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Abstract 

 

In this paper, we propose an integrated model of preventive maintenance (PM) and safety stock for an unreliable production unit, 

subject to random failures, acquired by leasing. Maintenance activities, both preventive and corrective, are performed by the lessor 

under the lease contract, incurring maintenance costs to the lessor. The leased production unit is used by the lessee to produce parts for 

the subsequent production stage. To prevent the subsequent production stage from being interrupted during breakdowns and PM, the 

lessee must produce a certain amount of safety stock, incurring inventory costs to the lessee. Unlike other models in the literature that 

implicitly assume that the leased production unit is a new item, in this paper, we investigate the case where the leased production unit 

is one that has already been used. In this case, the lessor can perform reconditioning, prior to leasing, on the production unit being 

leased incurring a reconditioning cost to the lessor. A mathematical model is developed to determine the optimal PM cycle duration, 

reconditioning level, and safety stock size to minimise the total expected cost to the lessor and the lessee combined over the leasing 

horizon. The numerical results show that calculating the optimal values of all three decision variables by considering the lessor and the 

lessee simultaneously yields a more satisfactory result, in terms of the total expected cost over the leasing horizon, than when the 

parties are considered individually. Some managerial insights useful to both the lessor and the lessee are provided in the sensitivity 

analysis section. 
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1. Introduction 

 

Reliability is an important part of production planning and inventory control. This issue is important because most production 

systems are inherently unreliable and occasionally fail during production. Frequent disruptions due to failures can result in high 

corrective maintenance (CM) and shortage costs to a company. Traditionally, a firm can employ the following two strategies to reduce 

these costs: 

 1) Producing safety stock to cope with shortages that might occur during breakdowns, or 

 2) Executing preventive maintenance (PM) to improve the reliability of the production system and reduce the possibility of machine 

failure during production [1]. 

Originally, these two strategies were independently researched in the literature. The integrated model, considering both options for 

dealing with breakdowns, was first proposed by Cheung and Hausman [2]. The main objective of the integrated model was to 

simultaneously calculate the optimal PM cycle duration and safety stock size to minimise the total maintenance and inventory costs. 

This type of problem was later known in the literature as the joint determination of PM and safety stock problem. The work of Cheung 

and Hausman [2] was later modified by Dohi et al. [3]. A similar problem applied to an assembly line was proposed by Chelbi and Ait-

Kadi [4]. That research was extended by Chelbi and Rezg [5], who added the availability level requirement to the problem. A practical 

model that considered failures that might occur during the accumulation of safety stock was proposed by Gharbi et al. [6]. Murino et 

al. [7] developed a model of this problem using condition-based maintenance (CBM) as a strategy for performing PM. The impact of 

maintenance, process deterioration, and safety stock on the economic production quantity (EPQ) model was studied by Chakraborty 

and Giri [8]. A model that considered both safety stock and spare parts inventory was proposed by Gan et al. [9]. Cheng et al. [10] 

applied the concept of imperfect maintenance to the problem. Zhou and Liu [11] incorporated the impact of quality loss due to system 

deterioration into the problem. In their work, based on the theory of constraints (TOC), different machines were maintained differently 

according to different PM policies. Nahas [12] proposed a joint PM and safety stock allocation model for a system consisting of 𝑛 

machines and 𝑛 − 1 stocking points. A model that considered a quality inspection policy was presented by Lopes [13]. A model that 

allowed the manufacturer to purchase some finished goods from an external supplier in addition to producing safety stock was proposed 

by Deiranlou et al. [14]. 
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One of the assumptions implicitly made in the above studies was that production facilities were purchased and maintained internally. 

In this case, the firm was responsible for all costs related to maintenance actions. However, in recent years, largely due to financial 

crises in many industrialized countries, there has been a trend towards leasing of production machinery in the industry, especially for 

young companies. Namely, instead of buying production machinery at a high cost, young companies prefer to rent it [15]. This trend 

has introduced many new issues to businesses, one of which is the issue of maintenance of leased machinery. Namely, in the case of 

leasing, the lessor is responsible for maintenance actions and all related costs without additional expenses incurred to the lessee. Terms 

of maintenance services and penalties that might occur to the lessor are fully specified in the lease contract. In other words, maintenance 

has become an issue for the lessor, but not for the lessee [16]. 

The first attempt at applying the concept of leased machinery maintenance to production/inventory systems was found in the work 

of Hajej et al. [17]. The authors studied a joint production/inventory and maintenance problem, assuming that the production machine 

was acquired by leasing with a warranty period. A mathematical model was developed to determine the optimal production planning, 

maintenance policy, and warranty period, minimising the total expected cost of both the lessor and the lessee over the leasing horizon. 

That research was later extended by Hajej et al. [18], who considered the possibility to extend the warranty period at an additional cost. 

Askri et al. [19] applied concepts similar to those of Hajej et al. [17] to a production system consisting of multiple leased parallel 

machines. Based on their previous work [18], Hajej et al. [20] proposed an analytical model to analyse the impact of production rates 

and warranty periods on the optimal maintenance policy. Askri et al. [21] developed a joint production/inventory and maintenance 

model for parallel leased machines. To reduce the impact of interruptions due to PM, all leased machines were maintained 

simultaneously by a group PM policy. An integrated model of capacity design, production planning, and maintenance policy for leased 

machines was proposed by Hajej et al. [22]. In their work, the optimal number of leased machines was determined, as well as the 

corresponding production planning and maintenance policies of those machines. Concerning the joint PM and safety stock problem, 

Niyamosoth and Pathumnakul [23] studied an unreliable production/inventory system similar to that proposed by Chelbi and Ait-Kadi 

[4], assuming that the production unit was acquired by leasing. A mathematical model was developed to simultaneously determine the 

optimal PM cycle duration and safety stock size to minimise the total expected cost of both the lessor and the lessee over the leasing 

horizon. 

One of the assumptions implicitly made in the above studies was that the leased production machines were new items. However, as 

suggested by Pongpech et al. [24], in practice, leased machinery can already be used. Given this research gap, in this paper, we broaden 

the work of Niyamosoth and Pathumnakul [23] by assuming that the leased production unit has already been used. In this case, the 

reconditioning level for the used production unit and the related cost are added to the proposed model. The aim of this research is to 

determine the optimal PM cycle duration, reconditioning level, and safety stock size to minimise the total expected cost to the lessor 

and the lessee combined over the leasing horizon. 

