 𝐹(𝑥) = 𝐻(𝑥) − 𝑥 when the feature 

maps of the input and output have identical dimensions. The original function changes to 𝐹(𝑥) + 𝑥 . Furthermore, bottleneck 

architectures are presented when the deeper convolutional layers are implemented as 50, 101, and 152 layers. The bottleneck 

architectures allow the network to skip three convolutional layers, as shown in Figure 3b). Consequently, ResNet obtained a top-5 error 

rate of 3.57% on the ImageNet validation set and showed fast computation compared to the plain network. The ResNet also won the 

ILSVRC-2015 classification task. 

 

3.1.3 DenseNet Architecture 

 

 Huang et al. [32] proposed a dense network called DenseNet architecture. The different depth convolutional layers were 

experimented with consisted of 121, 169, 201, and 264. The result showed that the DenseNet with 264-layer provided the lowest top-

1 error rate on the ImageNet validation set and yielded a better error rate than the ResNet architecture. Also, the parameter of the 

DenseNet is approximately 3-time less than the ResNet. According to the connection of the DenseNet, the network can connect to other 

layers in a feed-forward method. The number of direct connections can be computed using L(L+1)/2, where L is the number of layers.  

 To further improve the DenseNet architecture, the convolutional layers are divided into four blocks, namely dense blocks. In each 

dense block, the bottleneck layers with a size of 1x1 and 3x3 convolution are used to reduce the number of input feature maps. The 

transition layers are combined with the dense blocks 1-3 to reduce the size of the feature maps to the half size of the convolutional 

layer in the dense block. The output size of each block is decreased from 112x112 to 7x7 pixels. As for the classification layer, the 

global average-pooling, FC layer, and softmax are applied. The differences between ResNet and DenseNet architectures are shown in 

Figure 4. 
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Figure 4 Illustration of the difference of the connections between (a) the ResNet and (b) the DenseNet architectures. 

 

3.1.4 MobileNet Architecture 

 

 The lightweight CNN architecture called MobileNet is proposed for mobile and embedded devices [33]. In order to reduce the size 

of the model, the depthwise separable convolution layer, a core layer of the MobileNet, is designed to factorize the standard convolution 

into 3x3 depthwise convolutions and then factorize the depthwise convolution layer into 1x1, called pointwise convolution. Due to 

MobileNet architecture, the depthwise and pointwise convolution layers are always followed by batch normalization (batchnorm) and 

ReLu, as shown in Figure 5a).  

 

 
 

Figure 5 Network architectures of MobileNet. Examples of (a) the depthwise separable convolution and (b) inverted residual and linear 

bottleneck. 

 

 Furthermore, Sandler et al. [34] proposed MobileNetV2 architecture. The new mobile architecture, called inverted residuals and 

linear bottlenecks, is combined with the linear bottleneck layer and inverted residual network. The inverted residuals and linear 

bottlenecks block consist of three layers. First, 1x1 convolution combined with batchnorm and ReLU. Second, depthwise convolution 

combined with batchnorm and ReLU. Third, 1x1 convolution combined with batchnorm and without non-linearity, as shown in Figure 

5b). In MobileNetV2 architecture, the number of operations is decreased, so that is was of small size and low memory usage. A 

summary of the state-of-the-art CNN architectures is presented in Table 3. 

 

Table 3 Summary of the state-of-the-art CNN architectures. 

 

CNN 

architectures 

Parameters 

No. of Conv layer Filter Size Stride Pooling No. of FC layers No. of parameters 

VGG16 13 3 1 Max 3 138M 

VGG19 16 3 1 Max, 3 143M 

ResNet50 49 1, 3, 7 1, 2 Max, Average 1 25.6M 

DenseNet201 200 1, 3, 7 1, 2 Max, Average 1 20.2M 

MobileNetV1 13 1, 3 1, 2 Average 2 4.2M 

MobileNetV2 13 3 1, 2 Average 1 3.2M 

 

3.2 Temporal feature extraction 

 

