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Abstract 

 

A study of limitations of a min- max or a bounding- box method for received signal strength indicator ( RSSI) - based indoor 

localization is introduced in this paper.  The main goal of our study is to clearly understand how the widely used min-max method 

determines an unknown target position, and to investigate its significant limitations.  For this purpose, we provide both theoretical 

and experimental studies.  The theoretical study first gives an understanding of min- max theoretical limitations, while an 

experimental study then reveals more limitations. Experiments were done in an indoor environment, a laboratory room, where we 

employed an LPC2103F with a CC2500 RF module as a wireless node.  Our results indicate that the min-max method can be 

efficiently used to estimate an unknown target’s position. However, such a method has limitations in several cases. First, it produces 

a significantly high estimation error when the unknown target is located outside an internal zone, the area within reference node 

positions. Second, fluctuations of measured RSSI signals in an obstacle environment is a major problem that produces significantly 

more estimation errors. Various effects in this case are detailed in the paper. Our information will be useful to develop more efficient 

min-max methods.  
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1. Introduction 

 

Indoor target localization is an essential subject in the 

context of indoor wireless networks [1-2] because position data 

can be used in several applications, including tracking people 

in buildings, or during emergency events [1-2], patient tracking 

in hospitals [3-4] , rescue robot tracking [5] , industrial robot 

guidance [6] , position detection of products stored in 

warehouses [2, 6] , worker tracking in above-ground and 

underground construction sites [7-8], and automated control of 

devices ( e.g. , HVAC systems, lights, and cameras)  [ 9-11] , 

among many others.  Therefore, one of the major challenges in 

indoor wireless networks is target localization. To determine an 

unknown target position, RSSI information about the power 

level of a received signal is widely used  [12-14]. This is 

because  most wireless devices have RSSI circuits built into 

them.  Thus, no additional hardware is required.  This can 

directly help to reduce hardware costs, computational 

complexity, and power consumption of the system [12].  

According to our literature review, several localization 

methods have been introduced. The well-known bounding-box 

or RSSI-based min-max method [15] is widely used because its 

algorithm is simple.  It also provides high estimation accuracy 

as well as low computational complexity.  Hence, a min-max 

algorithm is easy to implement on existing hardware [12, 16] . 

In the research literature, many studies used this method for 

position estimation.  In [ 17] , a wireless sensor network for 

RF-based indoor localization was introduced.  The min- max 

method was implemented on a real hardware platform and used 

for position estimation in a laboratory scenario.  Here, the 

min-max method provided good performance.  In [ 18] , the 

min-max and well-known multilateration localization methods 

were used to track a moving target inside a faculty building. 

Experimental results showed that they were able to track a 

target path with good accuracy and low computational effort. 

The authors also reported that the min-max algorithm was the 

simplest among the accurate methods. In [16], an experimental 

comparison of the maximum likelihood method, the 

trilateration localization method and the min-max method in 

low-power IEEE 802.15.4 networks was presented. In [12], the 

authors studied the performance of RSSI-based methods.  The 

min-max method, the ring overlapping circle RSSI method, the 

trilateration method, and the maximum likelihood method were 

tested.  Here, the work in [ 12]  and [ 16]  concluded that the 

min-max method gave better results than other methods both in 

terms of accuracy and lower computational complexity when 

small numbers of reference nodes were applied.  We note that 

to determine an unknown target location, the min-max method 

needs to know the actual reference node positions.  We will 

describe this issue in the next section.  In [7] , a comparative 

evaluation of RSSI- based indoor localization methods for 
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construction jobsites was introduced. Four localization methods 

including the min- max, the maximum likelihood, the ring 

overlapping circle RSSI, and the K-nearest neighbor methods 

were evaluated.  Also, the experimental results confirmed that 

the performance of the min-max was better than others.  

In [19], an experimental comparison of the trilateration and 

the min-max methods for indoor scenarios was introduced. The 

results demonstrated that the min-max method provided higher 

accuracy than another algorithms.  Moreover, the authors also 

summarized min-max method limitations observed during the 

experiments.  Unfortunately, [ 19]  did not describe the 

theoretical support to reveal more limitations of the method. 