This paper is structured as follows. Section 2 describes the concept of the proposed model. Section 3 is dedicated to the model 

formulation. In section 4, an algorithm to solve the proposed model is developed. In section 5, a numerical example and a sensitivity 

analysis on some model parameters are presented. Finally, the conclusion, including suggestions for future work, is given in section 6. 

 

2. Concept of model 

 

In our model, a production unit of age𝐴, owned by the lessor, is leased to the lessee for a period𝐿. According to the lease contract, 

the lessor will execute PM with a constant period, 𝑇. We assume that a PM action is a perfect maintenance action and that failures 

occurring during the lease period are repaired by the lessor. We also assume that a CM action is a minimal repair and that the repair 

time is much shorter than the mean time between failures (MTBF). Both PM and CM actions result in maintenance costs for the lessor. 

In addition, prior to leasing, the lessor can perform reconditioning on the production unit being leased. The reconditioning makes the 

leased production unit younger by reducing its current age from 𝐴 to 𝐴 − 𝑥. However, the reconditioning causes a reconditioning cost 

to the lessor, which depends on how much the age is reduced after the reconditioning. 

The lessee will use the production unit to produce parts for the subsequent production stage. The demand rate for parts is 𝛼. To 

prevent the subsequent production stage from being interrupted, the lessee must produce safety stock of size 𝑆 at rate 𝜔 after a PM 

action is completed. This safety stock will be withdrawn for use at rate 𝛼 during breakdowns and PM. The production of such safety 

stock incurs a cost of the holding inventory to the lessee. We require the safety stock size to be at least greater than the demand for 

parts during CM actions. If the safety stock is insufficient for the demand during a PM action, shortages will occur, presenting a 

shortage cost to the lessee. We assume that this cost depends only on the number of shortages, regardless of their duration. 

Given all the mentioned costs, one can see that the cost of the system consists of two parts: the cost to the lessor and the cost to the 

lessee. The decision variables that affect the system cost are (i) the duration of the PM cycle; (ii) the reconditioning level, which is the 

reduction in the age of the production unit following reconditioning; and (iii) the size of the safety stock. The purpose of our proposed 

model is to determine the optimal values of these three decision variables to minimise the total expected cost of the system over the 

leasing horizon. 

 

3. Model formulation 

 

3.1 Notation 

 

The notation used in this research is as follows: 

𝐹(𝑡) Cumulative distribution function (CDF) of the time to failure 

𝑓(𝑡) Probability density function (PDF) of the time to failure, defined as 𝑓(𝑡) =
𝑑𝐹(𝑡)

𝑑𝑡
 

𝜆0(𝑡) Failure rate function in the absence of PM actions 

𝜆(𝑡) Failure rate function with PM actions 

𝛬0(𝑡) Cumulative failure rate function in the absence of PM actions, defined as 𝛬0(𝑡) = ∫ 𝜆0(𝑥)𝑑𝑥
𝑡

0
 

𝛬(𝑡) Cumulative failure rate function with PM actions, defined as 𝛬(𝑡) = ∫ 𝜆(𝑥)𝑑𝑥
𝑡

0
 

𝑁(𝑡) Number of failures in the interval (0, 𝑡) 

𝑚(𝑡1, 𝑡2) Number of failures in the interval (𝑡1, 𝑡2) 
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𝑌 Repair time (time to repair a failure) 

𝐺(𝑦) CDF of the repair time 

𝑔(𝑦) PDF of the repair time, defined as 𝑔(𝑦) =
𝑑𝐺(𝑦)

𝑑𝑦
 

𝜏 Repair time limit 

𝑇 Constant period to execute PM 

𝑍 Duration of a PM action 

ℎ(𝑧) PDF of the duration of a PM action 

𝐶𝑓 Average cost of a CM action 

𝑎 Fixed cost of a PM action 

𝑏 Variable cost per unit of the reduction in the failure rate after a PM action 

𝛿j Reduction in the failure rate after the jth PM action 

𝐶t Penalty cost per time unit if 𝑌 > 𝜏 (Penalty 1) 

𝐶𝑛 Penalty cost per failure (Penalty 2) 

𝑆 Size of safety stock 

ℎ Inventory-holding cost per unit per time unit 

𝜔, 𝛼 Production rates 

𝜋 Shortage cost per unit, regardless of the duration of the shortage 

𝐿 Lease contract duration (or the leasing horizon) 

𝐴 Age of the production unit being leased 

𝑥 Reconditioning level, which is the reduction in the age of the production unit following reconditioning 

𝐶𝑢(𝑥) Reconditioning cost, which increases as x increases 

 

3.2 Failure rate function 
 

An important function for maintenance studies is the failure rate function. In our work, we initially examine the failure rate function 

of a used production unit being leased without reconditioning and PM actions. Let 𝜆0(𝑡) denote the failure rate function of a new unit 

in the absence of PM actions, which is an increasing function of the time to failure, 𝑡. Given that the age of the unit being leased is 𝐴, 

the failure rate function of the used unit without reconditioning and PM actions is given by 𝜆(𝑡) = 𝜆0(𝐴 + 𝑡), 𝑡 > 0. The age of the 

used unit can be reduced by executing reconditioning. Let 𝑥 be the reconditioning level, which is the reduction in the age following 

reconditioning. Then, the failure rate function of the used unit with reconditioning only is given by 

 

𝜆(𝑡) = 𝜆0(𝐴 + 𝑡 − 𝑥).            (1) 

 

We assume a periodic PM policy, whereby the leased unit is preventively maintained at times 𝑗𝑇, 𝑗 = 1, 2, … , 𝑘. The jth PM action 

will reduce the failure rate by𝛿𝑗 , 𝑗 = 1, 2, … , 𝑘. Note that, for perfect PM, 𝛿1 = 𝛿2 = ⋯ = 𝛿𝑘 = 𝜆0(𝐴 − 𝑥 + 𝑇) − 𝜆0(𝐴 − 𝑥). As a 

result, the failure rate function with both reconditioning and PM actions is given by 

 

𝜆(𝑡) = 𝜆0(𝐴 + 𝑡 − 𝑥) − 𝑗𝛿𝑗 , 𝑗𝑇 < 𝑡 ≤ (𝑗 + 1)𝑇,          (2) 

 

 where 𝛿𝑗 = 𝜆0(𝐴 − 𝑥 + 𝑇) − 𝜆0(𝐴 − 𝑥) for 𝑗 = 1, 2, … , 𝑘. Substituting 𝜆0(𝐴 − 𝑥 + 𝑇) − 𝜆0(𝐴 − 𝑥) for 𝛿𝑗 , 𝑗 = 1,2, … , 𝑘, we can 

rewrite λ(t) in equation (2) as follows: 

