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Abstract 

 

Recently, metaheuristics (MHs) have become increasingly popular in real-world engineering applications such as in the design of 

airframes structures and aeroelastic designs owing to its simple, flexible, and efficient nature. In this study, a novel hybrid algorithm 

is termed as Ensemble of Genetic algorithm, Grey wolf optimizer, Water cycle algorithm and Population base increment learning using 

Weighted sum (E-GGWP-W), based on the successive archive methodology of the weighted population has been proposed to solve 

the aircraft composite wing design problem. Four distinguished algorithms viz. a Genetic algorithm (GA), a Grey wolf optimizer 

(GWO), a Water cycle algorithm (WCA), and Population base increment learning (PBIL) were used as ingredients of the proposed 

algorithm. The considered wing design problem is posed for overall weight minimization subject to several aeroelastic and structural 

constraints along with multiple discrete design variables to ascertain its viability for real-world applications. The algorithms are 

validated through the standard test functions of the CEC-RW-2020 test suite and composite Goland wing aeroelastic optimization. To 

check the performance, the proposed algorithm is contrasted with eight well established and newly developed MHs. Finally, a statistical 

analysis is done by performing Friedman’s rank test and allocating respective ranks to the algorithms. Based on the outcome, it has 

been observed that the suggested algorithm outperforms the others. 
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1. Introduction 

 

 Nowadays, the aircraft industries and researchers are continuously investigating highly fuel-efficient and lightweight wing designs 

to meet the global challenges of travel demand, carbon footprint reduction, and sustainability. Additionally, as per the new regulation, 

the aeroelastic characteristics of any new aircraft design proposed by industries should be detailed and must get its airworthiness 

approval from the global aviation organizations, such as Federal Aviation Administration (FAA), European Aviation Safety Agency 

(EASA), etc., before its field test and commercialization [1]. It is therefore imperative to incorporate the simulation techniques for 

aeroelastic traits calculation in the aircraft design process itself, to reduce the consumption of experimental resources (case; time, cost, 

etc.) and to ensure that the final airframe design can meet the standards. Under the purview of the aircraft system, the mutual interaction 

between aerodynamic forces and elastic structure during the operation of aircraft is termed as Aeroelasticity, which is typically present 

in terms of critical velocity or effectiveness. However, aircraft performance cannot be assured by only meeting the avionic standards, 

and thus there is a requirement of optimal design which is economical, efficient, and simultaneously fulfills the environmental 

regulations. Numerous aircraft wing optimization studies (both single and multi-objective) have been conducted so far by scholars with 

typical objectives like structural weight minimization, high strength/stiffness, low cost, and some other aeroelastic characteristics like 

flutter stability, gust response, maneuver loads, lift, drag, etc.[2]. The design variable often considered in these studies is the location 

of wing part, thickness, or topology, etc., while, in composites structures optimization problem, fiber/matrix material, layers number, 

stacking sequence, ply orientation, layer thickness, and fiber volume fraction are often accounted for [2-5]. With this design procedure, 

the optimal wing solution can be found and lead to a further decision-making process in case of multi-objective problems. 

 Real-world design problems are often complex, large, challenging, and have a diverse framework that makes conventional methods 

like calculus-based techniques and enumerative techniques either fails to solve these complex problems or consume too much time [6]. 

Contrarily, metaheuristics (MHs) are powerful and robust gradient-free stochastic optimization methods employed for various 

numerical and combinatorial optimization problem solutions [7]. Typically, metaheuristics are adapted for sophisticated problems like 

discrete, discontinuous, noisy, dynamic, and non-differentiable which cause computation cost and time required extravagant and also 

occasionally impossible to get a solution. In recent years due to its remarkable effective mechanisms and tools, ease, versatility, 

derivation-free framework, and local optimum escape characteristics, MHs have moved into the limelight which made it the most 

popular technique for solving various real-world intricate problems [8]. For example, in mechanical design issues [9-17], in reliability-

based design [1, 18] and for manufacturing operations [19, 20] numerous  MHs were investigated such as particle swarm optimization 

(PSO), artificial bee colony (ABC), ant lion optimizer (ALO), multi-verse optimizer (MVO), salp swarm algorithm (SSA), grasshopper 
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optimization algorithm (GOA), dragonfly optimizer (DO), moth-flame optimization algorithm (MFO), grey wolf optimizer (GWO), 

water cycle algorithm (WCA), butterfly optimization algorithm (BOA), spotted hyena optimization algorithm (SHOA), modified 

adaptive differential evolution (MADE), Harris’s Hawk optimizer (HHO), the hybrid algorithm including the hybrid between Nelder-

Mead local search algorithm (NM) and whale optimization algorithm (WOA) into a novel hybrid whale-Nelder-Mead algorithm 

(HWOANM). Apart from MHs applications in the design procedure, these study also performed their comparative analysis that 

demonstrates their efficacy in resolving complex engineering design problems. 
 In the last four decades, MHs have been widely investigated for aircraft design problems such as winglet design optimization using 

multi-Island genetic algorithm optimization (MOGA-II) [21], laminate Carbon fibre wing box design using genetic algorithm (GA) 

[22], Improved Particle Swarm Optimization (PSO) with robust aerodynamic design [23], or even seen applications in the aircraft 

engines modelling and controller design [24]. So, it would not be wrong to say that the use of MHs is prevalent in modern applications 

of computational intelligence and these are the preferred methodology for any engineering design optimization problem. 

