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Abstract 

 

Wire EDM is a complicated machining process that is used for producing complex 2D and 3D shapes. In this work, the process 

parameters associated with the wire electrical discharge machining (WEDM) of oil hardening non-shrinkage (OHNS) die steel 

material were investigated through response surface method (RSM) and an artificial neural network (ANN). A quadratic model 

developed through RSM was used to predict material removal rate (MRR) with appreciable precision. The various input 

variables, viz. pulse on time (PON), pulse off time (POFF), wire feed rate (WFR) and input current (I), have been considered. A 

comparison between the predicted and measured values of MRR was performed for each experiment. It was noted that the 

RSM predicted values are in a 95%confidence interval. Statistical analysis shows the capabilities of the developed models to 

predict the MRR more accurately. Also, ANN model estimates MRR with high precision compared using the RSM model. 

Support vector regression (SVR) is also used to analyze the impact of various process parameters. The results show that all 

approaches are strongly capable of predicting the response. Analysis the WEDM is a very effective. Of the three approaches 
ANN is superior.  

Keywords: Wire EDM, Buckingham’s Pi theorem, Dimensional analysis, Response surface method, Artificial neural network, 

Oil hardening non-shrinking die steel, Support vector regression 

 

 

1. Introduction 

 

 Wire electrical discharge machining (WEDM) is a 

nonconventional machining process that is used to cut 

materials with an electrode following a definite pathway. 

Drilling in the workpiece is a major machining process 

required to shape complex and complicated products.  In 

WEDM processing, each discharge produces a crater in the 

raw workpiece and a collision on the wire electrode. During 

the machining of a hard material, if the quantity of material 

being removed from the electrode surface is greater than the 

amount being removed from the workpiece surface, the wire 

electrode breaks and discharge is blocked. In this process a 

dielectric fluid acts as an insulator and coolant that controls 

the amount of heat generated during the process.  WEDM has 

functional potential in a huge number of machining 

industries.  Ilhan and Mehmet [1] focused on developing an 

experimental based surface roughness (SR) modeled through 

multiple regression and ANN for turning. Also, the authors 

investigated the effects of cutting speed, feed and depth of 

cut on the surface roughness. Phate and Tatwawadi [2-3] 

used a dimensional analysis (DA) approach to analyze the 

effect of different field variables during dry machining of 

ferrous material. The DA based models developed for the 

surface roughness, had a material removal rate (MRR) and 

power consumption with an acceptable correlation. The 

optimum set of input variables was found for the effective 

use of this process. Sensitivity analysis was performed to 

elucidate the impact of various factors on response variables. 

Gaitonde et al. [4] analyzed the performance of conventional 

and wiper ceramic inserts in hard turning through ANN. 

Girish and Kuldip [5] used two approaches to investigate 

machining processes, specifically ANN and genetic 

algorithms (GA) for machining parameter optimization to 

minimize surface roughness. Experiments were carried out 

to ensure model potentials in calculating and optimizing 

surface roughness. It was concluded that the present tools 

have been effectively used to analyze the machining process. 

Phate and Tatwawadi [6] proposed an ANN model to 

estimate the MRR in turning ferrous and non-ferrous 

materials on a small scale industry in India. The input 

parameters, viz. operator, workpiece, cutting process, cutting 

tool, machine and the environment, were used. A three layer 

feed forward backpropagation neural network (FFBPNN) 

was trained using the targeted datasets built during 

machining ferrous and nonferrous materials to achieve better  
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Table 1 Chemical composition of OHNS workpieces 

 

Elements C  Mn Cr Si P T V 

Wt % 0.85-0.95 1.0-1.3 0.4-0.6 0.2-0.4 0.03 max 0.4-0.6 0.20 max 

 

performance in terms of contact. The developed model was 

used for testing and forecasting the complex relationships 

among the dependent and independent variables in turning 

operations. Bobbili et al [7] examined the machine variables, 

viz. PON, flushing pressure, input power, thermal diffusivity 

and latent heat of vaporization, on responses viz., MRR and 

surface roughness. Buckingham’s Pi theorem was used for 

modeling the materials, i.e., aluminium alloy 7017 and rolled 

homogeneous armour. Phate et al. [8-9] used ANN to model 

and predict the responses during the turning of ferrous and 

non-ferrous materials. Pujari et al. [10] investigated the 

residual stresses developed in the machining of an 

aluminium alloy through a Taguchi method.  Kolli and 

Kumar [11] applied a Taguchi method to analyze the impact 

of a dielectric fluid on discharge during WEDM of a titanium 

alloy. Different responses viz., MRR, SR, tool wear rate 

(TWR) and recast layer thickness (RLT), were considered. 