 

𝜆(𝑡) = 𝜆0(𝐴 + 𝑡 − 𝑥) − 𝑗[𝜆0(𝐴 − 𝑥 + 𝑇) − 𝜆0(𝐴 − 𝑥)] for 𝑗 = 1,2, … , 𝑘.       (3) 

 

3.3 Expected cost to the lessor in one PM cycle 

 

In one PM cycle of duration 𝑇, four types of cost are incurred by the lessor: (i) the cost of a CM action, (ii) the cost of a PM action, 

(iii) the Penalty-1 cost, and (iv) the Penalty-2 cost. The expected cost to the lessor in one PM cycle is equal to the sum of the expected 

values of these four costs. (i) Cost of a CM action. For a new production unit, the expected number of failures in one PM cycle is given 

by 

 

𝐸[𝑁(𝑇)] = 𝛬0(𝑇) = ∫ 𝜆0(𝑡)𝑑𝑡
𝑇

0
,           (4) 

 

 where 𝜆0(𝑡)  is the failure rate function in the absence of PM actions. Let 𝑚(𝑡1, 𝑡2)  denote the number of failures in the 

interval(𝑡1, 𝑡2). The expected number of failures in one PM cycle for a used production unit is given by 

 
𝐸[𝑚(𝐴 − 𝑥, 𝐴 − 𝑥 + 𝑇)] = 𝐸[𝑁(𝐴 − 𝑥 + 𝑇)] − 𝐸[𝑁(𝐴 − 𝑥)].        (5) 

 

 Using equation (4), we have 

 

𝐸[𝑚(𝐴 − 𝑥, 𝐴 − 𝑥 + 𝑇)] = Λ0(𝐴 − 𝑥 + 𝑇) − Λ0(𝐴 − 𝑥),         (6) 

 

 where 

 

Λ0(𝐴 − 𝑥 + 𝑇) = ∫ 𝜆0(𝑡)𝑑𝑡
𝐴−𝑥+𝑇

0
,           (7) 

 

 and  
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Λ0(𝐴 − 𝑥) = ∫ 𝜆0(𝑡)𝑑𝑡.
𝐴−𝑥

0
            (8) 

 

 To calculate the expected cost of a CM action in one PM cycle, 𝐸[𝑇𝐶𝑓(𝑇, 𝑥)], we multiply 𝐸[𝑚(𝐴 − 𝑥, 𝐴 − 𝑥 + 𝑇)] by the average 

cost of a CM action, 𝐶𝑓. The result is as follows: 

 

𝐸[𝑇𝐶𝑓(𝑇, 𝑥)] = 𝐶𝑓𝐸[𝑚(𝐴 − 𝑥, 𝐴 − 𝑥 + 𝑇)],          (9) 

 

 where 𝐸[𝑚(𝐴 − 𝑥, 𝐴 − 𝑥 + 𝑇)] is given by equation (6). As a result, we have 

 

𝐸[𝑇𝐶𝑓(𝑇, 𝑥)] = 𝐶𝑓[Λ0(𝐴 − 𝑥 + 𝑇) − Λ0(𝐴 − 𝑥)].                      (10) 

 

 (ii) Cost of a PM action. In general, PM costs consist of two elements: fixed costs and variable costs. Fixed costs are the same 

every time PM is executed. By contrast, variable costs depend on the reduction in the failure rate after each PM action, 𝛿𝑗 . Given that 

𝑎 > 0 is the fixed cost of a PM action and 𝑏 ≥ 0 is the variable cost per unit of the reduction in the failure rate after a PM action, the 

cost of the 𝑗𝑡ℎ PM action can be expressed as 𝐶𝑝(𝛿𝑗) = 𝑎 + 𝑏𝛿𝑗 , 𝑗 = 1, 2, … , 𝑘 [16]. Because 𝛿1 = 𝛿2 = ⋯ = 𝛿𝑘 = 𝜆0(𝐴 − 𝑥 + 𝑇) −

𝜆0(𝐴 − 𝑥), the cost of a PM action in one PM cycle, 𝐶𝑝(𝑇, 𝑥), can be expressed as 

 

𝐶𝑝(𝑇, 𝑥) = 𝑎 + 𝑏[𝜆0(𝐴 − 𝑥 + 𝑇) − 𝜆0(𝐴 − 𝑥)].                       (11) 

 

 (iii) Penalty-1 cost. Penalty 1 occurs if the time to repair a failure, 𝑌, is longer than the specified value, 𝜏 (> 0). Given that 𝐶𝑡 is 

the penalty cost per unit time if 𝑌 > 𝜏, the expected Penalty-1 cost in one PM cycle, 𝐸[𝜙1(𝑇, 𝑥)], can be expressed as 

 

𝐸[𝜙1(𝑇, 𝑥)] = 𝐶𝑡𝐸[𝑚(𝐴 − 𝑥, 𝐴 − 𝑥 + 𝑇)] ∫ (𝑦 − 𝜏)𝑔(𝑦)𝑑𝑦
∞

𝜏
,                     (12) 

 

 where 𝑔(𝑦) is the PDF of 𝑌. Substituting Λ0(𝐴 − 𝑥 + 𝑇) − Λ0(𝐴 − 𝑥) for 𝐸[𝑚(𝐴 − 𝑥, 𝐴 − 𝑥 + 𝑇)], we have 

 

𝐸[𝜙1(𝑇, 𝑥)] = 𝐶𝑡[Λ0(𝐴 − 𝑥 + 𝑇) − Λ0(𝐴 − 𝑥)] ∫ (𝑦 − 𝜏)𝑔(𝑦)𝑑𝑦
∞

𝜏
,                           (13) 

 

 or 
 

𝐸[𝜙1(𝑇, 𝑥)] = 𝐶𝑡[Λ0(𝐴 − 𝑥 + 𝑇) − Λ0(𝐴 − 𝑥)] ∫ (1 − 𝐺(𝑦))𝑑𝑦
∞

𝜏
,                           (14) 

 

 where 𝐺(𝑦) is the CDF of 𝑌. (iv) Penalty-2 cost. For each failure occurring during the lease period, the lessor will be given Penalty 

2. To calculate the expected Penalty-2 cost in one PM cycle, 𝐸[𝜙2(𝑇, 𝑥)], we multiply 𝐸[𝑚(𝐴 − 𝑥, 𝐴 − 𝑥 + 𝑇)] by the penalty cost 

per failure, 𝐶𝑛. The outcome is as follows: 
 
