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Abstract 

 

Our research proposes a novel obstacle detection and navigation system for the blind using stereo cameras with machine learning 

techniques. The obstacle classification result will navigate users through a difference directional sound patterns via bone conductive 

stereo headphones. In the first stage, the Semi-Global block-matching technique was used to transform stereo images to depth image 

which can be used to identify the depth level of each image pixel. Next, fast 2D-based ground plane estimation which was separate 

obstacle image from the depth image with our Horizontal Depth Accumulative Information (H-DAI). The obstacle image will be then 

converted to our Vertical Depth Accumulative Information (V-DAI) which was extracted by a feature vector to train the obstacle 

model. Our dataset consists of 34,325 stereo-gray images in 7 different obstacle class. Our experiment compared various machine 

learning algorithms (ANN, SVM, Naïve Bayes, Decision Tree, k-NN and Deep Learning) performance between classification accuracy 

and prediction speed. The results show that using ANN with our H-DAI and V-DAI reaches 96.45% in obstacle classification accuracy 

and 23.76 images per second for processing time which is 6.75 times faster than the recently ground plane estimate technique. 
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1. Introduction 

 

 There are 285 million visually impaired humans worldwide, 39 million of that are totally blind and 246 million have low vision 

[1]. Long canes and guide dogs are famous mobility tools utilized by the visually impaired. These tools are unable to guard users’ 

heads and bodies from collisions, such as street signs, bus poles, open windows, tree branches, and fences. However, the blind 

pedestrians walking speed of 1.61 meters per second [2] which is close to that of sighted pedestrians walking speed. 

 Various detecting technologies including GPS, lasers, ultrasonic waves, small radar and stereo camera were used in research and 

commercial products to solve above problems. The GPS-based Navigation Systems [3]. This technique is not always appropriate for 

indoor environments as high signal loss rates and low. Laser Cane [4-6] have used the laser distance measurement techniques. This 

detection has a limited coverage, which is hazardous by the point of blind spots. An ultrasonic waves [7-9], a user needs to hold the 

device to scan the surrounding object all the time. The RGB-D infrared-camera based sensor technique is more coverage and effective 

in obstacle detection [10, 11]. Nevertheless, this technique has a limitations in outdoor environments, especially in direct sunlight. 

There are novel approach to avoiding the obstacle with small radar (Light Detection and Ranging: LiDAR) [12-14]. Its good detection 

performance in a wide range of incidence angles and weather conditions, provide an ideal solution for state-of-the-art of obstacle 

avoidance sensor. Unfortunately, those systems were designed for smart vehicle which are not appropriate for mounting with the 

visually impaired due to its size and weight. Stereo camera based [15-19] to detect obstacles indoor and outdoor scenarios with 

RANSAC, a 3D-based ground plane estimation algorithm. The stereo camera is lightweight and can be mounted on a person. Despite 

to the reported performance, those system is needed to be improved such that the processing time and detection accuracy to real 

implement with real-time. 

 In this paper, we propose a fast and accurate navigation and obstacle detection system for the totally blind using a stereo camera 

and machine learning techniques. We introduced a novel technique, Depth Accumulative Information (DAI), which enables fast 

obstacle extraction from depth image with Horizontal-Depth Accumulative Information (H-DAI), and accurate navigation with 

Vertical-Depth Accumulative Information (V-DAI). Differently from other existing navigation systems, our system informs the user 

not only obstacle but also surrounding environment. This is achieved by setting seven types of 3D-sound outputs using stereo wireless 

bone conductive headphone. This voice consists of four voices set of surround environment describing and three voices set of avoiding 

obstacle. This notification allow the user to get a sense of the surroundings and avoid incoming obstacle. Our method hardware 

installation and detection area as shown in Figure 1 (left) and Figure 1 (right), respectively. 
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Figure 1 Our proposed method hardware installation (left), Coverage area and warning area (right). 