Mevada [12] investigated MRR and SR to find an optimal 

level for high MRR at low SR for an Inconel 600 material by 

varying PON , POFF, and peak current. Huang et al. [13]studied 

the effect of various process variables on SR, MRR and 

average gap voltage during WEDM of high hardness tool 

steel, YG15, using a regression model developed to optimize 

the cutting parameter combinations. The authors concluded 

that PON, cutting feed rate, and water pressure were more 

important than other factors during modelling of MRR. 

Tzeng et al.(2014) [14] proposed an important process 

variable optimization that combines Taguchi’s parameter 

design method, RSM, FFBPNN, and GA on engineering 

optimization to express the best parameters for the WEDM 

process considering multiple responses. The effects of MRR 

and work piece surface finish on process variables while 

manufacturing by WEDM were considered. A Box-Behnken 

design with four factors and twenty seven runs was used for 

data collection. A polynomial equation was developed to 

explain WEDM performance. Phate et al. [15-17] 

investigated the influence of various process variables on 

composite material and optimized the process using an 

advanced optimization tool.  

The aim of present work is to formulate a comprehensive 

model using ANN and RSM approaches during the 

machining of OHNS. There is a wide application of OHNS 

such as for making blanking and punching dies, rotary 

blades, cutting tools, cutters, gauging tools and chasers 

among others. For the aforementioned purpose, a full 

factorial experimental design was used to study the effect of 

different process parameters, viz., PON, POFF, WFR and I, on 

the MRR. An RSM model was tested using analysis of 

variance (ANOVA). The performance of a dimensional 

based model, RSM and ANN, were compared statistically. 

The projected methodology can be used efficiently to 

forecast MRR in the WEDM process. 

 

2. Materials and methods 

 

2.1 Materials and methodology 

 

 WEDM is a very popular advanced machining process 

used in manufacturing industries. The aim of the present 

work is to study the impact of various process parameters on 

the material removal rate. The work will help researchers to 

work in the suggested direction and improve the performance 

of WEDM. The experiments using the WEDM set up were 

conducted considering four input variables, viz., PON, POFF, 

WFR and I, using an L27 Orthogonal Array (OA). From 

literature, it was determined that these variables affect 

important performance measures. Table 1 illustrates the 

chemical composition of the OHNS workpiece.  The said 

variables at the three levels shown in Table 2 were used. An 

OHNS workpiece with dimensions 200 X 75 X 10 mm and 

brass wire were used as tools for machining. The WEDM 

machining characteristic examined was MRR. The 

experimentation was planned and performed per Taguchi's 

methodology (L27 array). The MRR is the performance 

characteristic to estimate the WEDM process performance.  

 

The MRR is given in Eq. (1): 

 

Material removal rate (
mm3

sec
) =

Volume of material removed from the workpiece 

Machining time
  

 

                                                                                           (1) 

 
 The experiments were conducted using EZEECUT NXG 

–Wire cut EDM with 320 x 400 mm axis travel and 360 x 

600 mm maximum workpiece dimensions. Brass wire with a 

0.2 mm diameter was used for the experiments. The 

experimental setup and the methodology adopted is shown in 

Figure 1. In total, twenty-seven experiments were conducted 

with three replicates of each. The average values were 

considered the response variable. 

 

2.2 Modeling using RSM 

 

 RSM is a group of statistical and mathematical 

techniques that are helpful in the design of experiments as 

well as in optimizing process variables. RSM was applied to 

forecast the performance of a WEDM process in reference to 

MRR with various influencing parameters. The optimal 

values obtained from RSM were used to find the best 

response. In this experiment, WEDM process performance 

measured in terms of MRR is given by Eq.2: 

 

Y =  K0 + ∑ 𝐾𝑖

𝑛

𝑖=1

𝑋𝑖 + ∑ 𝐾𝑖𝑖

𝑛

𝑖=1

𝑋𝑖
2 + ∑ 𝐾𝑖𝑗

𝑛

𝑖<𝑗

𝑋𝑖  𝑋𝑗+∈        (2) 

 

where, Y is the response variable, i.e., MRR. Xi and Xj are 

the input variables, considered in the x and y directions, Xj 

are the quadratic and interaction terms of the input variables. 

Ki,  Kii and Kij are the regression coefficients. The coefficients 

of RSM were estimated using the proposed Box-Behnken 

design that used four factors and twenty seven runs. The 

presented model fits the second-order surface response very 

precisely. 