 Nevertheless, as per the prominent ‘No Free Lunch’ hypothesis [25], it is impossible for an MH to solve every problem effectively 

and efficiently. In a specific design issue, an MH may yield a good result, but still, the same strategy might generate a feeble result in 

another challenge [26]. To put it another way, there is no MH which provides optimal response for every problem. Hertz and de Werra 

[27] for example, claimed that tabu search (TS) in graph colouring problem is far nicer than simulated annealing (SA). In contrast, SA 

is better than TS in a lot-sizing problem, as per Kuik et al. [28]. However, Lee and Kim [29] described that TS and SA were equally 

efficient in a project scheduling problem. Furthermore, Yang [30] argued that there is no accepted method for contrasting the 

performance of different MHs. Consequently, discovering new, more powerful MHs is an active subject [31, 32]. Notably, Mernik et 

al. [33] figured out a couple of misconceptions in MH comparison. Eventually, Crepinsek et al. [34] cautioned that a meaningful 

comparison between the different MHs is extremely difficult. 

 One of the biggest disadvantages of many of these MHs, such as GAs and SA, is their sluggish convergence rate, which leads to 

high computational costs. Another shortcoming is the likelihood of the solution to be stuck in a local optimum like in Particle Swarm 

Optimisation (PSO), Tabu search (TS), Hirschberg–Sinclair algorithm (HS), and Ant colony optimization (ACO). To overcome these 

limitations, the emergence of hybridized, modified, and improved MHs is thus rising drastically for incorporating their more beneficial 

attributes [35, 36]. Moreover, for MHs the dynamic balance between global diversification and local intensification is of great 

importance [7, 8]. In principle, the terminology diversification corresponds to search space exploration, while the expression 

intensification leads to the utilization of the cumulative search knowledge. As mentioned, the harmony between the diversification and 

intensification is crucial because the former helps in promptly identifying the high-quality solutions regions in the search arena whereas 

the latter leads in minimal time in search areas which are either already being explored or that do not offer high-quality solutions [7, 8, 

35, 36]. A quite burning question today is the quest for even more potent methods. The emergence of novel hybridized MHs is thus 

rising drastically. Thousands of MHs were implemented over the last few centuries by various researchers for engineering design 

optimization problems; however, this field has not been properly addressed until now. 

 In search of an efficient algorithm and to overcome the above-mentioned limitations of MHs, in this article the authors proposed 

and investigated a novel hybrid MH named as Ensemble of Genetic algorithm, Grey wolf optimiser, Water cycle algorithm, and 

Population base increment learning using Weighted sum (E-GGWP-W) to solve the composite wing optimization design issue. The 

details of the proposed hybrid algorithm are discussed in the following sections. The composite wing structural weight is considered 

as an objective function which is subjected to numerous aeroelastic and structural constraints with discrete design variables. The details 

of the investigated aeroelastic problem are illustrated in the Aeroelastic design problem section of this paper. For performance 

evaluation, the proposed algorithm is explored for two problem sets, aeroelastic optimization and the benchmark constrained 

mechanical test functions in the CEC-RW-2020 test suit [37]. The statistical test is performed and the mean, standard deviation results 

were compared with other state-of-the-art optimizers from the literature followed by Friedman’s rank test to rank each algorithm. 

Outcomes from the computational experiment are represented and discussed in the Results section followed by the conclusive remark 

and future scope in the last section. 

 

2. Ensemble of four metaheuristics via the weighted sum technique 

 

 A typical constrained single-objective optimization problem can be written as: 

 

min
𝐱

f(𝐱)              (1) 

 

Subject to gi ≤ 0  

 𝐱L ≤ 𝐱 ≤ 𝐱U 

where 𝐱 is a solution vector containing 𝑛 design variables, 𝑓 is an objective function to be minimized,  𝑔𝑖 is the constrained function 

to be handle and 𝐱𝐿 and 𝐱𝑈 are the lower and upper bounds of 𝐱, respectively. 

 

2.1 Genetic algorithm  

 

 Genetic algorithm (GA) is the most popular MH in solving the real-world design problems among all existing algorithms available 

in the literature. It was initially introduced in 1975 by John H. Holland [38, 39] and from that, this algorithm has been explored for 

every known discipline of engineering and science till now. Fundamentally GA is the population-based evolutionary algorithm that 

initializes the random solutions stochastically in the design space and then guides them towards the optimum. The algorithm performs 

its computation based on the principles of natural selection and genetics which is inspired by biological evolution [40]. The population 

is first randomly selected, then crossover is performed that enables the formation of superior offspring with a combination of best genes 

from individuals. Also, some of the child populations go through a mutation that adds diversity in the population and increasing the 

exploration potential of the search algorithm, while the probability of crossover and mutation were set as 0.88 and 0.05 [41], 

respectively. 
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2.2 Grey-wolf optimizer 

 

 Grey-wolf optimizer (GWO) is a recently introduced algorithm by S. Mirjalili et al. [26] which imitates the social hierarchy and 

hunting behaviour of a group of grey wolves. This method requires three controlling parameters viz. fittest solution called alpha (α), 

the second and third-best solutions termed as beta (β), and delta (δ) respectively, that control the direction of the search and solutions 

updating process. Rest candidate solutions are called omega (ω) which follow the other three wolves of the hierarchy. GWO works on 

three hunting processes of pray by wolves group i.e. searching, encircling, and attacking. The mathematical model of GWO can be 

represented as follows: 

