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Abstract 
 

Business systems will experience new data-driven models for their performance evaluation in the coming years, especially systems 

with stochastic characteristics. This development will benefit experts in energy management because more problems will be solved 

using machine learning algorithms - such as artificial neural networks (ANN). This research develops a machine-learning model for 

electricity sales using a single hidden layer ANN model. The developed model consists of six input parameters, including the number 

of renewable energy systems and households. This research used principal component analysis (PCA) algorithm to reduce the inputs 

to three parameters to improve the model performance. A TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) 

method was used to select the most suitable predictive models between SVR (support vector regression) and ANN. Data sets from a 

community in Lagos, Nigeria, were used to test the developed model performance. This research observed that a SVR model with a 

linear function performed better than an SVR model with a radial basis function or polynomial kernel. On the other hand, an ANN with 

15 neurons outperformed ANN models with fewer nodes. The selected ANN model training and testing mean square errors are 0.00007 

and 0.00028, respectively. This research recommends PCA for input parameters selection during electricity sales prediction based on 

the developed sales model performance.  
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1. Introduction  

 
 Energy diversification has encouraged several communities 

to explore alternative means of electricity generation for 

households and industrial purposes. It has not only improved 

electricity supply, but it has also reduced the volume of CO2 

emitted into our atmosphere. Also, energy diversification has 

reduced household dependence on utility firms for their daily 

energy needs, especially households in remote communities. This 

is because of innovative works in renewable and biodegradable 

energy systems. While researchers have reported that investment 

in these systems is high compared with non-renewable energy 

systems, their low long-term operation and maintenance cost 

encourage investors to acquire them. Several studies have 

reported that we can use these systems for small, medium, and 

large-scale purposes. These systems can improve small and 

medium scale enterprises profitability in communities where 

medium-class citizens live. 

 To reduce households' dependence on utility firms, the 

possibility of using renewable and biodegradable energy systems 

to support households' electricity needs have been reported. 

Some of these reports have presented information on the 

usefulness of solar photovoltaic (PV) systems for remote 

communities in developing countries. For example, there are 

reports on portable wind turbine systems for essential electricity 

needs in remote communities. Currently, researchers are 

examining the role of retrofitting energy systems in households' 

energy consumption management. Scholars believe that synergy 

between these systems and renewable and biodegradable energy 

systems will reduce a community's electricity demand from a 

national grid. However, this reduction does not follow a linear 

because renewable and biodegradable energy systems outputs are 

stochastic because of feedstock availability. This problem makes 

a utility firm's electricity sales to follows a stochastic pattern.  
 Despite the poor performance of several utility firms in 

developing countries, the stochastic nature of renewable and 

biodegradable energy systems outputs has made several 

households have these systems to maintain their connections to 

these firms. Utility firms' poor performance has been associated 

with administrative and technical problems. These firms' 

administrative issues are not limited to poor energy tariff system, 

skilled workforce shortage and unprofessional behaviours [1, 2]; 

studies have shown that inadequate electricity generation, supply, 

and faulty transformers affect these firms' performance. Beyond 

these issues, the living standard of a community affects these 

firms performance. Energy policy is also a critical parameter that 

affects these firms' performance [3] - especially in developing 

countries with energy policy inconsistency - such as a tax 

incentive [4]. These issues are responsible for policy 

inconsistency among utility firm that is operating in the same 

geographical space.  

 Despite the need to improve utility firms' sales analysis, few 

studies have used machine learning algorithms, as decision-

making tools, for electricity sales prediction. Some studies on this 

subject matter have considered electricity consumption. This has 

made them focus more on customers' characteristics rather than 
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on utility firms' chrematistics. An approach that focuses on both 

utility and customers' characteristics can capture energy 

management problems. For instance, it is possible to use 

administrative and technical constraints and customers' economic 

conditions to monitor electricity sales in a locality. The 

combination of electricity consumption and unit cost of 

electricity information allows organisations to know their 

expected revenue for a period. This information is useful for 

strategic planning, especially in this era of renewable energy 

penetration. As stated earlier, this penetration will cause a 

fluctuation in utility firms' energy revenue.     