𝐸[𝜙2(𝑇, 𝑥)] = 𝐶𝑛𝐸[𝑚(𝐴 − 𝑥, 𝐴 − 𝑥 + 𝑇)],                       (15) 

 

 or 

 

𝐸[𝜙2(𝑇, 𝑥)] = 𝐶𝑛[Λ0(𝐴 − 𝑥 + 𝑇) − Λ0(𝐴 − 𝑥)].                       (16) 

 

 The expected cost to the lessor in one PM cycle, 𝐸[𝐶𝐶𝐿(𝑇, 𝑥)], is determined by adding the above expected costs together. The 

result is as follows: 

 

𝐸[𝐶𝐶𝐿(𝑇, 𝑥)] = 𝐶𝑓[Λ0(𝐴 − 𝑥 + 𝑇) − Λ0(𝐴 − 𝑥)] + 𝑎 + 𝑏[𝜆0(𝐴 − 𝑥 + 𝑇) − 𝜆0(𝐴 − 𝑥)] 

          +𝐶𝑡[Λ0(𝐴 − 𝑥 + 𝑇) − Λ0(𝐴 − 𝑥)] ∫ (1 − 𝐺(𝑦))𝑑𝑦
∞

𝜏
 

          +𝐶𝑛[Λ0(𝐴 − 𝑥 + 𝑇) − Λ0(𝐴 − 𝑥)].                      (17) 

 

3.4 Expected cost to the lessee in one PM cycle 

 

In one PM cycle, two types of cost are incurred by the lessor: (i) the inventory-holding cost and (ii) the shortage cost. The expected 

cost to the lessee in one PM cycle is equal to the sum of the expected values of these two costs. (i) Inventory-holding cost 

 At the start of a PM cycle, the leased production unit spends 𝑆/𝜔 units of time to produce safety stock of size 𝑆 (see Figure 1). 

This safety stock is collected at rate 𝛼 for use during breakdowns and PM. 

 As can be seen in Figure 1, to calculate the inventory-holding cost in one PM cycle, we first need to determine the MTBF and mean 

time to repair (MTTR) values. Note that, for minimal repairs [25], 

 

𝑀𝑇𝐵𝐹 =
𝑇

𝐸[𝑚(𝐴−𝑥,𝐴−𝑥+𝑇)]
=

𝑇

𝛬0(𝐴−𝑥+𝑇)−𝛬0(𝐴−𝑥)
.                       (18) 

 

MTTR is simply the expected value of Y, given by 

 

𝑀𝑇𝑇𝑅 = 𝐸[𝑌] = ∫ 𝑦𝑔(𝑦)𝑑𝑦 = ∫ (1 − 𝐺(𝑦))𝑑𝑦
∞

0

∞

0
.                      (19) 
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Figure 1 Changes in safety-stock levels during one cycle of PM 

 

 In addition to the MTBF and MTTR, we need to know the level of remaining safety stock, R, at the time when the PM action is 

commenced. The value of R is calculated using the following equation: 

 

𝑅 = 𝑆 − 𝐸[𝑚(𝐴 − 𝑥, 𝐴 − 𝑥 + 𝑇)]𝛼𝑀𝑇𝑇𝑅.                       (20) 

 

 Substituting 𝛬0(𝐴 − 𝑥 + 𝑇) − 𝛬0(𝐴 − 𝑥) for 𝐸[𝑚(𝐴 − 𝑥, 𝐴 − 𝑥 + 𝑇)], we have 

 

𝑅 = 𝑆 − [𝛬0(𝐴 − 𝑥 + 𝑇) − 𝛬0(𝐴 − 𝑥)]𝛼𝑀𝑇𝑇𝑅.                       (21) 

 

 To facilitate the calculation of the expected inventory quantity in one PM cycle, we divide Figure 1 into five zones. The expected 

inventory quantity in one PM cycle is equal to the sum of the areas from Zone I to Zone V. Given that ℎ is the inventory-holding cost 

per unit per time unit, the expected inventory-holding cost in one PM cycle, 𝐸[𝐼𝐻𝐶(𝑇, 𝑥, 𝑆)], is given by 

 

𝐸[𝐼𝐻𝐶(𝑇, 𝑥, 𝑆)] =
ℎ𝑆2

2𝜔
+ ℎ(𝑆 − 𝐸[𝑚(𝐴 − 𝑥, 𝐴 − 𝑥 + 𝑇)]𝛼𝑀𝑇𝑇𝑅)(𝑇 − 𝑆/𝜔) 

             +
ℎ

2
(𝑇 − 𝑆/𝜔)𝐸[𝑚(𝐴 − 𝑥, 𝐴 − 𝑥 + 𝑇)]𝛼𝑀𝑇𝑇𝑅 

             +
ℎ

2𝛼
(𝑆 − 𝐸[𝑚(𝐴 − 𝑥, 𝐴 − 𝑥 + 𝑇)]𝛼𝑀𝑇𝑇𝑅)2 

             +
ℎ

2
𝐸[𝑚(𝐴 − 𝑥 + 𝑠/𝜔, 𝐴 − 𝑥 + 𝑇)]𝛼𝑀𝑇𝑇𝑅. 𝑀𝑇𝐵𝐹.                     (22) 

 

 The term 𝐸[𝑚(𝐴 − 𝑥 + 𝑆/𝜔, 𝐴 − 𝑥 + 𝑇)] = 𝛬0(𝐴 − 𝑥 + 𝑇) − 𝛬0(𝐴 − 𝑥 + 𝑆/𝜔) represents the expected number of times that 

failure will occur in the interval (𝑆/𝜔, 𝑇). For simplicity, we assume that no failures happen during the accumulation of the safety 

stock. Therefore, we have 

 

𝐸[𝑚(𝐴 − 𝑥 + 𝑆/𝜔, 𝐴 − 𝑥 + 𝑇)] ≈ 𝛬0(𝐴 − 𝑥 + 𝑇) − 𝛬0(𝐴 − 𝑥).                     (23) 

 

 Replacing 𝐸[𝑚(𝐴 − 𝑥, 𝐴 − 𝑥 + 𝑇)]  and 𝐸[𝑚(𝐴 − 𝑥 + 𝑆/𝜔, 𝐴 − 𝑥 + 𝑇)]  by 𝛬0(𝐴 − 𝑥 + 𝑇) − 𝛬0(𝐴 − 𝑥) , we can rewrite 

𝐸[𝐼𝐻𝐶(𝑇, 𝑥, 𝑆)] in equation (22) as follows: 

 