 In this section, we propose two deep learning networks to extract temporal features, called long short-term memory and Conv1D-

LSTM networks. The detail of deep learning networks is will now be described.  
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3.2.1 Long short-term memory 

 

 Hochreiter & Schmidhuber [35] invented a novel gradient-based method and developed the network based on a recurrent neural 

network (RNN) called a long short-term memory (LSTM) network, as shown in Figure 6. It proposed to address the computational 

complexity, error flow, constraints of the feedforward neural network, and sequence problems of time series data [36, 37]. The LSTM 

network comprised special units that connect to other units and are designed to cope with the sequence of data; video and speech data, 

called memory blocks. Each memory block contained the various functions consisting of the forget gate, input gate, update cell state, 

and the output gate. 

 

 
 

Figure 6 The architecture of the long short-term memory network [35]. 

 

The memory block presented in Figure 6 is calculated as follows; 

 

𝑓𝑡 = 𝜎(𝑤𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)            (1) 

 

𝑖𝑡 = 𝜎(𝑤𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)   

�̌�𝑡 = 𝑡𝑎𝑛ℎ(𝑤𝑐 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)   

𝐶𝑡 = 𝑓𝑡 ∙ 𝐶𝑡−1 + 𝑖𝑡 ∙ �̌�𝑡    

𝑂𝑡 = 𝜎(𝑤𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)   

ℎ𝑡 = 𝑜𝑓 ∙ 𝑡𝑎𝑛ℎ(𝐶𝑡)    

 

 where 𝑓𝑡 is forget gate’s activation vector, 𝑖𝑡 is input/update gate’s activation vector, �̌�𝑡 is cell input activation vector, 𝐶𝑡 is current 

cell memory, 𝑂𝑡 is output gate’s activation vector, ℎ𝑡 is current cell output, , b and W denote the bias vector and weight matrices for 

the input gate (i), output gate (o), forget gate (f), and memory cell (c), ℎ𝑡−1 is previous cell output, 𝐶𝑡−1 is previous cell memory, σ is 

sigmoid function, and ' ∙ ' is the Hadamard product [35]. 

 

3.2.2 Conv1D-LSTM 

 

 In this study, we propose the Conv1D-LSTM framework to extract temporal feature from the spatial features, as shown in Figure 

7. In the Conv1D block, the batch normalization layer was added so as to normalize the input data and speed up the process of learning. 

The dropout layer was implemented to prevent over-fitting, then some units were ignored during learning. After that, the average 

pooling layer which selected the average component from the sub-region of the feature map, was considered as the feature vector. The 

feature vector was sent to the LSTM Cells to learn and generate the temporal feature. Consequently, we again decreased the size of the 

feature using global average pooling layer (GAP) before giving the feature to the softmax function. 

 

 
 

Figure 7 Illustration of extract temporal features using the Conv1D-LSTM network. 
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4. Experimental setup and results  

 

4.1 Food image dataset 

 

 In this research, we focused on experimenting with the benchmark food image dataset, namely the Food101 dataset [23]. The 

training set contained the wrong labels and some noise images, such as food images taken from different camera angles that made other 

objects such as people, tables, and bottles, appear in the image. This dataset contains 101,000 real-world color images of 101 food 

categories. It consists of 75,750 training images and 25,250 test images. The sample images of the Food-101 dataset are shown in 

Figure 8. The challenge of this dataset is that the training set contained some noise images, such as food images taken from different 

camera angles that made other objects such as people, tables, and bottles, appear in the image, as shown in Figure 9(a) and similarities 

of shape, color, and decoration between two categories (chocolate cake and chocolate mousse), as shown in Figure 9(b). The researchers 

assume that computer vision can handle noise images and wrong labels. 

 

 
 

Figure 8 Sample images of the Food-101 dataset 

 

 
 

Figure 9 Some examples of the Food-101 dataset that containing (a) other objects (e.g., people, cake shelves, tables, and glasses of 

beer) and (b) similarities of chocolate cake and mousse. 