 This objective of this research is to estimate energy sales 

using machine learning algorithms. SVR (Support vector 

regression) and ANN (artificial neural network), PCA (principal 

component analysis), and TOPSIS (Technique for Order of 

Preference by Similarity to Ideal Solution) are used to achieve 

this objective. In this research, SVR and ANN serve as regression 

tools, PCA serves as a data reduction tool, and TOPSIS serves as 

a model selection tool. This research's remaining sections are 

organised as follows: Section 2 contained information on energy 

revenue estimation, while section 3 described this research 

methodology. Section 4 presented a case study of the 

methodology application, and section 5 contained this research's 

concluding remarks. 

  

2. Energy revenue  

 

 Researchers and practitioners have documented different 

energy revenue studies to improve utility business while ensuring 

that constant electricity is supplied to customers at affordable 

rates [1], [5, 6]. Some of these studies have used predictive 

models to investigate energy revenue problems, while others 

have used mathematical programming models to study the same 

issues. The remaining paragraphs in this section discussed some 

insights into these studies.  

 Ghajar and Khalife [1] analysed the impacts of deploying an 

automatic meter-reading system on utility firms' revenue. These 

authors used this system to address non-technical losses in a 

utility business. Using a utility firm in Lebanon as a case study, 

the system can make the firm break-even within 2.7 years. Gross 

et al. [3] evaluated the implications of energy policy on energy 

revenue. Their work showed that government interventions are 

required to manage the risk involved in the energy business. For 

example, Gross et al. [3] recommended that proper cost-benefit 

analysis is required before deploying energy technology for a 

community. This approach can minimise a utility firm's revenue 

risk. These authors also reported that simple and complex models 

had been used to investigate utility business risks. Consideration 

of a hybrid energy system often increases the complexity of 

utility firms' business models. Complex models can show the 

impact of energy mix on electricity sales. For example, Green et 

al. [5] reported that revenue energy systems proliferation would 

depress energy price.   

 Cai et al. [4] reported that as the investment cost for PV 

system price keeps dropping, it will reduce the number of 

households dependent on utility firms' service. These authors 

believe that utility firms will still break-even because fixed cost 

is the significant expense that utility firms incur during electricity 

generation. Mayr et al. [2] investigated the impact of renewable 

energy systems on electricity sales in South Africa. Using an 

optimisation model, the authors analysed the effect of a solar 

photovoltaic (PV) system and energy tariff on electricity sales. 

The model's goal is to minimise households' electricity 

consumption. These authors observed that PV and battery 

systems deployment in a community reduces electricity that the 

community will purchase from a utility firm. [7] reported that as 

households adopt PV, utility firms' return-on-equity will reduce; 

however, we will experience a reduction in greenhouse gas 

emission [8]. 

 Since renewable energy systems penetration will cause a 

shortfall in electricity sales, researchers have investigated the 

possibility of using an optimal plant size to provide electricity for 

a community. These authors intend to improve utility firms' 

capacity to break-even on time, especially in an era where 

electricity price is stochastic. Lund and Anderse [6] used 

different electricity sales price to determine an optimal combined 

heat and power plant size. Technical, their work use of a switch 

on and off plant's concept to maximise its profit. Berry [9] used 

a least-squares regression to predict electricity sales. The 

developed model considered five input parameters, including a 

change in economic activity and energy efficiency programme. 

Their work revealed that an inverse relationship exists between 

energy efficiency programmes and electricity sales.  

 

3. Methodology  

 

 This section discusses the model's parameters, machine 

learning algorithms for ANN and SVR, principal component 

analysis and TOPSIS. In this study, the parameters in Table 1 are 

used for electricity sales prediction. Figure 1 shows the ANN 

model for this sales prediction, while Equation (1) gives the 

expression for this sales prediction. 

 

𝑦 = 𝑓(𝑥1, … , 𝑥6)                                                                                (1) 
        

3.1 Machine learning algorithms 

 

 Several machine learning algorithms have been used to 

address energy planning problems; however, ANN and SVR are 

the two algorithms that researchers have been used to produce 

practical results for energy management problems. Hence, this 

research used these algorithms to develop energy revenue 

models.  