 

Dα = |Cα × 𝐱α − 𝐱|            (2) 

 

Dβ = |Cβ × 𝐱β − 𝐱|            (3) 

 

Dδ = |Cδ × 𝐱δ − 𝐱|            (4) 

 

𝐱1  = 𝐱α − Aα × Dα            (5) 

 

𝐱2  = 𝐱β − Aβ × Dβ            (6) 

 

𝐱3  = 𝐱δ − Aδ × Dδ            (7) 

 

𝐱GWO
iter+1 = (𝐱1 + 𝐱2 + 𝐱3)/3            (8) 

 

Where Aα,β,δ  =  2 × a × randα,β,δ − a  

 Cα,β,δ  =  2 × randα,β,δ  

 a = 2 − iteration × (
2

total iteration
)  

 

2.3 Water cycle algorithm 

 

 The water cycle algorithm (WCA) was introduced in 2012 by H. Eskandar et, al. [42]. This method is based on the natural principle 

of the water cycle and the flow of rivers and streams into the sea. The best population is considered as the sea and the solution during 

the search process is being updated with the stream to sea, stream to river, and river to the sea scheme as shown in Equation (9) - (11). 

The evaporation condition and raining process for a river to sea and stream to the sea are followed as per Equation (12) - (13) 

respectively, to update the raindrop array. The control parameters in three schemes were set following [42] and the detailed 

mathematical expression is explained as follows: 

 

𝐱stream = 𝐱stream + C1 × rand × (𝐱sea − 𝐱stream)         (9) 

 

𝐱stream = 𝐱stream + C2 × rand × (𝐱river − 𝐱stream)                      (10) 

 

𝐱river = 𝐱river + C3 × rand × (𝐱sea − 𝐱river)                       (11) 

 

𝐱stream = {
𝐱stream              ;  norm(𝐱river − 𝐱sea) ≥ Dmax or rand ≥  C4

rand(nvar, 1) ;  norm(𝐱river − 𝐱sea) < Dmax or rand <  C4
                    (12) 

 

𝐱stream = {
𝐱stream              ;  norm(𝐱stream − 𝐱sea) ≥ Dmax or rand ≥  C4

rand(nvar, 1) ;  norm(𝐱stream − 𝐱sea) < Dmax or rand <  C4
                    (13) 

 

Where C1  =  2, is the constant parameter of "Moving stream to sea" scheme 

 C2  =  2, is the constant parameter of "Moving Streams to rivers" scheme 

 C3  =  2, is the constant parameter of "Moving rivers to Sea" scheme 

 C4  =  0.1, is the constant parameter of "Evaporation condition and raining process" 

 Dmax
iter+1 =  Dmax

iter  ×  
Dmax

iter

itermax
 ;  Dmax

1 = 1e − 16  

 Finally, the next generation of the population can be selected from the current population and the updated population and assembled 

as per Equation (14) 

 

𝐱𝑊𝐶𝐴
𝑖𝑡𝑒𝑟+1 = {𝐱𝑠𝑒𝑎 , 𝐱𝑟𝑖𝑣𝑒𝑟 , 𝐱𝑠𝑡𝑟𝑒𝑎𝑚}                        (14) 

 

2.4 Population base increment learning 

 

 The last algorithm applied for the proposed hybrid algorithm in this work is Population base increment learning (PBIL). PBIL is a 

stochastic guided search method based on a probability matrix (P) with controlling parameters of the learning rate, search rate, and 

population size. Introduced by Beluja in 1994 [43], PBIL is a combination of generational GA mechanisms with a simple approach to 

competitive learning. The distribution of “1” and “0” digits in a binary population is represented and estimated by a probability vector. 

From this probability vector, new samples of candidate solutions can be extracted which eventually leads to next-generation solutions. 

PBIL algorithm starts with an initial probability vector P = {0.5 , 0.5 , 0.5 , … ,0.5 }𝑇 where the size of the probability matrix is equal 

to the total design variable (DSV) multiplied with  binary  length  per  DSV. For explanation, an example is illustrated in Table 1 which 
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has 3 DSV with total 12-digit binary and total 6 solutions. The binary population (B) were generated randomly in the row direction 

based on the P and is used for computing the function evaluation and correspondingly update the new probability matrix (P𝑖𝑡𝑒𝑟+1) in 

next generation following the Equation (15). 

 

Table 1 Probability vectors and their corresponding populations 

 

Probability vectors (𝐏) 
Binary populations (𝐁) 

(each column represents a binary design solution) 

DSV no.1 

0.5 1 0 1 0 1 0 

0.5 0 0 0 1 1 1 

0.5 1 1 1 0 0 0 

0.5 0 1 0 1 0 1 

DSV no.2 

0.5 0 0 0 1 1 1 

0.5 1 1 0 0 0 1 

0.5 0 1 1 0 0 1 

0.5 1 0 0 1 1 0 

DSV no.3 

0.5 1 0 0 1 1 0 

0.25 0 0 0 0 1 1 

0.0 0 0 0 0 0 0 

0.75 1 1 0 1 1 1 

 

Piter+1 = Piter × (1 − LR) + b × LR                        (15) 

 

Where, LR represents the learning rate and  𝑏 is the element representing the best binary solution. The learning rate function is assigned 

as: 

 

𝐿𝑅 = 0.5 + 𝑟𝑎𝑛𝑑 × (+0.1 or − 0.1)                        (16) 

 

2.5 Ensemble of the algorithms 

 

 The hybridized method proposed in this work viz. the ensemble of Genetic algorithm, Grey wolf optimiser, Water cycle algorithm, 

and Population base increment learning using weighted sum is based on the success weight archive methodology in which the 

population is divided into the subpopulations for each constituent algorithm. In the search process, the population initialization starts 

with a weight (W) of 0.25 for all optimizers, as shown in Equation (17). 