𝐸[𝐼𝐻𝐶(𝑇, 𝑥, 𝑆)] =
ℎ𝑆2

2𝜔
+ ℎ(𝑆 − [𝛬0(𝐴 − 𝑥 + 𝑇) − 𝛬0(𝐴 − 𝑥)]𝛼𝑀𝑇𝑇𝑅)(𝑇 − 𝑆/𝜔)  

             +
ℎ

2
(𝑇 − 𝑆/𝜔)[𝛬0(𝐴 − 𝑥 + 𝑇) − 𝛬0(𝐴 − 𝑥)]𝛼𝑀𝑇𝑇𝑅  

             +
ℎ

2𝛼
(𝑆 − [𝛬0(𝐴 − 𝑥 + 𝑇) − 𝛬0(𝐴 − 𝑥)]𝛼𝑀𝑇𝑇𝑅)2  

             +
ℎ

2
[𝛬0(𝐴 − 𝑥 + 𝑇) − 𝛬0(𝐴 − 𝑥)]𝛼𝑀𝑇𝑇𝑅. 𝑀𝑇𝐵𝐹.                     (24) 

 

 (ii) Shortage cost. In each PM cycle, shortages occur only when the duration of the PM action, Z, is longer than the time taken to 

deplete the remaining safety stock, R. Let η(z, R) be a random variable that represents the number of shortages occurring in one PM 

cycle. Then, 

 

𝜂(𝑧, 𝑅) = {
0                        𝑖𝑓   𝑧 < 𝑅/𝛼,

𝛼(𝑧 − 𝑅/𝛼)    𝑖𝑓   𝑧 ≥ 𝑅/𝛼.
                        (25) 

 
 Therefore, the expected number of shortages in one PM cycle can be expressed as follows: 

 

𝐸[𝜂(𝑧, 𝑅)] = 𝛼 ∫ (𝑧 − 𝑅/𝛼)ℎ(𝑧)𝑑𝑧
∞

𝑅/𝛼
,                        (26) 

 

 where h(z) is the PDF of Z. Given that π is the shortage cost per unit, regardless of the duration of the shortage, the expected 

shortage cost in one PM cycle, E[SC(T, x, S)], is given by 

 

𝐸[𝑆𝐶(𝑇, 𝑥, 𝑆)] = 𝜋𝛼 ∫ (𝑧 − 𝑅/𝛼)ℎ(𝑧)𝑑𝑧
∞

𝑅/𝛼
.                       (27) 
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 The expected cost to the lessee in one PM cycle, E[CCl(T, x, S)], is acquired by adding the above expected costs together. The result 

is as follows: 

 

𝐸[𝐶𝐶𝑙(𝑇, 𝑥, 𝑆)] =
ℎ𝑆2

2𝜔
+ ℎ(𝑆 − [𝛬0(𝐴 − 𝑥 + 𝑇) − 𝛬0(𝐴 − 𝑥)]𝛼𝑀𝑇𝑇𝑅)(𝑇 − 𝑆/𝜔) 

             +
ℎ

2𝛼
(𝑆 − [𝛬0(𝐴 − 𝑥 + 𝑇) − 𝛬0(𝐴 − 𝑥)]𝛼𝑀𝑇𝑇𝑅)2 

             +
ℎ

2
[𝛬0(𝐴 − 𝑥 + 𝑇) − 𝛬0(𝐴 − 𝑥)]𝛼𝑀𝑇𝑇𝑅. 𝑀𝑇𝐵𝐹 

             +𝜋𝛼 ∫ (𝑧 − 𝑅/𝛼)ℎ(𝑧)𝑑𝑧
∞

𝑅/𝛼
.                       (28) 

 

3.5 Total expected cost in one PM cycle 

 

To obtain the total expected cost per cycle, E[TCC(T, x, S)], we combine the expected costs to the lessor, E[CCL(T, x)], and to the 

lessee, E[CCl(T, x, S)]. Therefore, using equations (17) and (28), the total expected cost in one PM cycle can be expressed as follows: 

 

𝐸[𝑇𝐶𝐶(𝑇, 𝑥, 𝑆)] = 𝐶𝑓[𝛬0(𝐴 − 𝑥 + 𝑇) − 𝛬0(𝐴 − 𝑥)] + 𝑎 + 𝑏[𝜆0(𝐴 − 𝑥 + 𝑇) − 𝜆0(𝐴 − 𝑥)] 

                    +𝐶𝑡[𝛬0(𝐴 − 𝑥 + 𝑇) − 𝛬0(𝐴 − 𝑥)] ∫ (1 − 𝐺(𝑦))𝑑𝑦
∞

𝜏
 

                    +𝐶𝑛[𝛬0(𝐴 − 𝑥 + 𝑇) − 𝛬0(𝐴 − 𝑥)] +
ℎ𝑆2

2𝜔
 

                    +ℎ(𝑆 − [𝛬0(𝐴 − 𝑥 + 𝑇) − 𝛬0(𝐴 − 𝑥)]𝛼𝑀𝑇𝑇𝑅)(𝑇 − 𝑆/𝜔) 

                    +
ℎ

2
(𝑇 − 𝑆/𝜔)[𝛬0(𝐴 − 𝑥 + 𝑇) − 𝛬0(𝐴 − 𝑥)]𝛼𝑀𝑇𝑇𝑅 

                    +
ℎ

2𝛼
(𝑆 − [𝛬0(𝐴 − 𝑥 + 𝑇) − 𝛬0(𝐴 − 𝑥)]𝛼𝑀𝑇𝑇𝑅)2 

                    +
ℎ

2
[𝛬0(𝐴 − 𝑥 + 𝑇) − 𝛬0(𝐴 − 𝑥)]𝛼𝑀𝑇𝑇𝑅. 𝑀𝑇𝐵𝐹 

                    +𝜋𝛼 ∫ (𝑧 − 𝑅/𝛼)ℎ(𝑧)𝑑𝑧
∞

𝑅/𝛼
.                       (29) 

 

3.6 Expected duration of one PM cycle 

 

The duration of a PM cycle is the period from the end of one PM action to the end of the subsequent PM action (see Figure 1). This 

period is composed of a constant cycle of duration 𝑇 and a PM action of duration 𝑍. The expected duration of this period, 𝐸[𝐶𝐿(𝑇)], 
is given by 

 

𝐸[𝐶𝐿(𝑇)] = 𝑇 + 𝐸[𝑍] = 𝑇 + ∫ 𝑧ℎ(𝑧)𝑑𝑧
∞

0
.                       (30) 

 

3.7 Expected number of PM cycles 

 

To calculate the expected number of PM cycles, 𝐸[𝑁𝐶(𝑇)], over the leasing horizon, we simply divide the lease contract duration, 

L, by the expected duration of one PM cycle, 𝐸[𝐶𝐿(𝑇)], as follows: 

 

𝐸[𝑁𝐶(𝑇)] =
𝐿

𝐸[𝐶𝐿(𝑇)]
.                         (31) 

 

3.8 Total expected cost over the leasing horizon 

 

The total expected cost over the leasing horizon consists of two main parts: (i) the total expected operating cost and (ii) the 

reconditioning cost. 

