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Abstract 

 

Landslide is one of the most frequent disaster at Ossey watershed area in Bhutan causing inconvenience to the local people, financial 

losses and claiming lives of the people every year. This study aimed at developing the landslide susceptibility map (LSM) based on its 

severity at Ossey watershed area in Bhutan. During the landslide inventory, a total of 164 landslide locations were identified using the 

sentinel-2 interpretation, google earth image and field survey which was divided into training and validation dataset. Training and 

validation dataset comprise of 70% (115 locations) and 30% (49 locations) of the total landslide, respectively. Twelve factors were 

considered for this study which includes altitude, aspect, curvature, slope gradient, topographic wetness index, stream power index, 

normalized difference vegetation index, proximity to road, proximity to river, lithology, rainfall data, and land cover map. The landslide 

susceptibility map was developed using the frequency ratio model. The kappa index was used for the checking reliability of the model 

and area under curve (AUC) of the receiver operating characteristics (ROC) curve was used for validation of the LSM. The kappa 

indexes were 0.4261 and 0.5510 for training and validation dataset respectively indicating the LSM is reliable as the kappa values fall 

under the scale of moderately reliable. The AUC are 0.7916 and 0.8742 for the success rate and prediction rate respectively indicating 

the LSM is accurate enough for the engineering application. The final LSM is classified into five classes using equal interval classifier 

as the data distributions are close to the normal. The final LSM could be useful for the future researchers, planners, decision makers 

and engineers for the future developmental activities. 
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1. Introduction 

 

 Landslide is defined as the movement of the slope forming 

materials composed of natural, artificial and combination of these 

material from its original position [1]. Landslides is one of the 

most frequent and destructive disaster in the mountainous area 

[2]. Landslide cause damage to various engineering structure, 

agricultural land, mining sites, forest, residential areas and even 

claim lives of thousands of people [3]. According to the data 

released by the international disaster database EM-DAT 

(https://www.emdat.be/emdat_db/), 7969887 people were 

affected, and 21022 people were killed by landslides in Asia 

alone from 1900-2019. It is important to develop systematic 

methodology to prevent and control the landslide disaster in the 

future. Generally,  a landslides susceptibility map is the first step 

to inform the decision makers for the future infrastructure 

development [4].  

 There are several qualitative and quantitative approaches to 

study the relationship between the landslide and the factors [5]. 

The qualitative approaches are entirely based on the judgment of 

the person carrying out the research or based on expert’s 

evaluation. The input data are usually derived from field visit 

assessment and aerial photo interpretation [6]. The quantitative 

approaches are based on the numerical calculation between 

landslide events and the factors [5]. The quantitative approaches 

are classified into statistical approaches, geotechnical 

engineering approaches and neural network analysis[6]. In the 

last few decades, statistical approaches was popular among the 

various approaches [2]. Statistical are classified into bivariate and 

multivariate. In bivariate statistical approach, the factors are 

compared with landslide event map and derive the weight of the 

classes of the all the factors on the basis of landslide density [6]. 

The bivariate statistical approaches include Frequency ratio [7], 

index of entropy [8], information value [9], statistical index [10], 

certainty factor [11] and weight of evidence [12]. Although there 

are many approaches for the multivariate statistics, the most 

popular approach is logistic regression [2]. 

 Bhutan is characterized by steep and rugged terrain which is 

heavily affected by the landslides during monsoon season. 

Although the country is one of the most landslide prone area, 

there isn’t much study done on landslides in Bhutan. Few 

researches on landslides in Bhutan covers only certain portion of 

Bhutan, that doesn’t cover the most landslide prone area. The few 

studies carried out on landslide in Bhutan includes landslide 

susceptibility mapping using information value at Phuntsholing 

by Pasang and Kubíček [13], determination of probabilities of 

landslide event-a case study of Bhutan by Sarkar and Dorji [14], 

application of soil nailing for the landslide mitigation in Bhutan: 

A case study at Sorchen Bypass by Sarkar et al. [15] and method 

for landslide risk evaluation and road operation management: A 

case  study of  Bhutan  by Cheki  and  Shibayama [16].  Although 



Engineering and Applied Science Research 2021;48(1)                                                                                                                                                    57 

 
 

 
 

Figure 1 The location of rainfall stations and landslide locations at Ossey watershed area 

 

Ossey watershed area is one of the most landslide prone area in 

Bhutan, there is no study on landslides covering this area.  