 

2. Depth image 

 

 A wide variety of a stereo camera were used for simple to complex applications [20-24]. However, a large variety of the stereo 

camera cause a various choices. Three features that must be taken into account before using the stereo camera are the framerate, field 

of view and resolution. In our research, ZED [20] used to generate death image due to its best performance as shown in Table 1. The 

ZED is sensor to introduce indoor and outdoor long range depth perception along with 3D motion tracking capabilities, enabling new 

applications in many industries: AR/VR, drones, robotics, retail, visual effects and more as showed in Figure 2 (left). The ZED captures 

two synchronized left and right videos of a scene and outputs a depth image of the scene, track the camera position and build a 3D map 

of the area. 

 

Table 1 Comparison of popular stereo camera specification 

 

Stereo camera Resolution (px.) Baseline (mm.) Field of view (degree) Max frame rate (fps) 

ZED [20] 1242p 120.0 110.0 100 

iPhone X [21] 1080p 11.0 30.9 60 

PCI nDepth [22] 480p 60.0 31.0 60 

Bumblebee2 [23] 488p 120.0 66.0 48 

MEGA-DCS [24] 960p 9.0 65.2 30 

 

 Depth image generation is the process of constructing the depth image from the ZED followed by camera model, rectification, and 

correlation steps [25]. The ZED was calibrated by the camera modelling and calibration method to obtain an accurate depth image. The 

depth image results in our paper show as a color jet-map format [26] where hot colors represent near objects and cold colors represent 

farther away objects, the depth image result from the ZED as shown in Figure 2 (right). 
 

   
 

Figure 2 ZED Stereo camera used in this study (left), depth images from ZED (right). 
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3. Propose method  

 

 Our system starts with getting the depth image from the ZED stereo camera, which is mounted on the user’s head. The depth image 

will be transformed into Horizontal-Depth Accumulative Information (H-DAI), which represents a side-view depth image projection. 

H-DAI is used in our 2D-based fast ground removal process to crop out the background region in the depth image until only the obstacle 

image remains. Next, the obstacle image is converted to Vertical-Depth Accumulative Information (V-DAI), which is a virtually 

projected obstacle image in the bird’s-eye view.  The result of applying V-DAI is used as the input data (feature vector) for classification 

step.  Finally, the resulting interface of the classification is the predicted obstacle class. This information is converted to 3D-tone and 

voice navigation via user’s wireless bone conductive headphone. The system diagram of the proposed methods is shown in Figure 3. 

 

 
 

Figure 3 System diagram of the proposed methods. 

 

3.1 Ground removal using Horizontal-DAI  

 

 In the first step, the depth image frequency along the Y-axis was observed with the bin count technique to obtain the H-DAI image 

and side view depth image projection. The maximum value of each H-DAI image column showed the ground curve that represented 

the pathway. The ground curve information was used to remove the pathway from the depth image into the obstacle image. High depth 

values represent close objects while low depth values represent long distance objects as shown in Figure 4 (left).  

 

 
 

Figure 4 Depth image for convert to H-DAI (left), the H-DAI after depth level counting process (right) 

 

 Creating a horizontal–DAI (H-DAI) image is carried out by sequentially counting the frequency of depth values from the bottom 

rows of depth image to the top rows, sequentially. The warm color represents the high frequency of depth value and the cold color 

represents the low frequency of depth value. The H-DAI image is a virtually projected image from the side used to find the pathway 

area as shown in Figure 4 (right). The ground removing process is creates an obstacle image that is cropped out of the pathway until 

only the harmful objects remain or ground plane estimation process. The pathway region can be identified from the ground curve of 

H-DAI. Firstly, we estimate the ground curve from the maximum value position of each H-DAI image column with the polynomial 

function as shown in Equation (1):  

 

𝐺 = ∑ 𝑝𝑖𝑥𝑛+1−𝑖

𝑛+1

𝑖=1

                                                                                                                                                                                                            (1) 

             

where 𝐺 is ground curve position depend on disparity value 𝑥, 𝑛 is the degree of the polynomial, 𝑝𝑖 is the polynomial constant. The 

order gives the number of fit coefficients, and the degree gives the highest power of the predictor variable. However, an example of 

identify ground curve is shown in Figure 5. 
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Figure 5 H-DAI with ground curve in red line 

 

 Next, we select the H-DAI data that is less than the ground curve to create the ground mark. This data is stored in binary format. 