Compared to [19] , in this paper, we describe further details of 

min- max method limitations from both theoretical and 

experimental perspectives.  Finally, [ 20]  and [ 21]  extended 

min-max methods for wireless sensor networks.  The accuracy 

of the traditional the min- max method was improved by 

applying a weighted method that gave different weights to the 

four sides of a rectangular overlapping region (i.e., a definition 

zone as presented in Section 2) .  Here, an estimated target 

position could be located at any point inside the overlapping 

region, and estimation accuracy was improved.  Simulation 

results confirmed the accuracy of the extended min- max 

methods.  However, in the works of [20]  and [21] , only the 

simulation approach was studied, and the proposed methods 

were designed to handle one case of the traditional method 

limitation.  We note that as recommended in [12] , the 

experimental approach showed much worse performance than 

the simulation.  

In this paper, an exploration of min-max method problems 

is studied. The main objective of our study is to investigate how 

the widely used min- max method determines an unknown 

position, and to explore limitations of this method.  Both 

theoretical and experimental studies are provided.  Results 

demonstrate that the min-max is an efficient method that can be 

used to estimate a target position in an indoor scenario. 

However, the traditional min-max method still has limitations 

that will be detailed and reported in the paper.  We believe that 

our information can be used to further develop more 

appropriate min-max algorithms. 

The structure of this paper is as follows. Section 2 describes 

an RSSI- based localization system including the min- max 

method.  Sections 3 and 4 describe the theoretical and 

experimental studies including setup, results, and discussion. 

The conclusions are presented in Section 5. 

2.  An RSSI-based localization system with the min- max 

method 

 

 The localization system in this work is developed and 

tested below in Section 4. Three reference nodes are stationary 

at known positions.  A target node is located at an unknown 

position at a test location.  Each reference node continually 

broadcasts a packet to the target node in every time interval. 

Upon receiving the beacon packet, the target node reads the 

RSSI value using its radio circuitry. Simultaneously, the target 

node transfers the measured RSSI data as it is read from each 

reference node to a base station node connected to a central 

computer.  At the computer, the RSSI is then converted to a 

distance using the path-loss equation (i.e., the radio propagation 

model), and the min-max method [15, 22] is used to determine 

the unknown position.  

In this work, the widely used path-loss equation is used [7, 

16, 23] .  The path- loss equation describes the relationship 

between the measured RSSI value and the distance value of a 

test field. It is expressed in Equation (1), where 𝑅𝑆𝑆𝐼𝑑(𝑑𝐵𝑚) 

is a mean RSSI value at a distance d (i.e., a distance between a 

transmitter and a receiver). The parameter, 𝑅𝑆𝑆𝐼𝑑0
(𝑑𝐵𝑚), is a 

mean received power at a reference distance from the 

transmitter (𝑑0) of 1 m, and 𝛼 is called the path loss exponent. 

It measures the rate at which the received signal strength 

decreases with distance [23] .  The parameter 𝛼 is determined 

from a test field.  It depends on the specific propagation 

environment.  The parameters 𝑅𝑆𝑆𝐼𝑑0
(𝑑𝐵𝑚)  and 𝛼  can be 

determined by measuring and collecting RSSI data from the test 

field. This is described in Section 4.  

 

𝑅𝑆𝑆𝐼𝑑(𝑑𝐵𝑚) = 𝑅𝑆𝑆𝐼𝑑0
(𝑑𝐵𝑚) − [10 × 𝛼 × 𝑙𝑜𝑔10 (

𝑑

𝑑0
)] 

  

                                                                                                                             (1) 

 

 The min- max method, also known as the bounding-box 

method, is employed to determine an unknown target position 

[15] .  Figure 1 illustrates the min-max concept.  RSSI values 

from all reference nodes are measured by an unknown target, 

where the reference nodes are located at 𝑥𝑖 and 𝑦𝑖 ( 𝑖 refers to 

the reference number) .  The measured RSSI is converted to a 

distance (𝑑𝑖) by applying the path-loss equation.

 

 
 

Figure 1 Estimation of a target node position using the min-max method [7, 15, 19, 22] 
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Figure 2 The test scenario corresponding to a real layout in a laboratory as discussed in Section 4, and the internal zone is the area 

defined by three reference node positions 

 

 Then, a bounding-box around the reference is constructed. 

Here, the reference position is at the center (with an edge length 

of 2𝑑𝑖) .  An intersection region as an area within 𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥, 

𝑦𝑚𝑖𝑛 , and 𝑦𝑚𝑎𝑥  is determined, as expressed by 

Equations ( 2-5) .  It is notable that the intersection area is 

computed by finding the maximum of all the lowest values of 

the coordinates and the minimum of all maximum values.  The 

center of the intersection region is the estimated target position 

(𝑥𝑒𝑡, 𝑦𝑒𝑡), as determined by Equations (6) and (7). In [20] such 

an intersection region is called the definition zone, and the area 

within three reference node positions ( i. e. , within (𝑥1, 𝑦1), 

(𝑥2, 𝑦2) , and (𝑥3, 𝑦3) , as shown in Figure 1)  is called the 

internal zone.  According to Equations ( 2– 7) , the min- max 

method requires only a few arithmetic operations. 