 The purpose of this study was to find the accurate landslide 

potential area in the future at Ossey watershed area and to zone 

the landslides area based on its severity. The study also aimed to 

derive weight of the individual classes of the factor using the 

frequency ratio model. The developed LSM could serve as an 

effective guide for the future developmental activities. 

 

2. Materials and methods 

 

2.1 Study area 

 

 The Ossey watershed (Figure 1) is located in the southern 

part of Bhutan with an area of approximately 820sq.km. It is 

located in between 26°50’00”N-27°15’00”N latitude and 

90°10’00”E-90°50’00”E longitude and at an altitude of 190m-

4194m above the mean sea level. The average annual 

precipitation is 3950mm and the maximum slope gradient is 72°. 

The average temperature ranges from 19°C in winter to 27°C in 

summer. The weak lithological factor and favorable hydrological 

environment of the terrain causes slope failure every year. The 

area experiences number of landslides during the monsoon 

season due to intense precipitation. 

 

2.2 Landslide inventory mapping 

 

 The identification and training the existing landslide is 

fundamental step to find the relationship between landslide 

distribution and its factors [17]. The accuracy of landslide 

assessment depend on the amount, distribution and training 

existing landslides [10]. In this study, the landslide inventory was 

done using sentinel-2 interpretation, google earth image and the 

extensive field survey using handheld GPS during the monsoon 

season of the year 2017 to 2019. A total of 164 landslides were 

identified during the landslides inventory (Figure 1). As per the 

suggestion of the Liu and Duan [10] and Shirani et al. [3], the 

landslide inventory were divided into 70%(115 locations) and 

30% (49 locations) for training and validation dataset 

respectively. 

2.3 Landslide factor preparation 

 

 It is essential to use appropriate landslide factors for the 

landslide assessment [18]. A total of twelve factors were 

employed for this study. These factors were altitude, slope 

gradient, slope aspect, slope curvature, topographic wetness 

index (TWI), stream power index (SPI), normalized difference 

vegetation index (NDVI), land cover, proximity to river, 

proximity to road, Lithology and rainfall. The SRTM (30m) was 

used for the extraction of aspect, curvature, elevation, slope 

angle, SPI and TWI. The Geological map of Bhutan(1:500000) 

prepared by Long, McQuarrie, Tobgay, Grujic, and Hollister [19] 

was used for the extraction of lithological map. The 

sentinel(10m) was used for the preparation of land cover map and 

NDVI. The digital topographic map (1:25000) prepared by Japan 

Internation Cooperation Agency (JICA) was used for extraction 

of proximity to river and road. All the factors were resampled to 

grid of 30mx30m which is same as the spatial resolution of 

SRTM DEM and stored in the grid format. The study area consist 

of 1376 row by 1497 columns with total of 911947 grid cell 

(820,752,300m2). The detail of individual landslide factors were 

elaborated in the following section. 

 Regarding the altitude, it doesn’t influence on the landslide 

event directly. However, it affects the intensity of rainfall, 

humidity and tectonic setting of an area [18]. The varying 

lithology with the change in altitude also impact the landslides 

probability [20]. These causes differences in the landslide event. 

The classified altitude map is shown in the Figure 2(a). 

 In the case of slope gradient, as the slope gradient increased, 

the shear stress of the soil also increased indicating higher 

landslide probability in the steeper slope [21]. The slope gradient 

is classified into five classes as shown in the Figure 2(b). 

 The horizontal direction of the slope face is called slope 

aspect [22]. The different directions of the slopes receives 

different amount of rainfall and solar radiation [17]. The 

probability of the landslides vary from one face of the slope to 

other [21]. The slope aspect map is classified as shown in the 

Figure 2(c). 