 

2.3 Modeling using ANN 

 

 ANN is one of the most powerful modeling techniques 

used in many engineering research studies. ANN can be used 

to develop models for complex systems that are hard to 

express. This work focused on the use of ANN for analyzing 

a  complex  WEDM  process. The  presented  networks  have  
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Figure 1 Flowchart representing the methodology adopted for WEDM analysis 
 

 
 

Figure 2 Schematic of a basic ANN structure 
 

Table 2 Various input parameters and their selected levels 
 

S.N. Variables Symbols Low level (-1) Medium Level (0) High level (1) 

1 Pulse in time  PON  (sec) 25 35 45 

2 Pulse off time  POFF  (sec) 4 6 8 

3 Wire feed rate WFR  (mm/min) 40 70 99 

4 Input current  I  (amp) 2 3 4 

 

three layers. Various combinations are studied to find the 

best topology by varying the neuron count in the hidden 

layer. In this work, four neurons were used in the input layer, 

which correspond to PON, POFF, WFR, and I, while one 

neuron in the output layer corresponds to the MRR. For all 

networks, the tangent sigmoid transfer function ‘tansig’ was 

used as it takes into account nonlinearity of the ANN model. 

Figure 2 shows the basic ANN structure. Figure 3 shows the 

basic ANN neurons.  

 Various input variables and their selected levels are 

presented in Table 2.The experimental data is as shown in 

Table 3. In total, twenty seven different experiments were 

conducted at random per the Box-Behnken design with four 

factors. The various input/output parameters correlated     

with  the  aforementioned  process  are  shown  in  Figure 4.   

The experimental data shown in Table 4 were used to 

develop an ANN model to predict MRR. 

 

3. Results and discussion 

 

3.1 Analysis of the RSM model  

 

 Statistical evaluation of the developed RSM model for 

the WEDM process was done by examining model 

competency. The model competency was determined using a 

“lack-of-fit” test which compares the residual error with the 

pure error from replicated design points. Based on the 

ANOVA in Table 5, it can be been clearly understood that 

the parameters  
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Figure 3 A model of ANN neurons 

 

 
 

Figure 4 Schematic model of WEDM as an input-output process 

 

 
 

Figure 5 Residuals vs. order of experimentation 

 

viz., PON, POFF, WFR, IP, interaction terms of the parameters 

and a pure quadratic effect of the process variables have 

significant effect on MRR. Figure 5 shows the residual error 

obtain in individual experiments. It indicates the error 

produced is in the acceptable confidence limit. Figure 6 

shows a normal probability plot. 

 Figure 6 shows the normally distributed errors in RSM. 

Figure 7 depicts the randomly scattered residuals, which 

show that they are autonomous or independent. Statistical 

evaluation shows that RSM model predictions are in 

agreement with measured data. The coefficient of 

determination (R2) for MRR prediction in the WEDM of 

OHNS is 0.9099. The develop RSM model is used to predict 

MRR with a coded unit as given in Eq. 3. 

 

MRR = 2.42400 + 0.0991667 ∗ PON + 0.0405833 ∗ POFF 

        +0.613250 ∗ I + 0.215833 ∗ WFR + 0.03475 ∗ PON
2 

        +0.573750 ∗ POFF
2 + 0.0148750 ∗ I2 − 0.147500 

        ∗ WFR2 + 0.247750 ∗ PON ∗ POFF + 0.0320 ∗ PON ∗ I 
        +0.04375 ∗ PON ∗ WFR + 0.01175 ∗ POFF ∗ I − 

        0.17625 ∗ POFF ∗ WFR − 0.12110 ∗ I ∗ WFR 

                                                                                           (3) 

 

 From the RSM model, it is clear that the input current (I) 

is the most influential factor followed by the WFR, PON and 

POFF on MRR. An acceptable correlation (R2 = 90.99%) 

between the measured and RSM predicted MRR is observed. 