Consequently, this method is simple with low computational 

complexity [12, 16]. 

 
𝑥𝑚𝑖𝑛 = max

1≤𝑖≤𝑁
(𝑥𝑖 − 𝑑𝑖)                                                        (2) 

 

𝑥𝑚𝑎𝑥 = min
1≤𝑖≤𝑁

(𝑥𝑖 + 𝑑𝑖)                                                         (3) 

 

𝑦𝑚𝑖𝑛 = max
1≤𝑖≤𝑁

(𝑦𝑖 − 𝑑𝑖)                                                         (4) 

 

𝑦𝑚𝑎𝑥 = min
1≤𝑖≤𝑁

(𝑦𝑖 + 𝑑𝑖)                                                         (5) 

 

𝑥𝑒𝑡 =
(𝑥𝑚𝑖𝑛 + 𝑥𝑚𝑎𝑥)

2
                                                               (6) 

 

𝑦𝑒𝑡 =
(𝑦𝑚𝑖𝑛 + 𝑦𝑚𝑎𝑥)

2
                                                               (7) 

3. Theoretical study 

 

In this section, our theoretical study is presented.  The test 

scenario ( with fixed positions for reference and unknown 

target nodes) , which corresponds to the real experiment 

presented in Section 4, is defined. Here, the distances between 

target nodes and reference nodes are known. This means that, 

for the theoretical study, we do not include the effect of the 

RSSI variation ( i. e. , Equation ( 1)  is ignored) .  The actual 

distance from the reference node is directly used for the min-

max calculation of the unknown position.  This will give an 

understanding of the fundamental theoretical limitations. 

Details are described below.   

 

3.1 Theoretical setup 

 

 The test scenario is shown in Figure 2. The experiment was 

conducted in a laboratory at the EE Department, Prince of 

Songkla University [ 19] .  The actual room size is 4. 54 m                

× 7.40 m ( actual measurements) , and the reference nodes      

are placed inside the room.  We define that three reference 

nodes are placed in the corners of the room, reference position 

1 (𝑥1 = 0.00 m, 𝑦1 = 6.20 m), reference position 2 (𝑥2 = 0.00 

m, 𝑦2 = 0.00 m), and reference position 3 (𝑥3 = 3.60 m, 𝑦3 = 

6. 20 m) .  Additionally, we also define that there are six 

unknown targets at test position 1 (𝑥𝑡 = 1.1m, 𝑦𝑡 = 5.5m), test 

position 2 (𝑥𝑡 = 2.56m, 𝑦𝑡 = 5.5m), test position 3 (𝑥𝑡 = 3.64m, 

𝑦𝑡  =  3. 1m) , test position 4 ( 𝑥𝑡  =  2. 04m, 𝑦𝑡  =  2. 5m) ,                     

test position 5 ( 𝑥𝑡  =  0. 3m, 𝑦𝑡  =  1. 9m) , and test position                   

6 ( 𝑥𝑡  =  1.9m, 𝑦𝑡  =  0.3m) .  As discussed in Section 2, test 

positions 1, 2, and 5 are in the internal zone, while the                 

test positions 3, 4, and 6 are located outside the internal           

zone.   In   this   way,  we   can  study  how  well  the   min-max 
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Table 1 Theoretical results 

 

Test position 

 

Actual distance from the 

reference node 

Estimated target position 

 

Error 

distance 

(m) 

𝒙𝒕 (m) 

 

 

𝒚𝒕(m) 

 

 

Distance  

from ref. 

1 (or 𝒅𝟏) 

Distance  

from ref. 

2 (or 𝒅𝟐) 

Distance  

from ref. 