 The slope curvature is the rate of change of terrains or aspect 

[17]. The terrain is said to be convex when its curvature value is 

positive  and  concave  terrain  when  its  value  is  negative.  The  
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Figure 2 Factors (a) Altitude (b) Slope Gradient (c) Slope Aspect (d) Slope Curvature (e) Topographic wetness Index (f) Stream Power 

Index (g) Normalized Difference Vegetation Index (h) Land cover Map (i) Proximity to river (j) Proximity to road (k) Lithology (l) 

Rainfall distribution map 

 

curvature is said to be flat, when its value is in between -0.05 to 

0.05 [18]. The slope curvature is as shown in the Figure 2(d). 

 The topographic wetness index (TWI) indicate the amount of 

water  accumulation  at  any point  in  an  area [2]. The classified  

TWI is shown in the Figure 2(e) and it is calculated using the 

equation given by Moore, Grayson, and Ladson [23]. 
 

𝑇𝑊𝐼 = 𝑙 𝑛 (
𝛼

𝑡𝑎𝑛𝛽
)                                                                             (1) 
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Where α is the upslope contributing area and β is the slope angle. 

 Stream power index (SPI) measures the erosive capacity of 

the flowing water in the study area [2]. It assumes that the water 

discharge is proportional to the specific catchment area [17]. The 

SPI is calculated based on equation given by Moore et al. [23] 

 

𝑆𝑃𝐼 = 𝐴𝑠𝑡𝑎𝑛 𝛽                                                                                  (2) 

 

Where, As is the specific catchment area and β is the slope 

gradient in degrees.  

 The vegetation root stabilizes the terrain and reduces 

landslides. When the NDVI value is high, the vegetation is 

proved to be healthy [18]. For this study, the red and near-

infrared bands of the sentinel-2 is used for the calculation of 

NDVI. The NDVI value ranges from -1 to 1. The Figure 2(g) 

shows the NDVI classes. 

 The occurrence of the landslide differs for different types of 

land cover. The anthropogenic activities alters the slope stability  

and triggers the landslides [4]. Generally, the landslide are more 

prominent in an area characterized by inclined and mountainous 

area [21]. The different types of land use and land cover are 

shown in the Figure 2(h). 

 The tides of the river erodes its bank which eventually 

destabilize the toe of the slope. Normally, the area closer to the 

river experiences more landslides than the area far from the river 

[2]. The Figure 2(i) shows the classes of proximity to river. 

 The road construction cut the toe of the slope which induces 

slope instability [5]. The destabilized slope has higher chances of 

landslide occurrence. The classified proximity to road is as 

shown in the Figure 2(j). 

 Different composition and structure of lithology has different 

strength, permeability and erosional effect [3]. The low strength 

lithology has higher chance of detachment from the slope. 

Lithology plays an important role in a landslide’s size, frequency 

and type [4]. The detail of lithological units are elaborated in the 

Table 1 and shown in Figure 2(k). 

 

Table 1 Description of lithological unit 

 

Geologic age Code  Lithology 

Miocene-Pliocene Tsm Sandstone and cobble-conglomeratic sandstone 

Paleoproterozoic pCd Schist, phyllite, quartzite and limestone.  

Ordovician or younger Pzc Micaceous quartzite, schist, marble, phyllite, and phyllitic quartzite.  

Neoproterozoic-Cambrian GHlml quartzite, schist, kyanite, sillimanite and staurolite 

Cambrian-Ordovician GHlo Granite, schist, and quartzite and granite  

Miocene Tgr Massive to foliated, syn-Himalayan leucogranite plutons. 

 

Table 2 Weight of the classes of the factors using frequency ratio 

 

Factor Class 
No of Pixel in 

domain 

% of 

Domain 

Number of 

Landslide 

% of 

Landslide 

Frequency 

Ratio 

Altitude 

(m) 

190 - 897 123321 13.52 45 39.13 2.89 

897 - 1497 222051 24.35 31 26.96 1.11 

1497 - 1991 294483 32.29 21 18.26 0.57 

1991 - 2660 223435 24.50 13 11.30 0.46 

2660 - 4197 48657 5.34 5 4.35 0.81 

Slope 

gradient 

(Degree) 