The pathway region is logic 1 and the rest is logic 0 as shown in Figure 6 (left). Then we delete the data at the location of the ground 

mark of the depth image as shown in Figure 6 (right). Based on the results of the depth image ground removal step, it appears that there 

is still an obstacle region which indicates the object 5 meters far away. Finally, we have to use the un-region of interest mark, shown 

in Figure 7 (left), to remove the obstacle that is beyond the considered range. The result is an obstacle image as shown in Figure 7 

(Right). 

 

 
 

Figure 6 Ground mark (left), removed ground depth image (right) 

 

 
 

Figure 7 Un-region of interest mark (left), obstacle image (right) 

 

3.2 Classification using vertical-DAI 

 

 In order to use machine learning to classify obstacles, we created an obstacle model to guide users to avoid various obstacles. This 

is our second proposed contribution, fast and accurate obstacle classification using Vertical-Depth Accumulative Information (V-DAI) 

feature. In order to use machine learning to classify obstacles, we created an obstacle model to guide users to avoid various obstacles, 

the diagram as shown in Figure 8. In the first step, data acquisition stores a lot of stereo images from the stereo camera in-person view, 

as the individual walked along the path in various routes. The second step is data preparation in which the obstacle image is converted 

by the V-DAI feature and prepared for experts to label the training obstacle models. In the final step, our machine learning is trained 

in obstacle classification steps in a process called obstacle model training.  
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Figure 8 Obstacle model training diagram 

 

 Creating a Vertical-Depth Accumulative Information (V-DAI) feature for the training set is done by finding the frequency of depth 

value that occurs in each column or width of the obstacle image (depth image ground removed) by counting from the left column along 

the width of the obstacle image until the right column as shown in Figure 9 (left). The completed V-DAI is shown in Figure 9 (right). 

This V-DAI is a virtually projected image from the top or birds-eye view used to train obstacle models.  

 

 
 

Figure 9 Obstacle image for convert to V-DAI (left), the V-DAI after depth level counting process (right) 

 

 In the model training step, we use classification learner tool [27], starting with importing the V-DAI feature vectors obtained from 

the feature extraction step and the obstacle class label which is from the expert labeling step. In the next step, we randomly divide all 

dataset into 3 parts including training set, validation set and test set. For the training set is a set of data used to adjust the data in the 

neural structure to minimize errors. In the validation set is a set of data that is used to test the ability to generalize characteristics and 

must stop training models as well. Finally, the Test set is used to measure the performance of the model, due to it being a set of data 

that has not been trained before. The division of the dataset for model training for 70% training set, 15% validation set, and 15% testing 

set. Then, we trained an obstacle model with various learning algorithms, including Artificial Neural Networks (ANN) [28], Support 

Vector Machines (SVM) [29], Naïve Bayes [30], Decision Tree [31], k-Nearest Neighbor (k-NN) [32] and Deep Learning (CNNs) 

[33]. The final step for model training is to measure the efficiency of each machine learning algorithms. We measure three classification 

performance metrics. The first is accuracy in the ability to classify obstacles. The second is prediction speed, or the time that machine 

learning uses to process the obstacle class in the classification step. The final performance metric is training time, or time spent on 

training models. All the three metrics were evaluated in order to identify the most suitable machine learning algorithms for the obstacle 

classification.  

 

3.3 Navigation 

 

 In navigation step starts by obtaining the obstacle class from classification step. The example resulting interface of our system is 

shown in Figure 10. The user’s navigation starts by using the 7 obstacle classes converted to an English-speaking female navigation 

voice. This voice consists of 4 voice set of surround environment describing and 3 voice set of avoiding obstacle. “All clear” (free 

space, no obstacles), “Left object” (objects on left side, no need to avoid), “Right object” (objects on right side, no need to avoid) and 

“Parallel object” (objects on left and right side, no need to avoid), “Keep left” (dodge to the left), “Keep right” (dodge to the right), 

and “Slow down” (stop walking). When the obstacle detected, the navigation voice will be generate to wav sound format and inform 

the user via a bone conductive stereo headphone. Three-dimensional tone pattern including sound spectrum and left-right altitude as 

shown in Figure 11. 
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Figure 10 The example resulting interface of our obstacle classification and navigation system 

 

 

 
 

Figure 11 Three-dimensional tone pattern for keep left (Left), slow down (Center) and keep right (Right) 

 

 When the Obstacle class status changes, the voice navigation will be played via the bone conductive stereo headphone. When the 

obstacle class remains the same, the three-dimensional tone pattern is played repeatedly, which consists of 7 sound patterns with 

different frequencies and different left-right loudness except for “All clear” (free space is not obstructed) will be a silent sound.  