3 (or 𝒅𝟑) 

𝒙𝒎𝒊𝒏 

 (2) 

𝒙𝒎𝒂𝒙 

(3) 

𝒚𝒎𝒊𝒏 

(4) 

𝒚𝒎𝒂𝒙 

(5) 

𝒙𝒆𝒕 

(6) 

𝒚𝒆𝒕 

 (7) 

 

1.100 5.500 1.304 5.609 2.596 1.004* 1.304 4.896 5.609 1.154 5.253 0.253 

2.560 5.500 2.654 6.067 1.254 2.346 2.654 4.946 6.067 2.500 5.507 0.060 

3.640 3.100 4.781 4.781 3.100 0.500 4.781 3.100 4.781 2.641 3.941 1.306 

2.040 2.500 4.225 3.227 4.015 -0.415 3.227 2.185 3.227 1.406 2.706 0.667 

  0.300 1.900 4.310 1.924 5.420 -1.820 1.924 1.890 1.924 0.052 1.907 0.248 

1.900 0.300 6.198 1.924 6.140 -1.924 1.924 0.060 1.924 0.000 0.992 2.022 

Average 0.759 

Standard deviation (SD) 0.763 

95% confidence interval (CI) 0.610 
*Example: 𝑥𝑚𝑖𝑛 = 𝑚𝑎𝑥(𝑥1 − 𝑑1, 𝑥2 − 𝑑2, 𝑥3 − 𝑑3), then 𝑥𝑚𝑖𝑛 = 𝑚𝑎𝑥(0 − 1.304, 0 − 5.609, 3.600 − 2.596), so 𝑥𝑚𝑖𝑛 =
𝑚𝑎𝑥(−1.304, −5.609, 1.004) = 1.004 

 

 
 

                a) Test position 1 (𝑥 = 1.1m, 𝑦 = 5.5m)                               b) Test position 3 (𝑥 = 3.64 m, 𝑦 = 3.10 m) 

 

Figure 3 Illustrations of the estimated position in the theoretical study, a) and b) are test positions 1 and 3, respectively. 

 

method estimates unknown target positions when they are 

placed at various locations. 
 
3.2 Theoretical results and discussion 

 

Based on the calculation using Equations ( 2-7) , the 

estimated target positions determined by the min-max method 

are presented in Table 1.  It is notable that the actual distances 

(between the references and the targets, 𝑑1, 𝑑2, and 𝑑3) can be 

calculated using  𝑑𝑖 = √(𝑥𝑖 − 𝑥𝑡)2 + (𝑦𝑖 − 𝑦𝑡)2 .  An error 

distance is shown in the last column of Table 1. It is defined as 

the difference between the actual position and the estimated 

position. This distance can be calculated as 𝑒𝑟𝑟𝑜𝑟 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =

√(𝑥𝑡 − 𝑥𝑒𝑡)2 + (𝑦𝑡 − 𝑦𝑒𝑡)2.  

 From the theoretical results in Table 1, we can observe that 

the min- max estimation accuracy directly depends on the 

unknown target positions. When the tested positions are within 

the internal zone ( i. e. , the area within three reference node 

positions), test positions 1, 2, and 5, the estimated positions are  

 

close to the actual target positions.  Alternatively, for test 

positions 3, 4, and 6, the target nodes are placed outside the 

internal zone and the error distances are consequently larger. 

The error distance increases when the target location is far from 

the internal zone. For position 6, the error distance is higher 

than for test positions 3 and 4.  This is because when the target 

location is far from the internal zone, the definition zone is also 

bigger.  Since the min-max method tries to estimate the target 

position at the definition zone center, as can be seen in Figure 1 

and Equations (6-7) , if the actual target is not located at the 

center, an estimation error results.  Figures 3(a) and (b) also 

illustrate the estimated positions for test positions 1 and 3. 
To confirm the findings described above, we also show the 

performance of the min-max method when 650 target nodes 

(examples) are tested in the same scenario. Here, the 650 target 

nodes are placed in a grid topology. The error distance of this 

case is presented in Figure 4.  The average error distance from 

650 target nodes is equal to 0.845 m, with a standard deviation 

of  0.812.  The minimum and maximum error distances are 0 m 
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                                a) 650 target node positions                                               b) Contour plot of the error distance 

 

Figure 4 a) 650 target node positions and b) a contour plot of the error distance 

 

and 3.607 m, respectively. The result in Figure 4 confirms that 

the min-max method produces a large estimation error when 

the target is located outside the internal zone. The error distance 

significantly increases when target nodes are placed on the 

corner (lower right) of the room.  

 As reported in [2, 12, 16], the level of the error distance can 

be reduced by adding more references to the test area. 

Therefore, we also show the theoretical results when more 

reference nodes are added in the same scenario.  Details are 

presented in the Appendix A. However, it is notable that when 

using more references, the complexity and cost of the system 

are increases significantly [ 2, 12, 16].  Decreasing the 

complexity [24]  and increasing the estimation accuracy with a 

small number of references are required. 
 