 

W = {0.25, 0.25, 0.25, 0.25}                         (17) 

 

 Four archive subpopulations are generated randomly and apply with the four algorithms stated above. The success archive and the 

success percentage were computed in selection procedures as shown in Figure 1, and then the new weight is updated by Equation (18). 

 

Witer+1 =
[ArchS_GA,   ArchS_GWO,   ArchS_WCA,   ArchS_PBIL]

Success archive 
                       (18) 

 

Where ArchS_GA is the success archive of GA 

 ArchS_GWO is the success archive of GWO 

 ArchS_WCA is the success archive of WCA 

 ArchS_PBIL is the success archive of PBIL 

 

3. Aeroelastic design problem 

 

 This work aims to explore an efficient metaheuristic for aircraft wing design problems. Figure 2 displays the composite structure 

of the Goland wing model. The model considered for the simulation process is separated into six individual components viz. spar, front 

spar, rear spar, 11 ribs, upper skin, and lower skin, as introduced by M. Goland [44]. In this work, the upper and lower skin were 

computed by using the composite material while the other parts were set as isotropic material (Details presented in Table 2). The details 

of the wing structure can be found in [45, 46]. In this study, the consideration of control surfaces and high lift devices is neglected. The 

considered wing model is subject to aerodynamic loadings, leading to the mutual interaction of three forces namely aerodynamic, 

elastic, and inertial forces. This structure/aerodynamic interaction of airframes is well known as aeroelasticity. It is prevalent in wing 

design that static and aerodynamic phenomena must be taken into account. For static aeroelasticity, a speed at which the aerodynamic 

loads overcome structural restoration or divergence speed must be avoided. The ratio of lift from cruise wing shape to that from its jig 

shape defined as lift effectiveness is considered as a design constraint. Flutter speed, a speed at which the aerodynamic stiffness and 

damping due to fluid/structure interaction resulting in wing dynamic instability, is also accounted as a restrain in the considered design 

model. In the proposed analysis, the wing encounter speed is considered following the flutter speed from Beran et al [46] (410 ft/s or 

125 m/s) with 20 % avoidance (25 m/s). Thus the speed of the wind is set to be 100 m/s for analysis while the fuel and other storages 

were neglected for the wing. 
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Figure 1 Ensemble of the four metaheuristics 

 

Table 2 Mechanical properties used in the model 

 

 

Material Properties name Value Unit 

Aluminium Young's modulus (E) 70e+9 Pa. 

 Poisson’s ratio (ϑ) 0.3 - 

 Density (ρ) 2700 kg/m^3 

 Yield strength (Sy) 300e+6 Pa. 

Carbon fibre Young's modulus (E11) 207.7e+9 Pa. 

 Young's modulus (E22) 7.6e+9 Pa. 

 Shear modulus (G12) 5.0e+9 Pa. 

 Shear modulus (G13) 5.0e+9 Pa. 

 Shear modulus (G23) 5.0e+9 Pa. 

 Major Poisson’s ratio (ϑ) 0.3 - 

 Density (ρ) 1800 kg/m3 

 Tensile strength (Sty11) 500e+6 Pa. 

 Tensile strength (Sty22) 5e+6 Pa. 

 Tensile strength (Sty12) 35e+6 Pa. 

 Compression strength (Scy11) 350e+6 Pa. 

 Compression strength (Scy22) 75e+6 Pa. 

 Compression strength (Scy12) 35e+6 Pa. 
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Figure 2 Composite plate geometry definition 

 

 The aero elastic optimization problem considered in this study can be mathematically modelled as: 

 

Min
𝐱

f(𝐱) = total wing mass                         (19) 

 

Subject to Val– Vcr ≤ 0                      (19.1) 

 ηL– ηL,al ≤ 0                      (19.2) 

 umax– ual ≤ 0                     (19.3) 

 tt,fs– tr,fs ≤ 0                      (19.4) 

 tt,ms– tr,ms ≤ 0                     (19.5) 

 tt,rs– tr,rs ≤ 0                      (19.6) 

 tt,r– tr,r ≤ 0                      (19.7) 

 𝐱𝐥 ≤ 𝐱 ≤ 𝐱𝐮                      (19.8) 

Where 𝐱 represents a design variable vector having lower and upper bounds as 𝐱L  and 𝐱U  respectively; umax  and ual  presents the 

maximum and permissible transverse displacement on the wing; wing lift effectiveness is ηL that is the ratio of flexible to rigid total 

lift forces whereas ηL,al represents its allowable value; Vcr and Val are the critical (lowest of flutter and divergence speed) and allowable 

wind speed respectively; front spar thickness at the root and tip cord is tr,fs and tt,fs while for the middle spar, it is tr,ms and tt,ms 

respectively; similarly for the rear spar the thickness at the root and tip cord is presented as tr,rs and tt,rs while for the ribs, it is tr,r and 

tt,r respectively. 