 

4. Experiment and evaluation 

 

4.1 Data acquisition 

 

 Data collection for the training set is done by mounting a stereo camera on the head position of the data collector to get a person’s 

perspective view according to Figure 12 (left) and then recording a stereo image in 1,344 × 376 pixels with a sampling rate of 15 

frames per second in mp4 gray video format. Furthermore, all stereo image that have been recorded from Chulalongkorn University’s 

pedestrian pathways which contain obstructions along the path, such as electricity poles, bushes, traffic signs, walls, etc., as shown in 

Figure 12 (right). The total walking distance is 2.3 kilometers with a duration of 39.61 minutes and containing 34,325 stereo images, 

the dataset information shown in Table 2. Those stereo images will be converted into obstacle images for the feature extraction process. 

 

Table 2 Stereo image dataset information 

 

Dataset Distance (m.) Duration (sec.) Sample (image) Percentage (%) 

Chula-1 240 208 3,048 8.88 

Chula-2 400 404 5,909 17.21 

Chula-3 160 193 2,756 8.03 

Chula-4 500 440 6,565 19.13 

Chula-5 350 452 6,774 19.73 

Chula-6 650 680 9,273 27.02 

Total 2,300 2,377 34,325 100.00 
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Figure 12 Stereo camera mounted on data collector head (left), the example of stereo image for data acquisition process (right) 

 

4.2 Expert labeling 

 

 Expert labeling is processed to generate labels to be used in model training steps for a supervised learning technique. Labeling in 

this research starts with preparing videos for experts who specify the video frame numbers of each stereo image. Moreover, we are 

attaching obstacle images for more information and the dataset images for the expert is shown in Figure 13.  

 

 
 

Figure 13 The example of image and depth image for expert labelling process 

 

 The expert will specify the type of obstacle class in every image frame. They will identify the obstacle into 7 different classes 

consisting of a left object, right object, parallel object, keep left, keep right, all clear, and stop class. The labeling results will be stored 

in the feature table in CSV format. The labeling results will be stored in the feature table in CSV format. The columns 1 to 400 of the 

Table will be the V-DAI feature vector obtained from the feature extraction step. The last column is the obstacle class where the expert 

will complete this all. The results of the expert labeling are shown in Table 3. 

 

Table 3 Number of sample in each class and coverage 

 

Class no. Obstacle class Number of image Percentage (%) 

1 All clear 6,985 20.35 

2 Left object 6,502 18.94 

3 Right object 8,733 25.44 

4 Parallel object 7,519 21.91 

5 Keep left 1,389 4.05 

6 Keep right 2,412 7.03 

7 Stop 785 2.29 

Total 34,325 100 

 

4.3 Ground removal with H-DAI 

 

 The depth sampling of the H-DAI depth levels affects processing time and. Thus, the performance of the depth levels from 8 to 

128 levels was compared in Table 4 to find the optimal depth level. The results showed that the low depth sampling provided a low 

accuracy result. However, the highest depth sampling result showed high processing time. Thus, the optimal depth sampling will be 

used at 64 levels due to the highest level of classification accuracy.  
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Table 4 Comparison performance of depth level 

 

Depth sampling (level) Runtime (ms./image) 
ANN-Classification 

F-measure (%) Accuracy (%) 

8 156.2940 85.3928 74.5091 

16 157.4902 89.6734 82.8199 

32 161.7783 97.0075 95.4469 

64 165.9861 97.8666 96.7671 

128 178.7246 97.4006 96.0393 

 

 We conducted an experiment to determine the optimal degree of the polynomial, which found that a high degree of polynomial 

increases the processing time due to the complexity of polynomial equations and also causes errors in removing passages. Therefore, 

we selected the degree of the polynomial of 2 degrees as indicated by the results shown in Table 5.  