4. Experimental study 

 

In this section, our experimental study of the min- max 

method is presented.  As discussed above, the test scenario in 

this case is the same as the scenario introduced in the theoretical 

study.  Experimentally, the effect of RSSI variation on the 

accuracy of the min-max can be studied.  In this way, more 

min-max method limitations will be revealed.  Experimental 

details are described below.    

 

4.1 Experimental setup 

 

Experiments were done in a laboratory in the EE 

Department of Prince of Songkla University [19]. The test field 

is shown in Figure 5.  In this test field, there are obstacles 

including book cabinets, computers, machines, chairs, tables, 

walls, and people (during the test) .  As discussed in Section 3, 

we placed three reference nodes at the corners of the room at 

reference position 1 (𝑥1 =  0.00 m, 𝑦1 =  6.20 m) , reference 

position 2 (𝑥2 = 0.00 m, 𝑦2 = 0.00 m), and reference position 3 

(𝑥3 =  3.60 m, 𝑦3 =  6.20 m) .  We did not place the reference 

node at 𝑥 = 3.60 m, 𝑦 = 0.00 m (i.e. the lower right corner of 

the room) because there is a big cabinet at this location.  Six 

different target nodes are also placed at the test position 1 

(𝑥𝑡 = 1.1m, 𝑦𝑡 = 5.5m), test position 2 (𝑥𝑡 = 2.56m, 𝑦𝑡 = 5.5m), 

test position 3 ( 𝑥𝑡  =  3. 64 m, 𝑦𝑡  =  3. 1m) , test position 4 

(𝑥𝑡 = 2.04m, 𝑦𝑡 = 2.5m), test position 5 (𝑥𝑡 = 0.3m, 𝑦𝑡 = 1.9m), 

and test position 6 (𝑥𝑡 = 1.9m, 𝑦𝑡 = 0.3m). The reference nodes 

and the targets are placed 1 m above the floor.  As stated in 

Section 2, after the target node receives the packet ( including 

the RSSI), the measured RSSI is sent to the base station, which 

is connected to a computer via an RS232 interface.  Here, the 

measured RSSI can be transferred to the base station with a 

one-hop communication step.  At the computer, the min-max 

method is applied to determine the target position.  In the 

position estimation, 1,000 RSSI samples are collected by the 

target node. 
 We use a LPC2103F with a CC2500 (microcontroller with 

radio module)  for the wireless node, as illustrated in Figure 6. 

Here, the CC2500 is a low- power wireless radio module 

operating in the 2400-2483.5 MHz ISM/SRD band developed 

by Texas Instruments [25] .  The data rate of this module is set 

at 250 kbps.  It is connected and communicated with the 

LPC2103F board via an SPI (serial peripheral interface), where 

the LPC2103F and the CC2500 are the master and slave, 

respectively [26-28]. 
 As described in Section 2, the RSSI to distance conversion 

is performed using Equation (1) .  To determine the path- loss 

equation of the test field in Figure 5, in the beginning, one 

transmitter and one receiver are used to measure the RSSI at 

five distances:  1 m, 2 m, 3 m, 4 m, and 5 m.  We move the 

devices from 1 to 5 m distant from each other with steps of 1 m. 

At each distance, 10,000 RSSI samples are collected by the 

receiver. Figure 7 is a plot of the average RSSI (dBm) vs. the 

distance  (meters,  logarithmic  scale).  The  path-loss  equation  
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Figure 5 Test field in a laboratory room 

 

   
 

Figure 6 Wireless nodes based on a LPC2103F with a CC2500 

 

can be determined by applying linear curve fitting, where 

𝑅𝑆𝑆𝐼𝑑0
(𝑑𝐵𝑚) is equal to -41.818, and 𝛼  is equal to 3.6146 

(note: 𝑅𝑆𝑆𝐼𝑑 = 𝑅𝑆𝑆𝐼𝑑0
− [10 × 𝛼 × 𝑙𝑜𝑔10(𝑑 𝑑0⁄ )]). 

To evaluate the experimental data, the average RSSI from 

each reference, average distance from each reference, average 

error distance, and average estimated position are selected as 

performance indices. They are expressed as Equations (8-11). 

𝑁 is the number of RSSI samples (1,000 samples), (𝑥𝑒𝑡𝑖
, 𝑦𝑒𝑡𝑖

) 

is the estimated position of the sample 𝑖, and (𝑥𝑡, 𝑦𝑡) is the test 

position. 𝑅𝑆𝑆𝐼𝑖  is the measured RSSI value, and 𝐷𝑖  is the 

distance value converted from the measured RSSI.  The 95% 

CI is also provided for each average result.  