 

4.2 Experimental setup 

 

 We implement the proposed framework with the TensorFlow platform. All experiments were performed on a Linux operating 

system with Intel(R) Core(TM) i7-4790 Processor 3.6GHz, 16GB DDR4 RAM. As explained in Section 3, we first used pre-trained 

models of six CNN architectures; VGG16, VGG19, ResNet50, DenseNet201, MobileNetV1, and MobileNetV2, to train and extract 

the spatial feature from food images. All CNNs were trained using the stochastic gradient descent (SGD) optimizer, rectified linear 

unit (ReLU) for activation function, and learning rate between 0.01 to 0.0001. Second, the spatial features were then sent to Conv1D-

LSTM and LSTM networks to extract temporal features. In the LSTM network, the fraction of the units was employed to drop the 

linear transformation of the inputs. The initial weights were randomly selected by using a Gaussian distribution where the mean is zero. 

 We decided to train only 100 epochs to avoid overfitting when training the model. Figure 10 shows loss values while training the 

Conv1D-LSTM and LSTM model. According to loss values, better loss values were obtained after epoch 50 when they became stable 

values until epoch 100. 
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Figure 10 Illustration of loss values of (a) Conv1D-LSTM and (b) LSTM networks when using ResNet50, VGG16, and MobileNetV1 

as a deep feature method. 

 

4.3 Evaluation metrics 

 

 The evaluation metrics used for food image recognition were accuracy and F1-score. We used the accuracy score to evaluate the 

performance of the deep learning models on the test set and used the F1-score to examine the individual accuracy of each class. The 

accuracy and the F1-score were computed by Equations 2 and 3. 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃𝑘+𝑇𝑁𝑘

𝑇𝑃𝑘+𝑇𝑁𝑘+𝐹𝑃𝑘+𝐹𝑁𝑘
           (2) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
(

𝑇𝑃𝑘
𝑇𝑃𝑘+𝐹𝑁𝑘

×
𝑇𝑃𝑘

𝑇𝑃𝑘+𝐹𝑃𝑘
)

(
𝑇𝑃𝑘

𝑇𝑃𝑘+𝐹𝑁𝑘
+

𝑇𝑃𝑘
𝑇𝑃𝑘+𝐹𝑃𝑘

)
           (3) 

 

Where 𝑇𝑃𝑘 called true positives, is the number of correctly classified images from class 𝑘. 

  𝐹𝑃𝑘 called false positives, is the number of misclassified images from class 𝑘.  

  𝑇𝑁𝑘 called true negatives, is the number of correctly classified image that does not belong to class 𝑘.  

  𝐹𝑁𝑘 called false negatives is the number of misclassified images belong to class 𝑘. 

 

4.4 Experiments with deep learning methods 

 

 In the experiments with deep learning methods, we first trained the Food-101 dataset using a pre-trained model of six state-of-the-

art CNNs; VGG16, VGG19, MobileNetV1, MobileNetV2, ResNet50, and DenseNet201. Second, we proposed the deep feature method 

to extract the spatial feature from the last pooling layer of each CNN. The deep feature method extracted a high dimension of the spatial 

feature. The number of spatial features is reported in Table 4. It can be seen that ResNet50 provided 99,176 features. On the other hand, 

VGG16 produced only 25,088 features. Finally, we trained the high dimension of the spatial features using Conv1D-LSTM and LSTM 

networks. 

 

Table 4 Illustration of the number of spatial features extract from different CNN architectures and size of each model 

 

Deep feature methods No. of parameters No. of features 

VGG16 14.7M 25,088 

VGG19 20M 25,088 

ResNet50 23.5M 99,176 

DenseNet201 18.3M 94,080 

MobileNetV1 3.2M 50,176 

MobileNetV2 2.2M 62,720 

 

Table 5 Evaluation of the classification results for the Food-101 dataset using different deep learning consisting of CNN, LSTM, and 

Conv1D-LSTM. The first column shows the deep feature methods that used to extract spatial features.  