 (i) Total expected operating cost.  The total operating cost over the leasing horizon, 𝑇𝑂𝐶(𝑇, 𝑥, 𝑆), includes the operating costs 

incurred by both the lessor, 𝑇𝑂𝐶𝐿(𝑇, 𝑥), and the lessee, 𝑇𝑂𝐶𝑙(𝑇, 𝑥, 𝑆). To calculate its expected value, 𝐸[𝑇𝑂𝐶(𝑇, 𝑥, 𝑆)], we multiply 

𝐸[𝑇𝐶𝐶(𝑇, 𝑥, 𝑆)] by 𝐸[𝑁𝐶(𝑇)], as follows: 

 

𝐸[𝑇𝑂𝐶(𝑇, 𝑥, 𝑆)] = 𝐸[𝑁𝐶(𝑇)]𝐸[𝑇𝐶𝐶(𝑇, 𝑥, 𝑆)],                       (32) 

 

 or  

 

𝐸[𝑇𝑂𝐶(𝑇, 𝑥, 𝑆)] =
𝐿.𝐸[𝑇𝐶𝐶(𝑇,𝑥,𝑆)]

𝐸[𝐶𝐿(𝑇)]
.                        (33) 

 

 We can then write 𝐸[𝑇𝑂𝐶(𝑇, 𝑥, 𝑆)] as the sum of the expected values of 𝑇𝑂𝐶𝐿(𝑇, 𝑥) and 𝑇𝑂𝐶𝑙(𝑇, 𝑥, 𝑆), as follows: 

 

𝐸[𝑇𝑂𝐶(𝑇, 𝑥, 𝑆)] = 𝐸[𝑇𝑂𝐶𝐿(𝑇, 𝑥)] + 𝐸[𝑇𝑂𝐶𝑙(𝑇, 𝑥, 𝑆)],                      (34) 
 
 where 

 

𝐸[𝑇𝑂𝐶𝐿(𝑇, 𝑥)] =
𝐿.𝐸[𝐶𝐶𝐿(𝑇,𝑥)]

𝐸[𝐶𝐿(𝑇)]
,                         (35) 

 

𝐸[𝑇𝑂𝐶𝑙(𝑇, 𝑥, 𝑆)] =
𝐿.𝐸[𝐶𝐶𝑙(𝑇,𝑥,𝑆)]

𝐸[𝐶𝐿(𝑇)]
.                        (36) 
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 (ii) Reconditioning cost. In our work, we adopt the concept of reconditioning used equipment from Pongpech et al. [24]. In their 

paper, the reconditioning cost, Cu(x), depends on the reconditioning level, x, and is defined by the following two-parameter increasing 

function: 

 

𝐶𝑢(𝑥) =
𝜓𝑥

1−𝑒−𝜑(𝐴−𝑥) , 0 ≤ 𝑥 < 𝐴,                        (37) 

 

 where 𝜓 > 0, 𝜑 > 0 are the parameters of the function. 

Note that if x is equal to zero, there is no reconditioning. As 𝑥 → 𝐴, 𝐶𝑢(𝑥) → ∞, which means that it is impractical to recondition the 

used production unit to a new condition [24]. 

 The total expected cost over the leasing horizon, 𝐸[𝑇𝐶(𝑇, 𝑥, 𝑆)], which is the objective function of this research, can be acquired 

by combining 𝐸[𝑇𝑂𝐶(𝑇, 𝑥, 𝑆)] and 𝐶𝑢(𝑥), as follows: 

 

𝐸[𝑇𝐶(𝑇, 𝑥, 𝑆)] = 𝐸[𝑇𝑂𝐶(𝑇, 𝑥, 𝑆)] + 𝐶𝑢(𝑥).                       (38) 

 

3.9 Constraints on 𝑆, 𝑥, and 𝑇 

 

As previously mentioned, our proposed model assumes that no failures occur during the accumulation of the safety stock. As a 

result, the time needed to accumulate safety stock, 𝑆/𝜔, is very short and clearly shorter than T (see Figure 1). Therefore, a first 

constraint on S is given by 

 
𝑆

𝜔
< 𝑇,                           (39) 

 

 or 
 
𝑆 < 𝜔𝑇.                           (40) 

 

 In addition, safety stock must be large enough to be used during CM actions without causing shortages. Therefore, a second 

constraint on S is given by 

 

𝑆 ≥ 𝐸[𝑚(𝐴 − 𝑥, 𝐴 − 𝑥 + 𝑇)]𝛼𝑀𝑇𝑇𝑅,                        (41) 

 

or 

 

𝑆 ≥ [𝛬0(𝐴 − 𝑥 + 𝑇) − 𝛬0(𝐴 − 𝑥)]𝛼𝑀𝑇𝑇𝑅.                       (42) 

 

 Given equation (37), a constraint on the reconditioning level, x, is 0 ≤ x < A. Moreover, a constraint on the constant period to 

execute PM, T, is 0 < T < L. 

 

3.10 Optimisation model 

 

Based on the objective function and the constraints obtained in the previous sections, the optimisation model for our work is as 

follows: 

 

Minimise 𝑍 = 𝐸[𝑇𝐶(𝑇, 𝑥, 𝑆)],                        (43) 

 

subject to 

 
[𝛬0(𝐴 − 𝑥 + 𝑇) − 𝛬0(𝐴 − 𝑥)]𝛼𝑀𝑇𝑇𝑅 ≤ 𝑆 < 𝜔𝑇,                      (44) 

 

0 ≤ 𝑥 < 𝐴,                          (45) 

 

0 < 𝑇 < 𝐿.                          (46) 

 

4. Algorithm 

 

The algorithm used to solve the proposed problem is as follows: 

Step 1: Fix 𝑥 = 𝑥0 = 0. 

Step 2: Fix 𝑇 = 𝑇0 ∈ (0, 𝐿). 