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = (
1

𝑁
∑ 𝑥𝑒𝑡𝑖

𝑁

𝑖=1

,
1

𝑁
∑ 𝑦𝑒𝑡𝑖

𝑁

𝑖=1

) 

 

                                                                                         (8) 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑒𝑟𝑟𝑜𝑟 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
1

𝑁
∑ √(𝑥𝑡 − 𝑥𝑒𝑡𝑖)

2
+(𝑦𝑡 − 𝑦𝑒𝑡𝑖)

2
𝑁

𝑖=1

 

                                                                     

                                                                                         (9) 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑆𝑆𝐼 =
1

𝑁
∑ 𝑅𝑆𝑆𝐼𝑖

𝑁
𝑖=1                                          (10) 
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Figure 7 Average RSSI value versus distance, 𝑥 is a distance on a logarithm scale, while 𝑦 is an average RSSI value 

 

Table 2 Experimental results showing the esitimated position of the error distance 

 

Test point Average estimated position Average error 

distance(m) 
95% CI. 

𝒙𝒕(m) 𝒚𝒕(m) 𝒙(m) 𝒚(m) 

1.100 5.500 1.525 4.055 1.506 0.004 

2.560 5.500 2.116 3.940 1.621 0.007 

3.640 3.100 2.135 4.903 2.350 0.007 

2.040 2.500 1.642 2.974 0.620 0.001 

0.300 1.900 0.812 2.347 0.682 0.004 

1.900 0.300 1.221 2.521 2.324 0.002 

Average 1.518  

SD 0.756  

95% CI. 0.605  

 

 
 

Figure 8 Average error distance at each test position, theoretical versus experimental 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
1

𝑁
∑ 𝐷𝑖

𝑁
𝑖=1                                        (11) 

 

4.2 Experimental results and discussions 

 
 The estimation position and the error distance ( average 

values) with 95% CI are demonstrated in Table 2 and Figure 8. 

The results reveal that the min-max shows the lowest estimation 

error when the unknown target is placed at test position 4 

(𝑥𝑡=2.04m, 𝑦𝑡=2.5m). Here, the average error distance is equal 

to 0. 620 m.  Alternatively, the min- max method gives the 

highest  estimation error  when the  unknown target is placed at  

test position 3 ( 𝑥𝑡 = 3. 64m, 𝑦𝑡 = 3. 1m) .  The average error 

distance is equal to 2.350 m.  We note that by comparison, in 

the results from the theoretical study in Table 1, the min-max 

provides the lowest estimation error at test position 2 

( 𝑥𝑡 = 2. 56m, 𝑦𝑡 = 5. 5m)  with an average error distance of 

0.060 m. The highest estimation error is at test position 6 (i.e., 

𝑥𝑡  =  1. 9m, 𝑦𝑡  =  0. 3m)  with an average error distance of 

2.022 m.  The average error distance from all test positions in 

the cases of the theoretical and experimental studies are equal 

to 0.759 m and 1.518 m, respectively, as shown in Tables 1    

and  2.  Here, the  results  from the theoretical and  experimental  
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a) The test position 1 (𝑥 = 1.1m, 𝑦 = 5.5m) 

 

   
b) The test position 2 (𝑥 = 2.56m, 𝑦 = 5.5m) 

 

 
c) The test position 3 (𝑥 = 3.64m, 𝑦 = 3.1m) 

 

Figure 9 Illustrations of estimated positions and the average result with the average bounding box (or the average definition zone), 

a-f) are test positions 1, 2, 3, 4, 5, and 6, respectively  
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d) The test position 4 (𝑥 = 2.04m, 𝑦 = 2.5m) 

 

 
e) The test position 5 (𝑥 = 0.3m, 𝑦 = 1.9m) 

 

 
f) The test position 6 (𝑥 = 1.9m, 𝑦 = 0.3m) 

 

Figure 9  (Continued) Illustrations of estimated positions and the average result with the average bounding box (or the average 

definition zone), a-f) are test positions 1, 2, 3, 4, 5, and 6, respectively 
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Table 3 The average RSSI and the average distances from the reference node at each test position (experimentally derived) 

 

Test position Average RSSI and average distance 

𝒙𝒕 

(m) 

 

𝒚𝒕 

(m) 

 

RSSI 

from ref 1 

(dBm) 