 The objective function is set to minimize wing mass whereas the constraints are assigned so that the wing is safe from the static 

and dynamic aeroelastic phenomena. There is a total of 25 design variables accounted for in this investigation that can be separated 

into two sections. First is the thicknesses and ply orientations of composite skins (lower and upper) and the second one is the thickness 

and distribution function of isotropic material (structural part of Goland wing). The details of the design variables are as follows: 

 x1 = distribution function of spar thickness 

 x2 = thickness of spar at the root chord 

 x3 = thickness of spar at tip chord 

 x4 = distribution function of front spar thickness 

 x5 = thickness of front spar at the root chord 

 x6 = thickness of front spar at tip chord 

 x7 = distribution function of rear spar thickness 

 x8 = thickness of rear spar at the root chord 

 x9 = thickness of rear spar at tip chord 

 x10 = distribution function of ribs location 

 x11 = distribution function of ribs thickess 

 x12 = thickness of ribs at the root chord 

 x13 = thickness of ribs at tip chord 

 x14−16 = thicknesses of laminated lower skin layers 1-3 (outside wing to inside wing) 

 x17−19 = orientations of laminated lower skin layers 1-3 (outside wing to inside wing) 

 x20−22 = thicknesses of laminated upper skin layers 1-3 (inside wing to outside wing) 

 x23−25 = orientations of laminated upper skin layers 1-3 (inside wing to outside wing) 

 In the above formulation, all design variables considered are of discrete nature. The thicknesses of composite layers are selected 

from {0.25, 0.5, 1.0, 1.3, 1.7, 2.4, 3.1, 3.4} mm while the ply orientations are limited to {-75, -60, -45, -30, -15, 0, 15, 30, 45, 60, 75, 

90} degree. For the isotropic material, the thickness can be selected from {0.5, 0.7, 0.8, 1.0, 1.2, 1.5, 2, 2.5, 3, 4, 5, 6, 8, 10, 12, 15, 16, 

20, 25, 30, 35, 40, 45, 50} mm. The three constraints above are set so that the wing moment of inertia with respect to the fuselage axis 

is lower to ease in lateral/directional motion control. The allowable constraint values are set as Val = 200 m/s, ual = 0.5 m, and ηL,al = 

0.9. following [46]. The quadrilateral Mindlin shell elements with drilling degree of freedom [47, 48] were used for modelling the 

finite element model while the shear correction factors are computed based on [49]. The vortex and doublet lattice method has been 

implemented for static and dynamic aerodynamic analysis. Moreover, quasi-unsteady aerodynamic forces are used for flutter analysis 

[50], which provides the results under an acceptable range in comparison to other available computational tools. 
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4. Experimental setup 

 

 To evaluate the performance of the E-GGWP-W algorithm, 18 constrained benchmark functions from the CEC-RW-2020 test suit 

are considered and contrasted with several established and newly developed MHs present in the literature. All benchmark functions 

are set at particular design conditions i.e. number of design variables, population size, and the total number of function evaluations 

(FEs) following Kumar, A et al. [37]. All the algorithms were executed for 30 independent runs for all problems. Moreover, all the 

considered algorithms are also explored to aeroelastic optimization of the composite Goland wing. Each optimizer is executed 10 times 

independently for this practical design example with the considered size of population 50 and 10,000 FEs. The design problem 

constraints are handled using the Kaveh-Zolghadr technique [51]. Friedman’s test is used for statistically ranking all the MHs. The 

optimisers for comparative performance study considered in this study are Sine cosine algorithm (SCA) [52], Particle swarm 

optimisation (PSO) [53], Whale optimisation algorithm (WOA) [54], Dragonfly algorithm (DA) [55], Artificial bee colony (ABC) 

[56], Genetic algorithms (GA) [40], Grey wolf optimiser (GWO) [26] and Population base increment learning (PBIL) [43].  

 

5. Results and discussion 

 

 For performance investigation based on the constrained mechanical CEC-RW-2020 benchmarks, the statistical results of the total 

18 mechanical engineering problem functions (F15-30 and F32-33) are presented in Table A1 of the Appendix. The average, standard 

deviation, and Friedman’s rank of optimum results are shown in which the standard deviation values are shown in the round brackets 

whereas Friedman’s ranks are displayed in the square brackets. Outcomes demonstrate that the proposed algorithm E-GGWP-W is the 

best among all accounted algorithms according to Friedman’s rank for 10 test functions. The second and third best algorithms are GWO 

and ABC that gives the best Friedman’s rank results for 5 and 2 test problems, respectively. Friedman’s ranks for mechanical 

constrained CEC2020 benchmark functions are averaged and reported in Table 3. It is found that E-GGWP-W has the best mean rank 

with 2.12037 while the second and third best optimizers are 2.75648 and 3.30833, respectively. The highest rank (worst) of 7.95741 

was obtained by GA followed by PBIL and PSO with value 7.41019 and 7.05093 respectively. 