0 - 12.62 88489 9.70 6 5.22 0.54 

12.62 - 23.28 208452 22.86 20 17.39 0.76 

23.28 - 32.26 275837 30.25 28 24.35 0.80 

32.26 - 41.52 239515 26.26 29 25.22 0.96 

41.52 - 71.53 99654 10.93 32 27.83 2.55 

Slope Aspect 

Flat 285 0.03 0 0.00 0.00 

North 118174 12.96 6 5.22 0.40 

NorthEast 97997 10.75 9 7.83 0.73 

East 110602 12.13 14 12.17 1.00 

SouthEast 129200 14.17 33 28.70 2.03 

South 120454 13.21 18 15.65 1.19 

SouthWest 126820 13.91 18 15.65 1.13 

West 111498 12.23 7 6.09 0.50 

NorthWest 96917 10.63 10 8.70 0.82 

Slope 

Curvature 

Concave 434525 47.65 70 60.87 1.28 

Flat 36424 3.99 3 2.61 0.65 

Convex 440998 48.36 42 36.52 0.76 

TWI 

-10.67 - -0.06 80173 8.79 10 8.70 0.99 

-0.06 - 1.92 245561 26.93 35 30.43 1.13 

1.92 - 5.46 126394 13.86 18 15.65 1.13 

5.46 - 8.11 459819 50.42 52 45.22 0.90 

SPI 

-13.81 - -4.05 233485 25.60 18 15.65 0.61 

-4.05 - 0.77 323339 35.46 41 35.65 1.01 

0.77 - 3.45 292178 32.04 41 35.65 1.11 

3.45 - 13.54 62945 6.90 15 13.04 1.89 

NDVI 

-0.592 - 0.224 39044 4.28 22 19.13 4.47 

0.224 - 0.411 101937 11.18 28 24.35 2.18 

0.411 - 0.562 150158 16.47 17 14.78 0.90 

0.562 - 0.690 267052 29.28 27 23.48 0.80 

0.690 - 0.895 353756 38.79 21 18.26 0.47 
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Table 3 (continued) Weight of the classes of the factors using frequency ratio  

 

Factor Class 
No of Pixel in 

domain 

% of 

Domain 

Number of 

Landslide 

% of 

Landslide 

Frequency 

Ratio 

 Agricultural Land 29903 3.28 2 1.74 0.53 

 Built Up Area 851 0.09 0 0 0 

Land  Forest 844305 92.58 110 95.65 1.03 

Cover Shrub 22629 2.48 3 2.61 1.05 

 Water Bodies 14259 1.56 0 0 0 

Proximity 

to River 

0-100 31639 3.47 7 6.09 1.75 

100-200 27341 3.00 1 0.87 0.29 

200-300 29785 3.27 4 3.48 1.06 

300-400 25379 2.78 4 3.48 1.25 

400< 797803 87.48 99 86.09 0.98 

Proximity 

to Road 

0-100 30136 3.30 5 4.35 1.32 

100-200 22593 2.48 3 2.61 1.05 

200-300 23374 2.56 6 5.22 2.04 

300-400 19606 2.15 1 0.87 0.40 

400< 816238 89.50 100 86.96 0.97 

Lithology 

Tsm 96424 10.57 32 26.02 2.46 

Pzc 9617 1.05 1 0.87 0.82 

pCd 34574 3.79 12 10.43 2.75 

GHlml 22953 2.52 5 4.35 1.73 

GHlo 162532 17.82 23 20.00 1.12 

Tgr 585847 64.24 42 36.52 0.57 

Rainfall 

1787.00 - 2434.65 233537 25.61 19 16.52 0.65 

2434.65 - 2929.92 260302 28.54 14 12.17 0.43 

2929.92 - 3539.48 185098 20.30 17 14.78 0.73 

3539.48 - 4225.23 123336 13.52 39 33.91 2.51 

4225.23 - 5025.27 109674 12.03 26 22.61 1.88 

 

 The rainfall is one of the important triggering factor for the 

landslides. The rainfall infiltrates in the terrain and triggers the 

erosion [2]. Generally, the area with higher rainfall experiences 

more landslides. For this study, the average annual rainfall map 

was developed using 21 years (1996-2017) data from 20 rainfall 

stations (Figure 1) of Bhutan and the inverse distance weighting 

(IDW) technique was applied for the interpolation. Since the 

rainfall data are collected at the rain gauge stations, it will be in 

the form of point feature. The interpolation technique is 

necessary for generating the rainfall map of the study area. The 

IDW interpolation estimates the unknown rainfall from the 

known data from the stations that are adjacent to the unknown 

area [24].  The IDW interpolation assumes that the value of the 

unsampled point is the linear weighted average of the known 

values within the neighborhood [24]. The influence on the output 

value becomes minimal as the distance increases from the known 

point [25]. The IDW interpolated rainfall map will help in finding 

the spatial relationship between the landslides and the rainfall. 