 

3.2 Artificial neural network   

 

 As we embrace the fourth industrial revolution, ANN 

applications will continue to grow because of ANN algorithms 

for deep learning problems – such as a convolution neural 

network. These algorithms have found wide application in energy 

management literature because of its ability to model the 

nonlinear relationship among system parameters. These 

algorithms generate the nonlinear relationship using activation 

functions, such as softmax (Equation 2), sigmoid (Equation 3) 

and tanh (Equation 4). The activation function for an ANN 

problem is based on the problem being solved - regression or 

classification. For regression problems, an output-layer 

activation function can be a sigmoid activation function. On the 

other hand, classification problems often use softmax as their 

activation function for an ANN output layer. 

 

𝜎(𝑧𝑖) =
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗𝑛

𝑗=1

                                                                                  (2)  

 

𝑧 =
1

1 + 𝑒−𝑧𝑗
                                                                                      (3) 

 

𝑧 = 2 × sigmoid (2𝑥) − 1                                                              (4) 
                                          
 An ANN model's layer fires an activation function based on 

neurons' linear combination, connecting weights, and bias 

(Equation 5). For a multi-layer perceptron, the firing of activation 

starts from the first hidden layer and ends at the output layer. 

While it is rare for this model to have one input and hidden layers, 

the output layer can have one node - especially when dealing with 

regression problems. On the other hand, classification or ranking 

problems often have a minimum of two or more output nodes - 

especially when dealing with supervised learning problems. 
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Table 1 Description of the input and output parameters 

 

Parameter Description  

Administrative (x1) It covers the non-technical factors that affect customers' decisions to use a utility firm's service as a 

source of electricity for their households. These factors are not limited to poor tariff plans and 

abnormal billing systems [1]. Also, higher reconnection and connection charges reduce households' 

dependence on electricity from utility firms. 

Technical (x2) It covers the technical factors that affect customers' decision to use a utility firm's service as an 

electricity source for their households. These factors are not limited to faulty transfers and lack of 

electricity supply. 

Economic (x3) It covers economic factors that affect customers' demand for electricity, such as a poor living standard. 

Also, energy tariff affects households electricity consumption [2], [9].  

Energy policy (x4) It considers government policy implications on electricity consumption and revenue at a household 

level [3]. For example, the policy of renewable energy system adoption has an impact on electricity 

consumption.   

Households (x5) The number of households depends on a utility firm for electricity [2], [4].  

No. of RE systems (x6) It is the total number of functional renewable energy systems in a community [2]. Improvement in 

households' confidence increases a community's dependence on these systems.   

Electricity sales (y) This is the quantity of electricity sold to households in a community within a period [2]; it excludes 

revenue from reconnection fees.   
 

Administrative constraint

Technical constraint

Economic constraint

Energy revenueEnergy policy

Households 

No. of RE systems 

 
 

Figure 1 Proposed energy revenue model for Case I 

 

𝑧𝑗 =∑𝑥𝑖𝑤𝑖𝑗 + 𝑏𝑗

𝑚

𝑖=1

                                                                         (5) 

 

where, xi and zi denote input and output parameter i, respectively, 

bj denotes bias for neuron j, wij denotes connecting weight from 

node i to node j.    

 When ANN models are trying to learn problems - which 

could be regression or classification problems, examples are 

divided into training, validation and training sets. This makes it 

possible for developed models to reduce the difference between 

targeted and predicted values, when these algorithms are used to 

solve real-life problems. However, most academic articles limit 

data splitting to training and testing sets. The former set is used 

to train models based on statistical measures (Equations 6 to 7), 

the latter set is used to evaluate developed models' performance. 

During data splitting into training and testing sets, the largest part 

represents the training sets. For example, some researchers and 

practitioners often use a ratio of 70:15:15 to divide data sets into 

training, validation and training sets [10]. On the other hand, a 

ratio of 80:20 is used to split data sets into training and training 

sets [11]. 