 

Table 3 Summary of Friedman’s test of constrained mechanical test problem in CEC-RW-2020 result with all SOEAs 

 

Algorithm Mean rank Std rank Total “rank 1” 

SCA 5.63704 0.94171 0 

PSO 7.05093 1.20742 0 

WOA 4.58056 0.96637 0 

DA 4.17870 1.24614 1 

ABC 3.30833 1.34388 2 

GA 7.95741 1.60596 0 

GWO 2.75648 1.32123 5 

PBIL 7.41019 0.68574 0 

E-GGWP-W 2.12037 0.74322 10 

 

 The second investigation deals with the practical engineering problem. The competitive algorithms mentioned above have been 

applied in a variety of real engineering problems so far especially GA. GA is the most popular metaheuristic, which has been 

implemented on a number of design problems, for example, chemical engineering [57], heat transfer [58, 59], aerodynamic design [60, 

61]. Moreover, other metaheuristics in the table have also been used in various engineering fields, for example, the energy engineering 

field [58, 59, 62-67] and computer science [68, 69]. This article is concerned with the aeroelastic optimization of the Golandwing, one 

of the most important aerospace engineering disciplines. The obtained optimum results by E-GGWP-W are presented in Table 4. 

Similarly using the proposed methodology, the optimal geometry obtained is illustrated in Figure 3 while the details of the optimum 

solution for aeroelastic phenomena which was found after the computational analysis is revealed in Table 5. The optimal overall wing 

weight obtained by the E-GGWP-W is 48.2125 kg with a critical speed of 236.2097 m/s. Moreover, while satisfying all design 

constraints the lift effectiveness and maximum transverse deflection value found by the proposed hybrid algorithm for the optimal wing 

is 1.0567 and 0.20379 m respectively.  

 The critical speed of the optimum solution is the divergence speed that is reasonable for lift effectiveness higher than 1.0. This 

phenomenon occurs when the wing has an extreme angle of attack subject to wing flexibility. The composite ply orientations at lower 

skin tend to be parallel with the span direction for supporting the high-pressure distribution from aerodynamic loadings. The outer layer 

has a higher thickness than the inner layers for the lower skin. For the position of ribs, they are aligned with more density at the root 

chord while with less density at the wing tip. This distribution solution is applying for supporting the high lift distribution similar to 

the skin thickness. The thickness of all three spars is thicker at the root chord and becomes thinner at the wing tip (DSV no. 2, 5, and 

8 are more than no. 3, 6, and 9, respectively). The maximum thickness of the spar is at the front spar. For the upper skin, the orientations 

of three upper skin layers are, to some extent, antisymmetric to that of the lower skin. However, the thickness for each layer is different. 

The fiber orientations and thicknesses of the lower and upper wing skins are displayed in Figure 3. 
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Table 4 Optimum design results 

 

DSV no. Definition value unit 

1 distribution function number 5 - 

2 thickness of spar at root chord 2 mm. 

3 thickness of spar at tip chord 0.8 mm. 

4 distribution function number 1 - 

5 thickness of front spar at root chord 15 mm. 

6 thickness of front spar at tip chord 1.2 mm. 

7 distribution function number 5 - 

8 thickness of rear spar at root chord 3 mm. 

9 thickness of rear spar at tip chord 1 mm. 

10 distribution function number 1 - 

11 distribution function number 1 - 

12 thickness of ribs at root chord 1.2 mm. 

13 thickness of ribs at root chord 0.5 mm. 

14 thicknesses of laminated lower skin layers 1 (outer layer) 0.5 mm. 

15 thicknesses of laminated lower skin layers 2 (middle layer) 0.25 mm. 

16 thicknesses of laminated lower skin layers 3 (inner layer) 0.25 mm. 

17 orientations of laminated lower skin layers 1 (outer layer) -75 deg. 

18 orientations of laminated lower skin layers 2 (middle layer) 75 deg. 

19 orientations of laminated lower skin layers 3 (inner layer) 45 deg. 

20 thicknesses of laminated upper skin layers 1 (inner layer) 0.25 mm. 

21 thicknesses of laminated upper skin layers 2 (middle layer) 0.5 mm. 

22 thicknesses of laminated upper skin layers 3 (outer layer) 0.25 mm. 

23 orientations of laminated upper skin layers 1 (inner layer) 75 deg. 

24 orientations of laminated upper skin layers 2 (middle layer) 15 deg. 

25 orientations of laminated upper skin layers 3 (outer layer) -75 deg. 

 

Table 5 Optimum wing phenomenon 

 

Parameter value unit 

Total mass 48.2125 kg. 

Divergence speed (𝑉𝑑) 236.2097 m/s 

Flutter speed (𝑉𝑓) 307.1655 m/s 

Critical speed (𝑉𝑐𝑟) 236.2097 m/s 

Lift effectiveness (𝜂𝐿) 1.0567 - 

Maximum deflection (𝑢𝑚𝑎𝑥) 0.20379 m. 

 

 
 

Figure 3 Optimum solution geometry model 

 

6. Conclusions 

 

 The present study proposed and investigates a novel E-GGWP-W algorithm for the optimal design composite wing. In the proposed 

hybrid algorithm, GA, GWO, WCA, and PBIL MHs were used for the computation of subpopulations success archives, and 

accordingly, the weight is updated which eventually leads to solution modification. The suggested algorithm is explored for the 

benchmark functions of the CEC-RW-2020 test suit and composite Goland wing aeroelastic design to evaluate its performance. The 

simulation  outcomes  of  the  proposed  algorithm  are  contrasted  with  eight  distinguished  algorithms  subjected  to  the  same  input 
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conditions. The results obtained reveal the dominance of E-GGWP-W over other considered algorithms. Moreover, based on 

Friedman’s rank test carried out, E-GGWP-W ranked first for most of the design problems and shows its competency in solving real-

life challenging optimization problems efficiently. 