 

Model CNN LSTM Conv1D-LSTM 

No pooling 

layer 

Global average 

pooling 

No pooling 

layer 

Average 

pooling 

Max pooling 

VGG16 67.40 78.55 80.44 75.94 85.91 84.61 

VGG19 65.54 77.15 79.94 75.02 85.66 84.52 

MobileNetV1 50.60 58.59 60.32 64.80 65.88 65.75 

MobileNetV2 37.20 50.33 51.94 55.14 56.73 56.71 

DenseNet201 39.29 38.08 38.98 42.25 42.87 38.11 

ResNet50 79.86 88.90 88.92 86.83 89.82 89.01 
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Figure 11 Performance evaluation of three classifiers consisted of CNN, Conv1D-LSTM, and LSTM architectures that extract features 

based on six different deep CNN architectures on the Food-101 dataset.  

 

 Table 5 and Figure 11 present the accuracy results on the test set of the Food-101 dataset for CNN, Conv1D-LSTM, and LSTM 

networks. The results show that the Conv1D-LSTM achieved the best performance with 89.82% accuracy when using a batch size of 

32 and extracting features with ResNet50. As a result, the Conv1D-LSTM network with the batch size of 32 always showed better 

accuracy than other batch sizes. According to our experiments, however, the CNN architectures presented worse performance compared 

to the Conv1D-LSTM and LSTM networks. In terms of the deep feature methods, the ResNet50 outperforms all CNN architectures 

when training with the CNN, Conv1D-LSTM, and LSTM networks. The result of the CNN architectures shows that the ResNet50 

provided 42.66% accuracy higher than the MobileNetV2. We concluded that the ResNet50 extracted the spatial feature with a high 

dimension and still provided higher accuracy when training with Conv1D-LSTM and LSTM networks. Hence, the ResNet50 combined 

with the Conv1D-LSTM, namely ResNet50+Conv1D-LSTM, performed best on the Food-101 dataset. 

 The experimental results show that the Conv1D-LSTM outperformed LSTM because we combined necessary layers toward the 

Conv1D network, such as batch normalization, ReLU activation function, and dropout. These layers produced the Conv1D network to 

normalize the inputs to each feature map and cope with the linear activation function. For Conv1D, we experimented with pooling 

layers; global average pooling and global max pooling to decrease the size of the feature vector before giving it to classified with the 

softmax function. The success of the pooling layer is no parameter to optimize and robust to perform the spatial feature. 

 To study the effect of the data augmentation techniques, we applied six data augmentation techniques; rotation, width shift, height 

shift, horizontal flip, shear, and zoom while training the CNN architecture because Phiphiphatphaisit & Surinta [38] reported that data 

augmentation techniques could increase the accuracy of CNN, especially for food image recognition. In this experiment, 

ResNet50+Conv1D-LSTM using the batch size of 32 was considered. 

 

Table 6 The classification results for the Food-101 dataset using features that extracting from the ResNet50 architecture and data 

augmentation techniques.  

 

Data augmentation LSTM Conv1D-LSTM 

No 88.92 89.82 

Yes 89.49 90.87 

 

 Table 6 showed that LSTM and Conv1D-LSTM perform better when data augmentation techniques were applied. The accuracy of 

the Conv1D-LSTM with the data augmentation technique was slightly increasing compared with the LSTM with the data augmentation 

technique. As a result, the ResNet50+Conv1D-LSTM network with the data augmentation technique provided an accuracy of 90.87% 

on the Food-101 dataset. The data augmentation can generate more food images while training, and then it increases the robustness of 

the model without decreasing the effectiveness. 

 The F1-score value of the ResNet50+Conv1D-LSTM network was computed according to Equation (3) and is illustrated in Figure 

12. We found that only two categories, chocolate mousse and Filet mignon (see red bar) provided an F1-score of less than 80%. The 

F1-score also reported that 42 categories (see green bar) obtained a score above 90%. However, when we examined the 

ResNet50+Conv1D-LSTM network with non-food elements, called noise images, our proposed network could not classify these noise 

images correctly. Some noise images are shown in Figure 9a and the misclassified results of the noise images are shown in Figure 13. 