Step 3: Solve fo 𝑆̅∗(𝑇, 𝑥)r, the value of S that minimises 𝐸[𝑇𝐶(𝑇, 𝑥, 𝑆)]. Note that, in this case, 𝐸[𝑇𝐶(𝑇, 𝑥, 𝑆)] is a function of a single 

variable. Therefore, it can be solved quickly using commercial software. 

Step 4: Retain the value of 𝑆̅∗(𝑇, 𝑥). Then, go to step 5. 

Step 5: Set 𝑇 = 𝑇 + 𝛥𝑇, where 𝛥𝑇 > 0 is a sufficiently small value. 

Step 6: Check if 𝑇 < 𝐿. If so, go to step 3. If not, keep 𝑆̅∗(𝑇̅∗, 𝑥), the minimum value of 𝑆̅∗(𝑇, 𝑥) retained in step 4, then go to step 7. 

Step 7: Set 𝑥 = 𝑥 + ∆𝑥, where ∆𝑥 > 0 as a sufficiently small value. 

Step 8: Check if 𝑥 < 𝐴. If so, go to step 3. If not, keep 𝑆̅∗(𝑇̅∗, 𝑥̅∗), the minimum value of 𝑆̅∗(𝑇̅∗, 𝑥) retained in step 6, then stop. The 

optimal solution, (𝑇∗, 𝑥∗, 𝑆∗), has been obtained. 

 

 



Engineering and Applied Science Research

 

5. Numerical example and sensitivity analysis 

 

In this section, we present a numerical example and a sensitivity analysis on some model parameters. 

 

5.1 Functions and test values 

 

In maintenance studies, exponential distributions are often used in modelling systems with constant failure and repair rates [26]. 

For time-dependent failure and repair models, various types of probability distributions, such as Weibull, normal, lognormal, and 

gamma distributions, are generally applied for both failure and repair times [1, 25]. The assumptions on the probabilistic functions and 

the values of constants used in testing the proposed model are given as follows: 

 

 (i) Failure rate function: a two-parameter Weibull failure rate function given by 

 

𝜆0(𝑡) =
𝛽

𝜃
(

𝑡

𝜃
)

𝛽−1
, 𝑡 ≥ 0,                         (47) 

 
 where β > 0 is the shape parameter and 𝜃 > 0 is the scale parameter. We set 𝛽 = 2 so that the increase in the failure rate is linear. 

With no loss of generality, we set 𝜃 = 1. 

(ii) CDF of the repair time: a two-parameter Weibull distribution function given by 

 

𝐺(𝑦) = 1 − 𝑒𝑥𝑝 [− (
𝑦

𝜇
)

𝑚
] , 𝑦 ≥ 0,                        (48) 

 

 where 𝑚 > 0 is the shape parameter and 𝜇 > 0 is the scale parameter. We set 𝑚 = 0.5 and 𝜇 = 0.5 so that the MTTR is 1 day. 

(iii) PDF of the duration of PM action: a gamma density function given by 

 

ℎ(𝑧) =
𝑧𝛾−1𝑒−𝑧/𝜌

𝜌𝛾𝛤(𝛾)
, 𝑧 ≥ 0,                         (49) 

 

 where 𝛾 > 0 is the shape parameter and 𝜌 > 0 is the scale parameter. We set 𝛾 = 2.5 and 𝜌 = 0.02 so that E[Z] is 0.05 months. 

(iv) Reconditioning cost: a two-parameter increasing function given by equation (37) with 𝜓 = 500 and 𝜑 = 0.01. 

(v) Other constants used in this research are as follows: 

 𝐿 = 5  years, 𝐴 = 5  years, 𝐶𝑓 = $2,500 , 𝑎 = $100 , 𝑏 = $50 , 𝐶𝑡 = $300 , 𝐶𝑛 = $200 , 𝜋 = 2  days, ℎ = $6 /unit/year, 𝜔 =

86,400 units/year, 𝛼 = 345,600 units/year, and 𝜋 = $2/unit. 

 

5.2 Numerical results 

 

Table 1 presents the optimal solutions to the proposed model and two special cases. The optimal solution to the proposed model is 

the set of values of 𝑇, 𝑥, and 𝑆 that minimises the total expected cost over the leasing horizon, 𝐸[𝑇𝐶(𝑇, 𝑥, 𝑆)]. The optimal solution to 

special case 1 is the set of values that minimises the total expected cost to the lessor over the leasing horizon, 𝐸[𝑇𝑂𝐶𝐿(𝑇, 𝑥)] + 𝐶𝑢(𝑥). 

The optimal solution to special case 2 is the set of values that minimises the total expected cost to the lessee over the leasing horizon, 

𝐸[𝑇𝑂𝐶𝑙(𝑇, 𝑥, 𝑆)]. Note that 𝐸[𝑇𝐶(𝑇, 𝑥, 𝑆)] = 𝐸[𝑇𝑂𝐶𝐿(𝑇, 𝑥)] + 𝐶𝑢(𝑥) + 𝐸[𝑇𝑂𝐶𝑙(𝑇, 𝑥, 𝑆)], using equations (34) and (38). 

 

Table 1 Optimal values of 𝑇∗, 𝑥∗, and 𝑆∗ 
 

Model 𝑻∗ 

(years) 

𝒙∗ 

(years) 

𝑺∗ 

(units) 

Cost to the lessor  

($) 

(𝑬[𝑻𝑶𝑪𝑳(𝑻∗, 𝒙∗)] + 𝑪𝒖(𝒙∗)) 

Cost to the lessee 

($) 
(𝑬[𝑻𝑶𝑪𝒍(𝑻∗, 𝒙∗, 𝑺∗)]) 

Total cost  

($) 
(𝑬[𝑻𝑪(𝑻∗, 𝒙∗, 𝑺∗)]) 

Proposed model 0.04 2 3,456 122,788 77,918.50 200,707 

Special case 1 0.10 2 2,532.39 121,738 89,799.90 211,538 

Special case 2 0.04 4.5 3,456 476,189 77,346.80 553,536 

 

As shown in Table 1, the optimal solution to the proposed model is 𝑇∗ = 0.04 years, 𝑥∗ = 2 years, and 𝑆∗ = 3,456 units. When 

implementing this policy, the total expected cost is $200,707. The optimal solution to special case 1 (𝑇∗ = 0.10 years, 𝑥∗ = 2 years, 

and 𝑆∗ = 2,532.39 units) limits the total expected cost to the lessor to $121,738. However, applying this policy increases the cost to 

the lessee, which then raises the total expected cost to $211,538. Implementing the optimal solution to special case 2 (𝑇∗ = 0.04 years, 

𝑥∗ = 4.5 years, and 𝑆∗ = 3,456 units) limits the total expected cost to the lessee to $77,346.80. However, for this policy, the value of 

𝑥∗ is close to that of A. Therefore, the reconditioning cost to the lessor is very high, which greatly increases the total expected cost to 

$553,536. 