 Two main approaches are used to train an ANN model. A 

first approach is an online approach; it involves using a data 

tuple's prediction error to adjust a model's connecting weights. A 

second approach is an off-line approach. It involves the use of a 

batch of data tuple to adjust the weights of the model. For both 

approaches, special algorithms, such as gradient descent and 

sequential gradient descent, are used to determine an epoch's 

weight [12]. Based on any of the statistical measures or 

performance indicators in Equations (6) to (8), a trained ANN 

model's performance is validated using other algorithms - such as 

a linear regression model, SVR and random forest. 

 

𝑀𝑆𝐸 = √
∑ (𝐴𝑖 − 𝑃𝑖)

2𝑚

𝑖=1

𝑚
                                                              (6) 

 

𝑀𝐴𝐸 =
1

𝑚
∑|𝐴𝑖 − 𝑃𝑖|

𝑚

𝑖=1

                                                                    (7) 

 

𝑟 =
∑ (𝐴𝑖−�̅�)(𝑃𝑖−�̅�)

𝑚

𝑖=1

√∑ (𝐴𝑖−�̅�)
2(𝑃𝑖−�̅�)

2𝑚

𝑖=1

                                                                    (8)

                                                  

where, MSE, MAPE and r represent mean squared error, mean 

absolute percentage error and correlation coefficient, 

respectively, and Ai and Pi denote the actual and predicted values 

of data tuple i, respectively.  

 Before model training or testing, data sets preprocessed. In 

machine learning, this process is pivotal to the success of any 

machine learning algorithm. It covers issues that are not limited 

to input parameters selection, parameter reduction, missing data 
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points analysis and parameters normalisation [13]. While the 

decision to select the number of potential inputs depends on 

domain knowledge, data reduction is based on scientific 

procedures. PCA and factor analysis are used to reduce the input 

parameters for a model. Researchers and practitioners use this 

process to reduce the computation cost and to improve machine 

learning algorithms performance. However, the cut-off point for 

reducing input parameters still depends on domain knowledge. 

Missing data analysis is a special body of knowledge in machine 

learning study. While some researchers and practitioners have 

relied on the use of mean value approach or other approaches to 

solve this issue, others remove data tuples with missing points 

from data sets [14-16].  

 One problem of removing data tuples is that it can make data 

sets to lose some of its properties, especially for a case where the 

data sets are small. After ensuring that data sets do not contain 

missing data points, data are normalised to ensure that all the 

inputs are within the same range. This process eliminates the 

possibility of one or more inputs from influencing the outputs of 

machine learning algorithms. Also, it helps to reduce the memory 

requirement to improve a machine learning algorithm and the 

algorithm computation time.   

 

3.3 Support vector regression  

 

 Researchers and practitioners are attracted to a SVR 

algorithm because it uses a few data points to generate predictive 

models with practical relevance across disciplines. SVR is 

proposed as an extended version of a support vector machine 

[17]. In support vector machines, a hyperplane is used to separate 

classes, while SVR uses this plane to predict dependent 

parameters [18]. Figure 2 shows the relationship between the 

actual and predicted values of an SVR model [17]. Before 

training model can commence, users specify a model boundary 

lines - these are the dotted lines in Figure 2, [17]. A constant 

parameter "C" is used during model training to prevent SVR 

models from an over-fitting problem. 

 Based on these data point, a linear (linear kernel) or nonlinear 

(radial basis function- RBF) equation is used to minimises the 

difference between the actual and predicted values (Equation 9). 

This equation is subject to the distance between the bounds and 

predicted values outside the bounds and learned weights [17]. 

 

min
1

2
‖𝑤‖2 + 𝐶 ∑ (𝜉𝑖

∗ + 𝜉𝑖)
𝑛
𝑖=1                                                        (9)    

 

St.  

 

{
𝑦𝑖 − 〈𝑤, 𝑥𝑖〉 − 𝑏 ≤∈ +𝜉𝑖

∗

〈𝑤, 𝑥1〉 + 𝑏 ≤∈ +𝜉𝑖
}                                                               (10) 

 

3.4 Principal component analysis  

 

 In 1933, [19] proposed PCA as an algorithm that uses the 

covariance among parameters to explain the importance of 

parameters that influence a system's output. Its application 

creates an opportunity to reduce the input parameters' dimension 

for mapping problems at minimal information loss [20, 21]. PCA 

is used in the machine learning domain to reduce machine 

learning algorithms' computational cost, especially solution 

quality and computational time. And it has been used to reduce 

data size for pattern recognition problems [22]. Because of its 

unique benefits, several statistical software has PCA as a package 

- this helps eliminate manual computation rigour during PCA 

implementation. Given that the parameters (n) that denote system 

variability can be expressed with a linear combination that is 

uncorrelated (Equation 11), PCA can be used to k < n [23].   