 

Table 5 Comparison performance of degree of polynomial 

 

Degree of polynomial (degree) Runtime (ms./image) 
ANN-classification 

F-measure (%) Accuracy (%) 

1-degree 168.8248 97.7952 96.6655 

2-degree 178.0120 97.8666 96.7671 

3-degree 188.8431 97.5316 96.2593 

4-degree 197.8748 96.9926 95.4299 

5-degree 210.9794 96.1156 94.0420 

 

4.4 Classification using V-DAI converting 

 

 To find the most suitable V-DAI size, we tested sizes 40 × 40, 20 × 20, and 10 × 10 pixels as shown in Table 6. The results showed 

that the smaller V-DAI image size can effectively processing time well. Unfortunately, using too low of a size, decreased classification 

accuracy. Therefore, we used the V-DAI of 20 × 20 pixels which is the 400-dimensional vector in binary format.  

 

Table 6 Model performance for each V-DAI size 

 

V-DAI size (pixels) Training time (sec.) Predict speed (f/s) F-measure (%) Accuracy (%) 

10 × 10 94.3750 158,380 54.3254 58.3214 

20 × 20 135.7868 101,180 95.2069 96.4457 

40 × 40 230.8376 61,322 91.1273 94.3751 

 

 To ensure that the V-DAI feature is a suitable feature for our classification, we also tested the depth image and obstacle image 

ability to extract the feature vector by reducing the image to 20 × 20 pixels in binary format. Subsequently, these features were tested 

to compare the performance between V-DAI and depth image and obstacle image. It is not surprising that the V-DAI feature has the 

highest processing speed and precision as shown in Table 7. 

 

Table 7 Performance for each feature comparison 

 

Feature vector (20 × 20 px.) Training time (sec.) Predict Speed (f/s) F-measure (%) Accuracy (%) 

Depth image 314.9313 60,455 56.2997 60.8827 

Depth obstacle 639.4254 47,667 76.478 80.5594 

V-DAI 135.7868 101,180 95.2069 96.4457 

 

 To provide the most obstacle model performance both in processing speed and accuracy, we have conducted experiments to find 

the most suitable machine learning as well. In this experiment, we trained the model with various machine learning algorithms, 

including Artificial Neural Networks (ANN), Support Vector Machines (SVM), Naïve Bayes, Decision Tree, k-Nearest Neighbor (k-

NN) and Deep Learning (CNNs) with our V-DAI feature. The result of machine learning performance which is using averaged value 

from 10 rounds training, the result as shown in Table 8. The obstacle model that reaches the best performance will be used in the 

obstacle classification step. Based on the experiment result, the ANN algorithm has the highest accuracy in obstacle classification as 

96.45 % and also has the fastest prediction speed as 101,180 frames per second.  

 

Table 8 Machine learning algorithms performance comparison 

 

Machine learning algorithm Training time (sec.) Predict speed (f/s) F-measure (%) Accuracy (%) 

ANN [28] 135.78 101,180 95.2069 96.4457 

SVM [29] 242.61 1,600 91.0263 94.4268 

CNNs [33] 48.6162 9,639 87.6119 92.5617 

k-NN [32] 0.00 74 88.6198 91.1610 

Decision Tree [31] 14.72 55,000 78.6993 86.5637 

Naïve Bayes [30] 1.63 3,200 78.3175 85.0066 
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4.5 Benchmark testing 

 

 To ensure that our propose method is better than recently technique, we compare the processing time and classification efficiency 

between our propose method and RANdom Consensus algorithm (RANSAC); 3D-based obstacle segmentation technique [16]. The 

RANSAC is a ground plane estimation method processing on 3-D world point coordinates or point cloud which can be generated from 

depth image conversion. After that, RANSAC will fit the ground plane and remove the ground data from the point cloud. The last step 

is to convert the 3-D world point coordinate point cloud to a 2-D image or obstacle image which consume the processing time. The 

processing time between our propose method and RANSAC based. The results of the performances comparison showed that in our 

propose method, take a 42.0837 milliseconds for one image processing. In other words, it reached a frame rate as 23.76 images per 

second which 6.75 times faster than the RANSAC based as shown in Table. 9. The various scenarios detection result between RANSAC 

and our proposed method are summarized in Table 10. 