SD 

Distance  

from 

ref 1 

SD 

RSSI 

from ref 2 

(dBm) 

SD 

Distance  

from 

ref 2 

SD 

RSSI  

from ref 3 

(dBm) 

SD 

Distance  

from 

ref 3 

SD 

1.100 5.500 -47.502 0.972 1.442 0.087 -60.640 0.382 3.353 0.083 -52.545 0.312 1.992 0.040 

2.560 5.500 -57.072 0.345 2.665 0.058 -62.201 0.984 3.713 0.225 -52.851 0.371 2.031 0.048 
3.640 3.100 -59.529 0.385 3.122 0.077 -69.815 0.798 6.057 0.313 -55.762 0.395 2.450 0.063 

2.040 2.500 -56.617 0.358 2.588 0.060 -54.926 0.365 2.321 0.055 -56.897 0.389 2.635 0.066 

0.300 1.900 -60.561 0.359 3.336 0.077 -51.218 0.643 1.830 0.074 -62.596 0.558 3.803 0.140 

1.900 0.300 -63.129 0.653 3.937 0.017 -51.698 0.576 1.887 0.068 -59.144 0.440 3.045 0.086 

 

Table 4 Difference between the average distance in Table 3 and the actual distance in Table 1 

 

Test position Distance error between the average distance and the actual distance 

𝒙𝒕 (m) 𝒚𝒕 (m) Distance error 1 (m) Distance error 2 (m) Distance error 3 (m) 

1.100 5.500 |1.442-1.304| = 0.138 |3.353-5.609| = 2.256 |1.992-2.596| = 0.604 

2.560 5.500 |2.665-2.654| = 0.011 |3.713-6.067| = 2.354 |2.031-1.254| = 0.777 

3.640 3.100 |3.122-4.781| = 1.659 |6.057-4.781| = 1.276 |2.450-3.100| = 0.695 

2.040 2.500 |2.588-4.225| = 1.637 |2.312-3.227| = 0.915 |2.635-4.015| = 1.380 

 0.300 1.900 |3.336-4.310| = 0.974 |1.830-1.924| = 0.094 |3.803-5.420| = 1.617 

1.900 0.300 |3.937-6.198| = 2.261  |1.887-1.924| = 0.037 |3.045-6.140| = 3.095 

 

 
 

Figure 10 Illustration of the experimentally estimated position 3, where the bounding boxes of references 1 and 2 do not cover 

the target 

 

studies are different.  Also, the estimation accuracy of the min-

max significantly decreases in the experiment case. 

Additionally, as discussed in Section 3, that the min- max 

produces a small estimation error and an error when the target 

is inside or outside the internal zone. This is not always true 

experimentally. 

 In Figures 9 (a-f), the estimated positions are presented to 

show the variation of estimated positions with the average 

result with the average bounding box (or the average definition 

zone). It is notable that the average bounding box is determined 

by averaging 𝑥𝑚𝑖𝑛 , 𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑖𝑛 , and 𝑦𝑚𝑎𝑥  from all samples. 

This result reveals that at test positions 1, 2, 3, and 6, the 

bounding box do not cover the target. Since the min- max 

determines the target position inside the box, the estimation 

error is larger. For test positions 4 and 5, the bounding box can 

cover the target position.  However, the target is located on the 

border region. It still has an estimation error, since the min-max 

determines the position at the center of the box. 

The reason why the min-max method shows the limitations 

depicted in Figure 9 can be explained using the results in 

Tables 3 and 4.  Table 3 shows the average RSSI and the 

average distance from the reference node at each test position. 

Table 4 shows the difference between the average distance 

shown in Table 3 and the actual distance shown in Table 1 (i.e., 

in the second column) .  Here, we can see that the average 

experimental distance is different from the theoretical distance. 

For example, at test position 3 (𝑥𝑡 =  3.64m, 𝑦𝑡 =  3.1m), the 

distance errors are 1.659 m (for Ref. 1), 1.276 m (for Ref. 2), 

and 0.695 m (for Ref.  3) .  It is odd that the distances are quite 

different.  In the test environment presented in Figure 5, there 
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are many obstacles, i.e., chairs, tables, book cabinets, 

computers, electrical machines, walls, and people.  Therefore, 

measured RSSI signals can fluctuate over time due to multi-

path fading (caused by the reflection, diffraction, and scattering 

of the radio signals in obstacle encumbered environments) , 

interference, and noise effects. Here, radio signals are unstable 

and unpredictable [12, 23] .  Also, in this work, the simple and 

inaccurate path- loss Equation ( 1)  is used.  Due to the RSSI 

variation effect in the test field, this path- loss equation cannot 

efficiently create an optimal relationship between the measured 

RSSI and the distance.  Consequently, errors also are present 

while setting the path-loss equation. The RSSI signal variation 

can lead increased error during the RSSI-distance conversion 

and the box creation.  Hence, the estimation error can be 

significant.  