The Figure 2(l) shows the classified average annual rainfall 

distribution using IDW interpolation. 

 

2.4 Frequency ratio model 

 

 Frequency Ratio (FR) model creates relationship between 

existing landslides with the individual classes of the factors [18]. 

FR assumes that the landslides are determined by its factors and 

the future landslides occurs under the same condition as that of 

past landslides [26]. The FR is defined as the ratio of percentage 

of the landslides in the individual class to the percentage of pixel 

in the class of the factor and its calculated using the Equation 3 

[22]. If the influence of the class of a factor is strong, the FR value 

will be greater than one and vice versa [26]. The Table 2 shows 

the FR values for the individual classes of the factors. 

 

𝐹𝑅 =

𝑁𝑝(𝐿𝑋𝑖)
∑ 𝑁𝑝(𝐿𝑋𝑖)𝑚

𝑖=1

𝑁𝑝(𝑋𝑗)
∑ 𝑁𝑝(𝑋𝑗)𝑚

𝑗=1

                                                                         (3) 

where, FR is the frequency ratio of class i of factor j, Np(LXi) is 

the number of pixels with landslides within class i of factor 

variable X, Np(Xj) is the total number of pixel in the class of the  

factor Xj and m is the number of classes in the factor variable Xi. 

The Landslide Susceptibility Map (LSM) is calculated by 

summing up all the FR of all the factors. 

 

𝐿𝑆𝑀𝐹𝑅 = ∑ 𝐹𝑅                                                                                (4) 

 

3. Results and discussion 

 

3.1 Evaluation of influencing factor using frequency ratio value 

 

 The FR value shows the weight of the individual factor 

classes. The higher FR value indicates stronger correlation 

between the factor’s class and landslides [18]. The Table 2 shows 

the FR value of the individual classes of the twelve factors 

calculated using the Equation 3.  

 As per the Table 2, the FR value decreases with increase in 

altitude. The altitude between 190m–897m and 897m – 1497m 

has a frequency ratio >1 while altitude above 1497m has FR<1. 

The similar pattern was observed by Jaafari, Najafi, 

Pourghasemi, Rezaeian, and Sattarian [27]. This result indicate 

that the probability of landslide occurrence is high in low altitude. 

This may be due to lithological units of the higher altitude are 

resistant to landslides [20]. Conversely, the frequency ratio value 

increases with the increase in the slope gradient. These shows 

that the landslide probability increases with slopes gradient [28]. 

The increase in slope gradient increases the shear stress of the 

soil and other associated unconsolidated materials.  

 For the slope aspect, the south facing slope has more 

frequency ratio value (FR>1) indicating more prone to landslides 

which includes southeast, southwest and east. The similar result 

was observed by Park et al. [28] and Meten, PrakashBhandary, 

and Yatabe [29]. Since the Ossey watershed area is located on the 

Himalayan region, the orographic effect of the giant Himalayan 

mountain brings more rainfall on the south facing slopes causing 

more landslides. 
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Figure 3 Landslide susceptibility map at Ossey watershed area 
 

 Regarding the slope curvature, the frequency ratio value of 

the concave slope is more than 1 indicating higher chances of the 

landslide, followed by convex and flat area. The previous study 

by Jaafari et al. [27] also shows similar results. These concave 

curvature terrains retain more moisture and reduces the stability 

causing more landslides. In the case of TWI, the landslide is more 

prominent in the TWI range -0.06 to 5.46 with FR value 1.13 

(FR>1) while the TWI range -10 - -0.06 and 5.46 - 8.11 

experiences less landslides with the FR value of 0.99.  

 The highest FR (1.89) corresponds to the highest SPI class 

3.45-13.54. while lowest FR value (0.61) correspdonds to the 

lowest SPI class -13.81 - -0.405. İt is noticed that the FR value 

increases with increase in SPI value. Oppositely, the FR value 

decreases with increase in NDVI value. The lowest NDVI class 

(-0.592 - -0.224) has the highest FR value 4.47 indicating  higher 

probability of landslides which coincides with barren area [22]. 