The significance of interaction for the parameters, such as 

PON, POFF and WFR, has been identified. A similarly of 

significant square effect of some parameters, such as PON and 

I, were observed. Figure 7 shows a comparison of measured 

and predicted MRR values for RSM. It depicts closeness 

between the measured and predicted MRR. Table 5 shows an 

ANOVA table that was used to determine the dependency of 

MRR to select the various input parameters. The significance 

of the main effects of these parameters and their interactions 

Response MRR in (mm3/sec) 
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Table 3 Experimental results for MRR in WEDM of OHNS steel 

 

Exp  PON POFF I WFR MRR 

1 0 0 0 0 2.352 

2 0 -1 0 1 2.928 

3 0 0 -1 -1 1.669 

4 0 0 0 0 2.511 

5 0 -1 0 -1 1.777 

6 0 1 0 -1 2.153 

7 1 0 0 -1 2.177 

8 -1 1 0 0 2.159 

9 -1 0 0 1 2.316 

10 0 1 0 1 2.599 

11 1 0 0 1 2.554 

12 0 0 -1 1 2.118 

13 0 0 1 1 2.653 

14 -1 0 -1 0 1.687 

15 0 0 0 0 2.409 

16 -1 0 0 -1 2.114 

17 1 -1 0 0 2.359 

18 0 0 1 -1 2.688 

19 0 -1 1 0 3.078 

20 1 1 0 0 2.962 

21 0 -1 -1 0 1.76 

22 -1 -1 0 0 2.547 

23 -1 0 1 0 3.184 

24 1 0 -1 0 1.76 

25 0 1 1 0 3.214 

26 0 1 -1 0 1.849 

27 1 0 1 0 3.385 

 

 
 

Figure 6 Normal probability plot of response MRR. 

 

are presented in the Table 5. The ANOVA test was done 

using MINITAB software at a 95% confidence level. Since 

the p-value specified in Table 5 is less than 0.05, the 

developed RSM based MRR model is significant. According 

to the Taguchi hypothesis, if at least one of these p-values is 

sufficiently small or the coefficients are not equal to zero, the 

model will be accepted [1]. It can be observed from Table 5 

that the RSM model is acceptable. 

 

3.2 Analysis of the ANN model  

 

 An analytic examination of multilayer ANN structure 

with FFBPNN was applied to predict MRR in the WEDM of 

OHNS. The ANN model was trained using Levenberg-

Marquardt backpropagation (trainlm). Various ANN 

networks were studied by varying the neuron count in the 

hidden layer and epoch sizes. However, the best correlation 

was found for the 4-3-1 ANN topology (As shown in Figure 

8). This used four neurons in the input layer corresponding 

to four input parameters. Three hidden neurons and one 

neurons at output layer corresponds to the response, MRR. 

The neural network was trained using a built-in MATLAB 

tool box. The data found for the various ANN networks 

studied are shown in Table 6. Samples for training, testing 

and validation, neuron count in the hidden layer, learning rate 

and the processing function used are according to the 

MATLAB guidelines. The processing function (tansig) was 

used for prediction. Analysis showed that the network with 

three neurons in hidden layer yielded superior performance 

over  other  models  studied. The  number  of epochs  and  the  
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Figure 7 Measured and predicted MRR in WEDM of OHNS 

 

Table 4 Various weights between the input (layer 1) and hidden layers (layer 2) 

 

Neuron count 

(Hidden layer) 

W1i 

(Input 1) 

W2i 

(Input 2) 

W3i 

(Input 3) 

W4i 

(Input 4) 

1 -0.09862 4.56317 1.69106 -1.69233 

2 -1.58978 2.29238 -1.7884 3.18242 

3 -0.30739 0.85561 1.5971 3.05177 

 

Table 5 Analysis of variance (ANOVA) for the MRR in WEDM 

 