 It is notable, as shown in Tables 1 and 4, that for test 

position 3 ( 𝑥𝑡 = 3.64m, 𝑦𝑡 = 3.1m), actual distances from the 

references 1 and 2 are 4. 781 m and 4. 781 m.  However, in 

Table 3, the average RSSI values of those cases 

are -59. 529 dBm and -69. 815 dBm, respectively, which 

correspond to 3.122 m and 6.057 m, respectively. This confirms 

the RSSI variation effect.  Additionally, in this case, the results 

in Figure 3c and Figure 10 are different.  Due to the RSSI 

variation effect, the bounding boxes of references 1 and 3 do 

not cover target position 3, as presented in Figure 10. 

 

5. Conclusions 

 

An investigation of RSSI-based min-max method problems 

for indoor scenarios is presented in this paper.  We investigate 

how the widely used and well-known min-max method works 

and identify its limitations.  Both theoretical and experimental 

studies are provided. The results demonstrate that the min-max 

method can be properly used to estimate an unknown target 

position. However, the min-max method has limitations. First, 

its estimation accuracy directly depends on the unknown target 

positions. The min-max gives large estimation errors when the 

unknown target is outside of the internal zone.  Second, the 

measured RSSI signal fluctuation can produce significant 

estimation errors.  RSSI signal variation can lead to errors 

during the RSSI to distance conversion and the bounding box 

creation. In this case, a)  the bounding box does not cover the 

target, or b)  the bounding box can cover the target, but the 

estimated position is not near the target since the min- max 

determines the position from the center of the box.  Our 

information is useful for users and researchers to further 

develop more efficient min-max methods.  

In future work, design and development of the min-max 

method to address the limitations presented in this work will be 

considered.  Also, a balance between the estimation accuracy 

and the computational complexity of an extended min- max 

method should be provided.     
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8. Appendix A: The min- max method with a varying 

number of reference nodes 

 

 In Section 3, the estimation error can be reduced by using 

more reference nodes in the test field [ 2, 12, 16] .  Here, we 

illustrate theoretical results when more reference nodes are 

added in the scenario shown in Figure 2.  Estimated position 

results by applying different numbers of reference nodes (i.e., 3, 

8, and 32 nodes) with 231 unknown target nodes (examples) are 

shown in Figures 11 (a- c) .  The average error distances versus 

the number of reference nodes ( i.e. , 3, 4, 8, 16, and 32 nodes) 

are also shown in Figure 12. The results reveal that using 3 to 32 

reference nodes, the average error distance (with the minimum 

and maximum values) are 0.85 m, 0.37 m, 0.17 m, 0.07 m, and 

0.03 m, respectively. 

 As can be observed from Figure 12, although the average 

error distance can be reduced by using more reference nodes, 

the errors are not much different, as in the cases of 16 and 32 

reference nodes (i.e., 0.07 m and 0.03 m). Moreover, using 

more reference nodes increases computational overhead.  As 

illustrated in Figure 13, the number of times that the min-max 

method runs each mathematical operation is significantly 

increased when more reference nodes are applied.  We note 

that the number of mathematical operations (summation (+), 

subtraction (-), division (/), and comparison) required by the 

min-max method, as presented in Equations (2-7), are 

determined, for example, using three reference nodes, (+), 

(-), (/), and comparison are 8, 6, 2, and 8 times more 

intensive, respectively. They correspond to y=2n+2, y=2n, 

y=2, and y=4n-4, respectively, where n is numbers of 

reference nodes. However, as discussed in Section 3, 

increasing the estimation accuracy, reducing the complexity, 

and using fewer reference nodes are very challenging. This 

is the design goal of the localization method. 

 
                   a (3 reference nodes                                   b (8 reference nodes                                     c (32 reference nodes 
 

Figure 11 Estimated position results with different numbers of reference nodes, a-c use 3, 8, and 32 reference nodes, 

respectively 
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Figure 12 Average error distances versus the number of reference nodes 

 

 
 

Figure 13 The number of times that the min-max method runs each mathematical operation, where 𝑛 is numbers of reference 

nodes 