 In the future, this algorithm can be explored for the higher dimension design optimization problem. Also, the interested scholar can 

extend this work for multi-modal and nonlinear practical challenging design problems with conflicting many objectives and evaluate 

the performance. Moreover, numerous comparison analysis can be performed with other existing prominent algorithms to achieve the 

best optimizer for a particular design problem. 
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Appendix  
 

A comparative performance of MHs on the constrained CEC-RW-2020 functions 

 

Table A1 Comparative of constrained CEC-RW-2020 results of all MHs 

 

Mean (Std) [Friedman's rank] SCA PSO WOA DA ABC 

CECRW2020 3010.55300 3874.20440 3012.91146 3016.54598 2994.23425 

F15 (5.06589) (800.17722) (15.83280) (19.41488) (0.00000) 

Weight Minimization of a 

Speed Reducer 
[5.06667] [7.60000] [4.90000] [5.13333] [1.60000] 

CECRW2020 6.25376 3.76376e+06 14068.33019 3749.47683 0.06364 

F16 (1.88244) (2.92487e+06) (36528.28553) (17984.88723) (0.01177) 

Optimal Design of Industrial 

refrigeration System 
[6.20000] [9] [4.56667] [6.26667] [2.70000] 

CECRW2020 0.01502 6.59165 0.01370 0.01490 0.01284 

F17 (0.00263) (35.82178) (0.00125) (0.00535) (0.00013) 

Tension/compression spring 

design (case 1) 
[4.80000] [8.10000] [4.73333] [4.66667] [3.53333] 

CECRW2020 6961.98232 8164.33398 6602.35688 6460.06826 5774.37631 

F18 (1738.66474) (2798.83763) (487.40702) (529.71925) (35.60709) 

Pressure vessel design [5.40000] [6.10000] [5.43333] [4.83333] [2.63333] 

CECRW2020 1.85639 2.41816 1.86778 1.78673 1.88771 

F19 (0.01461) (0.47156) (0.22552) (0.14669) (0.08876) 

Welded beam design [4.86667] [7.03333] [4.60000] [3.53333] [5.50000] 

CECRW2020 263.86200 264.17989 263.96738 263.85279 263.87665 

F20 (0.00905) (1.20750) (0.16526) (0.00092) (0.02697) 

Three-bar truss design problem [5.20000] [3.30000] [6.16667] [3.36667] [5.70000] 

CECRW2020 0.23525 0.28170 0.23525 0.23720 0.23524 

F21 (0.00000) (0.06297) (0.00001) (0.00746) (0.00000) 

Multiple disk clutch brake 

design problem 
[4.90000] [7.61667] [3.60000] [2.06667] [4.16667] 

CECRW2020 1.50001e+05 7.30262e+05 0.59090 0.56925 0.53347 

F22 (3.41144e+05) (3.32063e+06) (0.12788) (0.09237) (0.00474) 

Planetary gear train design 

optimization problem 
[7.21667] [7.73333] [3.73333] [4.10000] [2.56667] 

CECRW2020 26.56827 710.14610 17.97876 23.96788 16.05397 

F23 (3.77828) (949.94962) (5.02367) (5.17601) (0.01164) 

Step-cone pulley problem [5.76667] [6.73333] [3.93333] [5.20000] [2.13333] 

CECRW2020 6.73097 26123.61530 5.51372 5.11324 4.09662 

F24 (2.14981) (1.05261e+05) (1.42285) (1.29878) (0.52820) 

Robot gripper problem [6.05000] [7.40000] [4.80000] [4.48333] [3] 

CECRW2020 3.94203e+05 2755.07901 306.14570 603.31101 665.28706 

F25 (1.16933e+06) (693.14390) (166.69668) (319.42885) (252.39881) 

Hydro-static thrust bearing 

design problem 
[5.76667] [6.83333] [2.26667] [4.10000] [4.46667] 

CECRW2020 4.54960e+08 2.03760e+09 5.84887e+07 1.87798e+08 1.11571e+06 

F26 (1.08197e+09) (4.57847e+09) (4.24723e+07) (1.30446e+08) (1.13988e+06) 

Four-stage gear box problem [6.03333] [7.70000] [4.26667] [5.66667] [1.36667] 

CECRW2020 576.03223 588.38240 561.09711 535.11936 523.11842 

F27 (39.50365) (25.82150) (20.43125) (9.81908) (0.41605) 

10-bar truss design [6.20000] [7.20000] [5.93333] [3.90000] [1.96667] 

CECRW2020 17771.59491 45120.92238 18258.95847 17352.83597 16949.69172 

F28 (1571.27721) (76391.57487) (3510.60211) (555.57731) (0.00178) 

Rolling element bearing [5.63333] [7.33333] [4.76667] [4.33333] [1.90000] 

CECRW2020 3.16674e+06 3.50551e+06 3.05154e+06 3.11528e+06 3.01208e+06 

F29 (29840.92018) (1.46551e+06) (99470.38821) (91229.55972) (42168.67052) 

Gas Transmission Compressor 

Design (GTCD) 
[6.76667] [5.46667] [4.10000] [5.30000] [3.80000] 

CECRW2020 2.72860 3.54802 2.96317 2.88845 2.76662 

F30 (0.08015) (0.72860) (0.24592) (0.35073) (0.08517) 

Tension/compression spring 

design (case 2) 
[3.63333] [6.76667] [5.56667] [3.86667] [4.23333] 