 In the case of land use and land cover, the landslide are more 

prone in the shrubs and forest area with FR value of 1.05 and 1.03 

respectively (FR>1) while there is no landslide in the built up 

area and water bodies which is true in the reality. 

 As for the proximity to river, the higher FR value (FR>1) 

coincide for the range 0 to 100m, 200m to 400m indicating more 

susceptible to landslides while the area beyond 400m has less FR 

value (FR<1) indicating safer place from the landslides. As the 

distance increase from the river, the probability of landslides is 

also minimal. Likewise, the higher FR value decreases with the 

increase in distance from the road. The highest FR value (FR>1) 

is observed upto the buffer distance of 300m from road. The FR 

value beyond 300m buffer from road is lesser than 1 indicating 

less chances of landslides. This may be due to instabilibity caused 

by the excavation during the road construction [7]. 
 The lithological unit Tsm, pCd, GHlml and GHlo shows 

higher chance of landslide with FR weight 2.46, 2.75, 1.73 and 

1.12 (FR>1) respectively. The unit Pzc and Tgr shows less 

likelihood for the landslide event with FR value 0.82 and 0.57 

respectively.  

 The class having rainfall amount 3539.48mm to 5025.27mm 

has the higher FR (FR>1) while the classes from 1787mm to 

3539.48mm has the lesser FR (FR<1). Clearly, it indicates that 

the landslides are proportional to the rainfall amount and 

agreeing to the fact that the landslides are also trigger by the 

rainfall [27]. 

 

3.2 Landslide susceptibility mapping 

 

 The factors were reclassified using the FR value from the 

Table 2. The LSM was developed by summing the reclassified 

factors using the Equation 4. The classification of LSM is 

necessary for the visual interpretation [27]. There are number of 

classification package in GIS software. The appropriate 

classification method is chosen based on the distribution of the 

landslide susceptibility value [5]. It is advisable to choose equal 

interval classifier, if the data distribution value is close to normal 

[27]. The equal interval classifier divides the range of attribute 

values into equal size sub-range [30]. For this LSM, the equal 

interval classifier was able to produce better visualization than 

the other classification. Therefore, considering the data value 

distribution and visualization, equal interval classification was 

used for this study as shown in the Figure 3. 

 The percentage of area covered by the different landslide 

susceptibility zones are shown in the Figure 4. As per the equal 

interval classification in the LSM, 32.18% (264.09km2) of the 

total area falls in the very low susceptibility zone, 47.35% 

(388.61km2) was located the low susceptibility area, 16.46% 

(135.08km2) falls in the moderate susceptible area. The 

proportion of high and very high susceptibility zone are 3.82% 

(31.33km2) and 0.20% (1.64km2) of the total area respectively. 
 

3.3 Evaluation of accuracy of landslide susceptibility mapping 

 

 It is important to evaluate the efficiency of the model and 

accuracy of the LSM [31].  The commonly used method for the 

validation is comparing the observed data (landslide inventory 

data) with the predicted data [3]. For this study, the landslides 

inventory data is divided into 70% (115 landslide points) for the 

training dataset and remaining 30% (49 landslide points) for the 

validation dataset. The equal number of non-landslide point is 

also identified for both training and validation dataset. Assign the 

value 1 for landslide point and 0 for non-landslide point for both 

training  and  validation  dataset. The  training  dataset  is used to  
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Figure 4 Percentage of area of the different zones of the landslide susceptibility mapping 

 

 
 

Figure 5 Success rate curve and prediction rate curve 

 
check the success rate of the model while validation dataset is 

used for the prediction rate of the landslide LSM. This study uses 

kappa index for checking the reliability of the model and area 

under curve (AUC) of receiver operating characteristic (ROC) 

curve to evaluate accuracy of the landslide susceptibility map.  

 The Kappa value varies from −1 (non-reliable) to 1 (reliable). 