Ω𝑘 =∑(𝑎𝑖𝑘𝑥𝑖)

𝑛

𝑖=0

                                                                             (11) 

 

∑𝑎𝑖𝑘 = 1

𝑛

𝑖=0

                                                                                       (12) 

                                                                      

where Ω𝑘 denotes the k-th principal component and 𝑎𝑖𝑘 denotes 

the coefficient of parameter i for the k-th principal component 

[23].   

 

3.5 TOPSIS 

 

 Multi-criteria decision-making (MCDM) literature has 

established that TOPSIS method is among the most used MCDM 

tools for multi-disciplinary studies, which energy management is 

a sub-set. This tool uses the relationship between the distance 

ideal and non-ideal solutions to rank alternatives solution for 

MCDM problems [24]. Hence, the ranking of alternatives is 

based on their closeness to these solutions. Technically, the 

ranking process is based on four steps. The steps are data 

normalisation, determination distance ideal and non-ideal 

solutions, distance ideal and non-ideal solutions, and closeness 

coefficient [25].   

 Step 1: Data normalisation is a process used to reduce criteria 

numeric values within a specific range during a MCDM tool's 

applications. As at today, several approaches that can be used to 

normalised data have been proposed (Equations 13a and 13b). 

One unique feature of this approach is that it reduces data values 

between 0 and 1 [24, 25].  Another feature is the criteria 

orientation consideration - cost or benefit-based [26].     

 

𝑥𝑖𝑗 =

{
 
 

 
 
𝑟𝑖𝑗 − 𝑟𝑗

𝑚𝑖𝑛

𝑟𝑗
𝑚𝑎𝑥 − 𝑟𝑗

𝑚𝑖𝑛
       ∀𝑟𝑖𝑗 ∈ 𝐵𝑒𝑛𝑒𝑓𝑖𝑡 {𝐵}

𝑟𝑗
𝑚𝑎𝑥 − 𝑟𝑖𝑗

𝑟𝑗
𝑚𝑎𝑥 − 𝑟𝑗

𝑚𝑖𝑛
             ∀ 𝑟𝑖𝑗 ∈ 𝐶𝑜𝑠𝑡 {𝐶}

                        (13a) 

 

𝑥𝑖𝑗 =
𝑟𝑖𝑗

∑ (𝑟𝑖𝑗)
2𝑛

𝑗=1

                                                                                (13b)

                    

where, rij and xij denote the real and normalised values of 

performance measure j for alternative i, respectively.    

 Step 2:  Using a criterion orientation, its ideal and non-ideal 

solutions are determined. The ideal solution for benefit-based 

criteria is taken as the higher-the-better, while cost-based criteria 

are taken as the lower-the-better [26, 27]. On the other hand, not-

ideal solutions for benefit-based criteria are taken as lower-the-

better (Equations 14), while cost-based criteria are taken as 

higher-the-better (Equations 15). Some studies have argued that 

the importance of criteria should precede their ideal and non-

ideal solutions determination. Equations (14) and (15) represent 

the expression for criteria ideal and non-ideal solutions, 

respectively.  

 

𝑥𝑗
+ = min

∀𝑗 ∈ 𝐶
(𝑥𝑖𝑗), max

∀𝑗 ∈ 𝐵
(𝑥𝑖𝑗)                                                   (14) 

 

𝑥𝑗
− = max

∀𝑗 ∈ 𝐶
(𝑥𝑖𝑗), min

∀𝑗 ∈ 𝐵
(𝑥𝑖𝑗)                                                    (15)

                 

 Step 3: For classical TOPSIS method, the Euclidean distance 

between the normalised or weighted normalised values and the 

ideal and non-ideal solutions for a MCDM are used to determine 

alternatives' distance from ideal and non-ideal solutions 

(Equations 16 and 17).  
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𝑑𝑗
+ = √∑(𝑥𝑖𝑗 − 𝑥𝑗

+)2
𝐾

𝑗=1

                                                                  (16) 

 

𝑑𝑗
− = √∑ (𝑥𝑖𝑗 − 𝑥𝑗

−)2𝐾
𝑗=1                                                                (17)

                 

where, 𝑑𝑗
− and 𝑑𝑗

− denote the distance of alternative's i from the 

ideal and non-ideal solutions, respectively.  