Based on these results, the proposed model provides a better solution, in terms of the total expected cost over the leasing horizon, 

than do both special cases, in which the lessor and the lessee are individually considered. Note that the optimal solution to the proposed 

model is not the best answer for both parties. However, the lessor and the lessee should be able to agree on the solution because the 

costs to both parties are considered. In other words, the solution can limit potential conflicts between the parties over the choice of 

optimal policy. 

 

5.3 Sensitivity analysis 

 

In this section, we conduct a sensitivity analysis on some important model parameters to determine how changes in those parameters 

affect the optimal solution of the proposed model. 
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 (i) Effect of changes in A Table 2 presents the impact of changes in the age of the production unit being leased, A, on the optimal 

solution. 

 

Table 2 Effect of changes in A on the optimal solution 

 

Optimal solution  𝐀  

3 5 7 

E[TC(T∗, x∗, S∗)] ($) 166,271 200,707 230,712 

T∗ (years) 0.04 0.04 0.04 

x∗ (years) 1 2 3.5 

S∗ (units) 3,456 3,456 3,456 

 

As shown in Table 2, the optimal reduction in the age following reconditioning, 𝑥∗, increases as A increases. This result implies 

that the lessor is more likely to raise the reconditioning level when the leased production unit is older. The total expected cost over the 

leasing horizon, 𝐸[𝑇𝐶(𝑇∗, 𝑥∗, 𝑆∗)], also increases as A increases. However, the optimal period to execute PM actions, 𝑇∗, and the 

optimal size of safety stock, 𝑆∗, do not change. 

 (ii) Effect of changes in 𝜓 Table 3 presents the impact of changes in the reconditioning cost parameter, 𝜓, on the optimal solution. 

 

Table 3 Effect of changes in 𝜓 on the optimal solution 
 

Optimal solution  𝛙  

250 500 1,000 

E[TC(T∗, x∗, S∗)] ($) 178,897 200,707 218,312 

T∗ (years) 0.04 0.04 0.04 

x∗ (years) 3 2 1 

S∗ (units) 3,456 3,456 3,456 

 

As shown in Table 3, 𝐸[𝑇𝐶(𝑇∗, 𝑥∗, 𝑆∗)] increases and 𝑥∗ decreases as 𝜓 increases. However, 𝑇∗ and 𝑆∗ do not change. 

 (iii) Effect of changes in ℎ Table 4 presents the impact of changes in the inventory-holding cost per unit per unit time, ℎ, on the 

optimal solution. 

 

Table 4 Effect of changes in h on the optimal solution 

 

Optimal solution  𝐡  

2 6 12 

E[TC(T∗, x∗, S∗)] ($) 153,022 200,707 261,978 

T∗ (years) 0.05 0.04 0.03 

x∗ (years) 2 2 2 

S∗ (units) 4,320 3,456 2,592 

 

As shown in Table 4, 𝑆∗ decreases as h increases, which implies that the lessee tends to hold less safety stock if h is high. Because 

𝑇 > 𝑆/𝜔, 𝑇∗ also decreases as h increases, which implies that the lessor tends to perform PM actions more frequently if h is high. 

Additionally, 𝐸[𝑇𝐶(𝑇∗, 𝑥∗, 𝑆∗)] increases as h increases. However, x∗ does not change. 

 (iv) Effect of changes in 𝜋 Table 5 presents the impact of changes in the shortage cost per unit, 𝜋, on the optimal solution. 

 

Table 5 Effect of changes in 𝜋 on the optimal solution 

 

Optimal solution  𝛑  

2 10 30 

E[TC(T∗, x∗, S∗)] ($) 200,707 218,411 231,762 

T∗ (years) 0.04 0.05 0.06 

x∗ (years) 2 2 2 

S∗ (units) 3,456 4,320 5,184 

 

As shown in Table 5, 𝑆∗ increases as π increases, which implies that the lessee tends to hold large quantities of safety stock if 

shortages create high costs. Because 𝑇 > 𝑆/𝜔, 𝑇∗ also increases as π increases, which implies that the lessor tends to perform PM 

actions less frequently if the shortage cost per unit is high. Additionally, 𝐸[𝑇𝐶(𝑇∗, 𝑥∗, 𝑆∗)] increases as π increases. However, x∗ does 

not change. 

 

6. Conclusion 
 

In this work, we propose an integrated PM and safety stock model for a used production unit under lease. The lessee uses this 

production unit to produce parts for the subsequent production stage. In addition to those parts, safety stock must be produced as a 

buffer during stoppages due to CM and PM actions, incurring inventory costs to the lessee. Both CM and PM actions, during the period 

of the lease agreement, are performed by the lessor, incurring maintenance costs to the lessor. In addition to maintenance actions, the 

lessor can perform reconditioning, prior to leasing, to improve the reliability of the leased production unit, incurring a reconditioning 

cost to the lessor. The purpose of the proposed model is to determine the optimal PM cycle duration, reconditioning level and safety 

stock size to minimise the total expected cost to the lessor and the lessee combined over the leasing horizon. 



Engineering and Applied Science Research

 

Based on our experimental results, calculating the optimal values of all three decision variables by considering the lessor and the 

lessee simultaneously yields a more satisfactory result, in terms of the total expected cost over the leasing horizon, than when the 

parties are considered individually. Because the optimal solution considers the costs to both parties, it can limit potential conflicts 

between the parties over the choice of optimal policy. Furthermore, the results obtained from the sensitivity analysis show several 

managerial perspectives. First, the lessor tends to raise the reconditioning level when the leased production unit is relatively old. 

Second, when the inventory-holding cost per unit per time unit is high, the lessee tends to hold less safety stock and the lessor tends to 

perform PM actions more frequently. Lastly, if the shortage cost per unit is high, the lessee tends to hold large quantities of safety stock 

and the lessor tends to perform PM actions less frequently. 

Imperfect maintenance is a common practice within industry. Therefore, our future work will consider the case in which imperfect 

maintenance is included in the problem. We will also adjust Penalty 2 so that it is more realistic. Namely, instead of requiring Penalty 

2 to occur every time a failure occurs, the penalty will happen only when the number of failures exceeds a predetermined value. 
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