The kappa index was calculated using the Equation 5 and it 

indicate the reliability of the model. The kappa scales and its 

interpretation are ≤0(poor), 0–0.2(slight), 0.2–0.4(fair), 0.4–

0.6(moderate), 0.6–0.8(substantial) and 0.8–1(almost perfect) 

agreement between estimation (model) and the ground reality 

(landslide inventory) [8]. The kappa index is calculated based on 

the following formula 

 

𝐾𝑎𝑝𝑝𝑎 =
𝑃𝑜𝑏𝑠 − 𝑃𝑒𝑥𝑝

1 − 𝑃𝑒𝑥𝑝
                                                                      (5) 

 

𝑃𝑜𝑏𝑠 =  
𝑇𝑃 + 𝑇𝑁

𝑛
                                                                               (6) 

 

𝑃𝑒𝑥𝑝  =
(𝑇𝑃 + 𝐹𝑁)(𝑇𝑃 + 𝐹𝑃) + (𝐹𝑃 + 𝑇𝑁)(𝐹𝑁 + 𝑇𝑁)

𝑛2       (7) 

 
Where, Pobs is the observed agreements, Pexp is the expected 

agreements and n represent the total pixel of the training dataset, 

TP(true positive) and TN(true negative) are the correctly 

landslide and non-landslide point respectively. The FP (false 

positive) and FN (false negative) are the incorrectly classified 

landslide and non-landslides respectively [32]. 

 The Kappa value of the model are 0.4261 and 0.5510 for the 

training and validation dataset respectively. Both the kappa 

values falls under the scale moderately agreement (0.4-0.6) 

between the estimation (model) and the ground observation [8]. 

The ROC curve is plotted using False Positive Rate on X-axis  

and True Positive Rate on Y-axis [32]. The success rate indicates 

the model fitness for the training dataset because the training data 

was used to build the model [18]. The prediction rate is used to 

evaluate the future predictive power of the LSM [33] and it was 

calculated using the validation dataset. The interpretation of 

AUC value are as follow: poor (0.5–0.6), moderate (0.6–0.7), 

good (0.7–0.8), very good (0.8–0.9) and excellent (0.9–1) [32]. 

According to the AUC (Figure 5), the success rate (0.7916) falls 

under good category (0.7-0.8) while the prediction rate (0.8742) 

falls under very good (0.8-0.9) category [32]. 

 

4. Conclusions 

 

 The landslide assessment is crucial for the future prediction 

of the landslide susceptible area, infrastructure development and 

prevention of landslides in the landslide prone areas. There are 

many approaches for assessing the landslide risk zone. It is 

important to choose simple and effective model for the 

generation of landslide susceptible area with higher predictive 

power and close to real landslide risk zone. However, the 

accuracy of the different approaches is still debatable. Their 

accuracy varies from one study area to another and based on the 

factor selection. For this research, the Ossey watershed area in 

Bhutan was chosen as the study area. The ossey watershed area 

experiences one of the worst landslides every year. During the 

monsoon season, the roads gets blocked and the local resident 

were cut off from the neighboring places due to landslides.   

 A total of 164 landslide location were identified through 

sentinel-2 interpretation and google earth and field visit. The 
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landslide inventory information was collected from the year 

2017-2019 in the month of April to September. A total of 70% of 

the total landslides were used randomly for training dataset while 

remaining 30% were used for validation dataset.  Total of twelve 

factors were selected based on availability of data. Frequency 

ratio model was employed for the generating LSM. The kappa 

index of the model was 0.4261 and 0.5510 for the training and 

validation dataset respectively indicating LSM was moderately 

reliable as per the kappa scale. The AUC result indicated the 

success rate was 0.7916 and the prediction rate was 0.8742 

illustrating the generated LSM is good enough for the 

implementation for the future planning. Finally, the LSM is 

classified into five classes using the equally interval classifier as 

shown in the Figure 3. As per the equal interval classification, the 

high and very high-risk area were 3.82% and 0.20% of the total 

area, respectively.  

 The developed LSM in this study could help decision makers, 

planners, and engineers to make better decisions for the future 

infrastructure developmental activities avoiding the landslide 

risky area. The GIS-based statistical approach is cheap, simple 

and provide comprehensive landslide information. However, it is 

recommended to soil data for the future study to improve the 

accuracy of the LSM.  It is also recommended to use other 

approaches and compare the accuracy of the assessment. 
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