 Step 4: This method uses the relationship between an 

alternative's ideal and non-ideal solutions to determine an 

alternative closeness coefficient (Equation 18). This coefficient 

serves as a basis for ranking alternatives. The most and least 

suitable alternatives are the alternatives with the highest and 

lowest coefficients, respectively [26, 27].   

 

𝑐𝑐𝑖 =
𝑑𝑖
−

𝑑𝑖
+ + 𝑑𝑖

−                                                                                  (18) 

 

 Based on the various mathematical tools described in this 

section, an outline for these tools application for electricity sales 

model selection is presented as follows: 

 

Step 1:  Consult a panel of experts to implement the proposed 

model in [28].  

Step 2:  Use the model to generate data sets for electricity sales 

and its corresponding inputs. 

Step 3:  Use PCA to determine the importance of the inputs. 

Step 4:  Identify the inputs that contributions at least 80 and 

50% to the study of electricity sales. 

Step 5:  Use the identified inputs parameters to construct 

different electricity models.  

Step 6:  Select a data partitioning into training and testing sets.  

Step 7:  Train the electricity models using different SVR 

kernels.  

Step 8:  Train the electricity models using different ANN 

hidden layer nodes. 

Step 9:  Use TOPSIS to identify the best SVR kernels for the 

different electricity models.   

Step 10:  Use TOPSIS to determine the best ANN architectures 

for the different electricity models.  

Step 11:  Compare the best SVR and ANN models.  

Step 12:  Make a recommendation.  

 

4. Case study  

 

 The implementation of the proposed model was in a local 

government area in Lagos, Nigeria. Using [28] simulation model, 

we generated 90 data points for the selected input and output 

parameters. This research implemented the simulated model 

using Vensim software package. We consulted experts to provide 

guidelines for the maximum and minimum values of some 

parameters in the selected simulation model. The experts  

provided information based on an urban community's attributes 

in Victoria Island, Lagos, Nigeria (Figure 2). We selected this 

community because of its capacity to acquire renewable energy 

system and the possibility of an independent power plant to 

break-even in the community. This research used a ratio of 80:20 

to split simulated data sets into training and testing sets. This 

research uses MSE and MAE to evaluate and validate developed 

ANN and SVR models. Figures 3a to 3f show the input 

parameters profile, while Figure 4 shows the output parameter 

profile. This research studied different single-hidden layer ANN 

models for energy revenue estimation. By varying the number of 

nodes, it developed the different ANN models. Also, this 

research considered SVR three model using linear, polynomial, 

and radial basis function kernels. Three cases were considered 

during the proposed model application. The first considered six 

input parameters (Case I), the second case considered four input 

parameters (Case II) and the third case considered three input 

parameters (Case III). 

 

i. PCA results  

 

 Using input data sets in Figure 3a to 3f, PCA generated the 

results in Table 2. This table shows that the least and most 

important inputs for the electricity prediction problem are 

administrative and technical parameters, respectively. This 

research used a mark-off point of 80% to reduce the input 

parameter size. The results obtained showed that four input 

parameters fail within this point. These input parameters are 

administrative, energy policy, the number of households, and the 

number of renewable energy systems. Figures 5 and 6 show the 

ANN model's structure for the electricity sales prediction 

problem for II and III cases. Also, a mark-off of 50% was 

considered. And it was observed that three input parameters felt 

within this point; the inputs are an administrative constraint, 

number of households, and renewable energy systems. Figure 5 

shows the structure of the number ANN model for the electricity 

sales prediction problem.