CECRW2020 -3.04427e+04 -2.98785e+04 -3.03483e+04 -3.05871e+04 -3.04242e+04 

F32 (346.11979) (360.41721) (311.01908) (118.24991) (85.37811) 

Himmelblau's Function [4.63333] [7.36667] [5.50000] [3.26667] [5.20000] 

CECRW2020 3.54955 3.81490 2.63935 2.63935 2.63935 

F33 (0.38616) (0.47338) (0) (0.00000) (0.00000) 

Topology Optimization [7.33333] [7.63333] [3.58333] [1.13333] [3.08333] 

* The best Friedsman’ rank is present in bold 
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Table A1 (continued) Comparative of constrained CEC-RW-2020 results of all MHs  

 

Mean (Std) [Friedman's rank] GA GWO PBIL E-GGWP-W 

CECRW2020 9.55489e+09 2997.63320 4772.26087 2994.23425 

F15 (9.90305e+09) (2.03848) (3582.65018) (0.00000) 

Weight Minimization of a Speed Reducer [8.93333] [3.03333] [7.33333] [1.40000] 

CECRW2020 2089.89356 0.03850 47663.72085 3121.03272 

F16 (10097.53243) (0.00222) (1.16687e+05) (17092.82767) 

Optimal Design of Industrial refrigeration 

System 
[5.26667] [1.20000] [7] [2.80000] 

CECRW2020 13017.73275 0.01268 0.02128 0.01283 

F17 (28038.70719) (0.00001) (0.00666) (0.00020) 

Tension/compression spring design (case 1) [7.50000] [1.20000] [7.26667] [3.20000] 

CECRW2020 9.90992e+16 5878.97125 8732.18319 6050.64263 

F18 (6.46346e+16) (417.04159) (2595.27319) (428.80456) 

Pressure vessel design [8.46667] [2] [7.30000] [2.83333] 

CECRW2020 3.67325e+19 1.68533 2.54168 1.67171 

F19 (1.72764e+20) (0.04374) (0.57644) (0.00294) 

Welded beam design [8.86667] [1.86667] [7.50000] [1.23333] 

CECRW2020 Inf 263.85236 265.35004 263.85235 

F20 (NaN) (0.00002) (2.20340) (0.00000) 

Three-bar truss design problem [9] [2.93333] [7.83333] [1.50000] 

CECRW2020 2.73541e+05 0.23526 0.23836 0.23524 

F21 (1.49825e+06) (0.00001) (0.00311) (0.00000) 

Multiple disk clutch brake design problem [7.81667] [5.70000] [7.51667] [1.61667] 

CECRW2020 6667203152216713 0.53415 3334.30627 0.53555 

F22 (2.53707e+16) (0.00449) (18257.38309) (0.00789) 

Planetary gear train design optimization 

problem 
[6.73333] [2.76667] [7.33333] [2.81667] 

CECRW2020 1.18834e+11 16.04733 1.78323e+09 16.52140 

F23 (7.33504e+09) (0.00164) (2.52693e+09) (0.46265) 

Step-cone pulley problem [9] [1.73333] [8] [2.50000] 

CECRW2020 8.56971e+12 4.02070 1.24380e+07 3.64509 

F24 (4.69380e+13) (0.99018) (6.81258e+07) (0.81299) 

Robot gripper problem [5.70000] [3.05000] [8.50000] [2.01667] 

CECRW2020 5.98174e+24 364.31167 2.35963e+05 258.95817 

F25 (3.12281e+25) (107.68192) (5.02887e+05) (187.35940) 

Hydro-static thrust bearing design problem [9] [2.76667] [7.76667] [2.03333] 

CECRW2020 4.88417e+16 1.59058e+07 1.82214e+08 9.54464e+06 

F26 (8.76552e+16) (1.24924e+07) (1.36679e+08) (1.31668e+07) 

Four-stage gear box problem [9] [2.86667] [6] [2.10000] 

CECRW2020 1.07745e+05 523.94307 575.73592 525.84862 

F27 (1.18192e+05) (1.94992) (21.80035) (3.07346) 

10-bar truss design [8.86667] [1.93333] [6.63333] [2.36667] 

CECRW2020 1.50237e+07 17001.93367 22127.39323 16957.09107 

F28 (8.19284e+06) (45.02959) (3200.29261) (25.67121) 

Rolling element bearing [8.70000] [3.76667] [7.40000] [1.16667] 

CECRW2020 6.39614e+12 2.96661e+06 3.33967e+06 2.98909e+06 

F29 (7.61987e+12) (7076.36475) (2.32161e+05) (63113.63107) 

Gas Transmission Compressor Design (GTCD) [8.80000] [1.76667] [7.30000] [1.70000] 

CECRW2020 9.68896e+23 2.69622 896.77876 2.70526 

F30 (1.28584e+24) (0.08602) (4882.06594) (0.08648) 

Tension/compression spring design (case 2) [9] [2.53333] [7.13333] [2.26667] 

CECRW2020 3.95408e+10 -3.06623e+04 -3.01005e+04 -3.06655e+04 

F32 (2.00346e+10) (2.16853) (267.02734) (0.00000) 

Himmelblau's Function [9] [2.46667] [6.56667] [1] 

CECRW2020 2.63935 2.79931 7.07484 2.64105 

F33 (0) (0.10001) (0.81432) (0.00547) 

Topology Optimization [3.58333] [6.03333] [9] [3.61667] 

* The best Friedsman’ rank is present in bold 