Also, misclassification of similar categories such as chocolate cake and chocolate mousse were found, as shown in Figure 14. 
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Figure 12 The result of the F1-score on the Food-101 dataset using the ResNet50 and LSTM architectures.  

 

 
 

Figure 13 Examples of misclassified results according to the noise images. 

 

 
 

Figure 14 An example of the similarity categories between chocolate cake and chocolate mousse contains in the Food-101 dataset.  
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4.5 Comparison between ResNet50+Conv1D-LSTM network and previous methods 

 

 We made extensive comparisons between our ResNet50+Conv1D-LSTM network and existing state-of-the-art CNN architectures. 

The experimental results showed that our network performed better than all CNN architectures. The accuracy of 90.87% was obtained 

from the ResNet50+Conv1D-LSTM, while, the performance of the state-of-the-art WISeR architecture was 90.27% accuracy. The 

comparative results between the existing CNN architectures and our proposed architecture on the Food-101 dataset are shown in     

Table 7. 

 

Table 7 Recognition performance on the Food-101 dataset when compared with different deep learning techniques. 

 

Architectures No. of training images per class Accuracy References 

ResNet152 750 64.98 McAllister et al. [2] 

EnsembleNet 750 72.12 Pandey et al. [17] 

Modified MobileNetV1 400 72.59 Phiphiphatphaisit & Surinta [38] 

DeepFood 750 77.40 Liu et al. [16] 

GoogLeNet 750 79.20 Bolanos & Radeva [22] 

CNNs Fusion 750 86.71 Aguilar et al. [18] 

InceptionV3 750 88.28 Hassannejad et al. [15] 

WISeR 750 90.27 Martinel et al. [20] 

ResNet50+Conv1D-LSTM 750 90.87 Our proposed 

 

 From the experimental results shown in Table 7, it can be seen that the Conv1D-LSTM yielded better performance than other 

techniques. Our Conv1D network included many layers consists of batch normalization layer, ReLU activation function, and dropout 

layer. In our Conv1D, we used the batch normalization layer to normalize the input data to each feature map and this layer works better 

with the ReLU activation function. The dropout layer was attached to the Conv1D network to prevent the over-fitting, then it allows 

the network to ignored some units during training. 

 

5. Conclusions 

 

 This study proposed the ResNet50+Conv1D-LSTM network for accurate food image recognition. First, our network took advantage 

of extracting the robust spatial feature using a state-of-the-art convolutional neural network (CNN), called ResNet50 architecture. 

Second, we used the robust feature as input data for the Conv1D combined with the long short-term memory (LSTM) network, namely 

Conv1D-LSTM. The primary function of the Conv1D-LSTM network was to extract a temporal feature. Finally, the softmax function 

was employed to transforms the output of the Conv1D-LSTM into a probability distribution. 

 In the experiments, we evaluated six CNNs; VGG16, VGG19, ResNet50, DenseNet201, MobileNetV1, and MobileNetV2 to 

extract the feature, then classify with Conv1D-LSTM and LSTM networks on the Food101 dataset. The results showed that the 

ResNet50 combined with the Conv1D-LSTM network, called ResNet+Conv1D-LSTM network, provided the best performance (see 

Table 5). Additionally, we experimented with mixed data augmentation techniques; rotation, width shift, height shift, horizontal flip, 

shear, and zoom. The result of the data augmentation also insignificantly increased accuracy by 0.27%. Our experiments presented 

better results than previous work (see Table 7). The best result of the ResNet+Conv1D-LSTM obtained 90.87% on the Food-101 

dataset. 

 In future work, we will experiment on increasing the performance of the food image recognition. We will consider other novel data 

augmentation techniques, which could be more efficient in the noise food images. Also, the ensemble and parallel networks will be 

involved in future work. 
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