 
 

Figure 2 Map of the case study [29] 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

 

Figure 3 (a) Profile of administrative factor; (b) Profile of technical factor; (c) Profile of economic factor; (d) Profile of energy policy 

factor; (e) Profile of numbers of households and (f) Profile of numbers of RE systems. 

 

 
Figure 4 Profile of electricity sales 

 

Table 2 PCA results 

 

Parameters Actual PCA Normalised PCA  

X1 0.7876 0.2400 

X2 0.0958 0.0292 

X3 0.4703 0.1433 

X4 0.5419 0.1651 

X5 0.6041 0.1840 

X6 0.7827 0.2385 
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Figure 5 Proposed energy revenue model for Case II 
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Figure 6 Proposed energy revenue model for Case III 

 

Table 3 SVR results for electricity sales prediction 

 

   MSE  MAE 

   Training Testing  Training Testing 

 RBF 0.0063 0.0209  0.0716 0.0981 

Case I Linear  0.0036 0.0027  0.0516 0.0455 

 Polynomial  0.2017 0.3620  0.2841 0.4072 

 RBF 0.0052 0.0293  0.0656 0.1113 

Case II Linear  0.0030 0.0020  0.0465 0.0381 

 Polynomial  0.3294 0.3364  0.3555 0.3890 

 RBF 0.0051 0.0123  0.0646 0.0839 

Case III Linear  0.0052 0.0039  0.0694 0.0579 

 Polynomial  0.3169 0.3309  0.3598 0.3778 

 

Table 4 Closeness coefficient for the developed SVR models 

 

  Case I Case II Case II 

RBF 0.7272 0.8138 0.8486 

Linear  1.0000 1.0000 0.9924 

Polynomial  0.0000 0.0000 0.0000 

Case selection  0.4880 1.0000 0.0000 

 

ii. SVR results  

 

 This research used Scikit-learn package in Python to 

implement the SVR models for the three cases [30]. Table 3 

shows the SVR results for the three cases. For cases I and II, the 

linear trained SVR model outperformed the RBF and polynomial 

trained SVR models for the training and testing MSE. On the 

other hand, the RBF trained SVR model performed better than 

the RBF and polynomial trained SVR model for the training and 

testing MSE. These observations are the same for the MAE 

results (Table 3). For Case III, the RBF trained SVR model 

training MSE and testing MAE are better than the linear and 

polynomial trained SVR models. On the other hand, the linear 

trained SVR model's training MSE and testing MAE are better 

than the RBF and polynomial trained SVR models. 

 To select the most suitable case for the current problem, we 

used the standard TOPSIS method described in Section 3.4 to 

aggregate the results in Table 3. For the current application, the 

importance of the statistical measure is the same (0.25). 

 Table 4 shows a summary of the SVR models' results. The 

TOPSIS method ranked the most (linear) and least (polynomial) 

suitable kernel for the SVR models for cases I to III as the same. 

Using the linear kernel performance to select the most suitable 

case for the current problem, Table 4 shows that Case II 

performed better than cases I and III. 

 

iii. ANN results  

 

 This research used Scikit-learn, Keras and Tensor packages 

to implement the single layers ANN model for the three cases. 

This  research  evaluated 15 different  hidden  nodes  structure  to 
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Figure 7 MSE for Case I Figure 8 MAE for the Case I 

  
Figure 9 MSE for Case II 

 

Figure 10 MAE for Case II 

 
Figure 11 MSE for Case III Figure 12 MAE for Case III 

 

select the most suitable ANN model for the three cases - ANN 

model with three, four, and six inputs, respectively. Also, it 

evaluated the ANN models performance using MSE and MAE. 

Figures 7 to 12 show the performance of the ANN models for the 

three cases. 

 This research aggregated the results in Tables 3 to 4 using the 

classical TOPSIS method. Table 5 shows the TOPSIS results. 

From this table, it can be deduced that the most and least suitable 

number of nodes for Case I is nine and three nodes, respectively. 

For Case II, the models with 16 and 4 nodes are the most and 

least suitable models for electricity sales prediction. Furthermore, 

Table 5 shows that the most and least suitable number of nodes 

for Case III is 15 and 4, respectively. 