 

Table 9 The obstacle detention performance comparison between RANSAC and our propose method 

 

Performance RANSAC [16] (3D-based) Our propose method (2D-based) Diff. 

Accuracy (%) 86.1069 96.7671 +10.6602 

F-measure (%) 85.1804 95.2069 +10.0265 

Precision (%) 83.0081 95.8018 +15.1314 

Recall (%) 80.6704 94.6458 +13.9754 

Runtime (ms./image) 282.3457 42.0837 -240.2620 

 

Table 10 Detection obstacle result in various scenario between benchmark technique (RANSAC) and our proposed method 

 

Scenario 
Obstacle detection result 

RANSAC [16] (3D-based) Our propose method (2D-based) 

Patterned walkway, no obstacle. Can correctly separate walkway. Can correctly separate walkway. 

No patterned walkway, no obstacle. Partially separates the walkway. Partially separates the walkway. 

Reflected surface walkway, no obstacle. Interprets the reflection as hole. Interprets the reflection as walkway. 

Water surface walkway, no obstacle. Interprets the reflection as hole. Interprets the reflection as walkway. 

Difference level walkway, no obstacle. Can correctly separate walkway. Interprets the different level as obstacle. 

Spacious walkway, Including wall/big sign. Interprets the wall/big sign as walkway. Can correctly separate walkway. 

Narrow walkway, Including wall/big sign. Interprets the wall/big sign as walkway. Can correctly separate walkway. 

General walkway with stairs. Interprets the stairs as walkway. Interprets the stairs as obstacle. 

General walkway with holes. Interprets the holes as obstacle. Interprets the holes as walkway. 

General walkway, dense obstacle. Unable to find walkway. Partially separates the walkway. 

 

4.6 System testing with unseen area 

 

 To ensure that our systems has no the machine learning over-fit problem or still work outside the training area which is used in 

training the obstacle model, we tested our system with outside the training area. For the testing route, we chose the walkway from the 

Phaya-thai police station home to the Phaya-thai skytrain BTS station in Pathumwan, Bangkok as shown in Figure 14  

 

 
 

Figure 14 Real-world testing 670 meters walking route 

 

 We chose this route for the experimental because the route has many obstacles, such as pedestrians, motorcycles, cars, traffic signs, 

electric poles, walls, trees, shrubs, and others.  The testing took 7 minutes 57 seconds at a distance of 670 meters, consisting of a total 

of 7,155 images. After testing, we found that the system was able to effectively navigate and warn the user of those obstacles. The 

accuracy of classification is 87.43% which F-measure score is 79.48%. The example of testing scenarios are shown in Figure 15.  
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Figure 15 The example of real-world testing result 

 

5. Conclusions and discussion 

 

 Our research proposes a real-time navigation and obstacle detection system for the blind using a stereo camera. Our detection is 

based on a stereo camera with a machine learning technique. Our first contribution is fast obstacle segmentation method using our 

Horizontal-Depth Accumulative Information (H-DAI) which is 6.75 times faster than the traditional 3D-based ground plane estimate 

technique (RANSAC). The second contribution is a fast and accurate obstacle classification technique where our Vertical-Depth 

Accumulative Information (V-DAI) feature reaches 96.45% in accuracy and 23.76 images per second in processing speed. We 

conducted many tests to ensure the highest level of accuracy and speed of obstacle detection as errors in detection or excessive 

processing time have the potential to cause enormous harm to the user.  

 For future direction, limitations of this work such as the ability to use in a dark or foggy environment can be considered.  This may 

be addressed using fusion sensors between the stereo camera and LiDAR that are available in modern mobile devices. Such sensors 

can improve the detection in low-vision scenarios. Another potential future work may include further enhancement in result accuracy 

by considering the trajectory direction of incoming objects. This could be done by incorporating object trajectory prediction based on 

object’s previous and current positions. Furthermore, object recognition could be integrated to enhance our navigation system. The 

user would be informed of the type of an incoming object. This will help them to be prepared for quick avoidance of dangerous or 

extremely harmful objects. 
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