 This research used TOPSIS to rank the models for the 

electricity sale prediction (Table 6). The TOPSIS results show 

that the three-input model is the most suitable electricity 

prediction model; while the six-input model is the least suitable 

electricity model. The selected ANN model performed better 

when compared with the selected SVR model (Table 7). This 

research, therefore, recommends the ANN in Figure 5 for the 

electricity sales prediction problem. 

iv. Managerial implications  

  

 This research's findings have several managerial 

implications. It has shown that machine learning algorithms can 

predict electricity sales from a multivariate perspective. It has 

also demonstrated that machine learning algorithms' capacity to 

predict electricity sales depends on the input parameters. Lastly, 

it has shown that three-input parameters can predict electricity 

sales better than a six-input parameters model. 

 

5. Conclusions  

 

 Parameters selection is one of the building blocks of machine 

learning models development. Hence, this research used 

principal component analysis (PCA) to determine the influential 

parameters for utility firms' revenue prediction. The initial model 

selected six input parameters, but this research reduced it to four 

parameters using PCA. This research observed that the combined 

PCA and ANN improved the electricity revenue prediction. 

According to the developed revenue model performance, 

machine-learning   models   will   improve   energy   management 
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Table 5 ANN results for the cases 
 

S/n Nodes Case I Rank Case II Rank Case III Rank 

1 3 0.0000 15 0.7977 5 0.4855 14 

2 4 0.8439 6 0.1048 15 0.0000 15 

3 5 0.8466 5 0.3403 13 0.5711 10 

4 6 0.8213 7 0.1701 14 0.5323 11 

5 7 0.6150 14 0.8416 3 0.6504 8 

6 8 0.6988 13 0.9216 2 0.8361 5 

7 9 0.8931 1 0.4492 11 0.7006 7 

8 10 0.8661 3 0.4942 10 0.2811 14 

9 11 0.7939 9 0.4044 12 0.9286 2 

10 12 0.8868 2 0.5457 9 0.5900 9 

11 13 0.7819 10 0.5590 8 0.8774 3 

12 14 0.8048 9 0.7004 6 0.8367 4 

13 15 0.7658 12 0.8001 4 1.0000 1 

14 16 0.8061 8 0.9757 1 0.5085 12 

15 17 0.7764 11 0.6304 7 0.7256 6 

 

Table 6 Classical TOPSIS results for the number of input selection 

 

Case  No. of node Training (MSE) Testing (MSE) Training (MAE) Testing (MAE) Closeness coefficient 

I 9 0.00201 0.00515 0.03598 0.05782 0.48948 

II 16 0.00020 0.00097 0.01096 0.02282 0.79577 

III 15 0.00007 0.00028 0.00625 0.01279 1.00000 

 

Table 7 Selected SVR and ANN model results 

 

Inputs Model  Training (MSE) Testing (MSE) Training (MAE) Testing (MAE) 

4 SVR  0.00300 0.00200 0.04650 0.03810 

3 ANN  0.00007 0.00028 0.00625 0.01279 

 

decision-making process. Also, these models will not only 

improve energy utility firms' performance, but it will also 

improve other utility firms' performance, such as water 

cooperation and waste management.  

Some of this research's contribution to energy literature is:  

 It uses principal component analysis algorithm to reduce 

the dimension of predictive models for electricity sales.  

 It has shown that three or four input parameters can 

predict electricity sales under renewable energy 

consideration. 

 It compared the capacity of SVR and ANN as predictive 

models for electricity sales.  

 It uses TOPSIS, an MCDM tool, to select the most 

suitable machine learning model for electricity sales 

prediction.   

 One of the limitations of this work is that it did not consider 

a specific renewable energy system. Hence, our future research 

will use the dichotomy between renewable and biodegradable 

energy resources impact on electricity sales. Our future research 

will consider the impact of renewable energy systems' stochastic 

outputs on electricity sales in developing countries. We will also 

investigate the effect of connection and reconnection fees on 

electricity revenue in our future research. Having demonstrated 

the ANN performance for the current problem, we recommend 

developing machine learning models for a multi-stage energy 

tariff plan effects on electricity sales as a further study.   
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