Source 
Degrees of 

Freedom 
Sum of Squares 

Mean 

Square 
F Value 

P-value  

Prob. >F 
Influence  

Regression  14 5.85996 0.41857 8.66 0.000 Significant  

Linear  4 5.20969 1.30242 26.95  <0.001 Significant 

PON 1 0.11801 0.11801 2.44 0.144 Significant 

POFF 1 0.01976 0.01976 0.41 0.535 Significant 

I 1 4.51291 4.51291 93.37 0.000 Significant 

WFR 1 0.55901 0.55901 11.57 0.005 Significant 

Square 4 0.20963 0.05241 1.08 0.407 Significant 

PON*PON 1 0.01653 0.00664 0.13 0.721 Significant 

POFF*POFF 1 0.05245 0.01756 0.36 0.558 Significant 

I *I 1 0.02461 0.00118 0.02 0.878 Significant 

WFR*WFR 1 0.11603 0.11603 2.40 0.147 Significant 

Interaction  6 0.44605 0.07344 1.52 0.253 Significant 

PON*POFF 1 0.24552 0.24552 5.08 0.044 Significant 

PON*I 1 0.00410 0.00410 0.08 0.776 Significant 

POFF*FWR 1 0.00766 0.00766 0.16 0.698 Significant 

POFF*I 1 0.00055 0.00055 0.01 0.917 Significant 

POFF*WFR 1 0.12426 0.12426 2.57 0.135 Significant 

I *WFR 1 0.05856 0.05856 1.21 0.293 Significant 

Residual Error 12 0.57998 0.04833   Significant 

Lack-of-Fit 10 0.56700 0.056700 8.74 0.107 Not  Significant 

Pure Error 2 0.01298 0.00649 8.74 0.107  

Total  26 6.43994     

S = 0.219844      Press = 3.29511    

R2=0.9099         R2  (Pred) = 0.8883    R2  (Adj) = 0.8049    
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Figure 8 Developed 4-3-1 ANN with weights in each layer for the MRR 

 

 
 

Figure 9 Details of the results obtain during training, validation and the testing data 

 

learning rate used were 10,000 and 0.01 respectively. Figures 

9-11 show the various results obtain to predict MRR using 

an ANN approach. Figures 11 and 12 show the ANN 

performance during training, testing, validation and for the 

whole dataset. Statistical parameters such as the mean 

squared error (MSE), mean absolute percentage error 

(MAPE), and the correlation coefficient (R) are satisfactory. 

The activation function used in this study is given as              

Eq. (4): 

 

𝑓𝑖 =  
1−𝑒−𝑊𝑖

1+𝑒−𝑊𝑖
                                                                                         (4) 

 

where Wi is the weighted sum of the input parameters and is 

calculated as Eq.(5): 

 

Wi =  W1i ∗ PON +  W1i ∗ POFF + W1i ∗ I + W1i ∗ WFR   
                                                                                           (5) 

 

Hence, the ANN based equation for the material removal rate 

is given by Eq.(6): 

 

MRR =  
1 − e−(0.48416 f1−1.98893 f2+2.62295 f3)

1 − e−(0.48416 f1−1.98893 f2+2.62295 f3)
                    (6) 

 

where f1, f2 and f3 are the weights between the hidden and 

output layers, as shown in Figure 8 The various weights 

between input layers corresponding to four input parameters 

and three neurons in the hidden layers are shown in Table 4. 

The network performance for the 4-3-1 ANN model is shown 

in Figure 9. 
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Figure 10 Details of best validation performance obtain during ANN prediction 

 

 
 

Figure 11 Comparison of experimental results and ANN during training, validation and testing 

 

 From the 4-3-1ANN network, it is clear that the weight 

related to I and WFR are the most influential. 70% of the 

total data (19 samples) was used for training, 10% 

(3 samples) was used for validation and remaining 20% 

(5 samples) was used for testing the network. 

 The models were developed to predict MRR in WEDM 

of OHNS material through RSM and ANN. Then, these 

formulated models were compared with measured MRR data 

(Table 7). The results obtained were statistically compared 

using several important statistical indices, viz. root mean 

square error (RMSE), mean absolute percentage error 

(MAPE) and coefficient of determination (R2), which are 

defined in Eq.7 (a-c). 

 

RMSE = √
∑ (Yi − YCi)

2n
i=1

N
;                                                (7a) 

 

MAPE =
∑ |

Yi − YCi

Yi
|n

i=1

N
X100                                             (7b) 

 

𝑅2 = 1 −  (
∑ (Yi − YCi)

2n
i=1

∑ (YCi)
2n

i=1

)                                               (7c) 

                                                 

where N is the run number or dataset. Yi is the actual MRR 

and Yci is the predicted MRR values.  
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Figure 12 Comparison of experimental data and ANN model results over all data 

 

Table 6 Details of various ANN models used for MRR prediction in WEDM 

 

Algorithm/Neurons 
Training data (70%) Validation data (10%) Testing data (20%) 

MSE R2 MSE R2 MSE R2 

LM with 5 neurons 0.000809921 0.998266 0.0087444 0.997681 0.253906 0.876632 

LM with 4 neurons 0.00502730 0.992602 0.0280054 0.995412 0.077489 0.939618 

LM with 3 neurons 0.00066528 0.998123 0.0198400 0.999850 0.160520 0.933536 

 

Table 7 Details of the statistical parameters for the various model techniques used 

 

Modeling method MAPE R2 RMSE 

RSM 0.3087 0.909928 0.146563 

ANN 0.3727 0.998123 0.0086 

 

Table 8 Details of various SVR model parameters for the MRR in WEDM 

 

Regression Summary  Model Specification Value 

Observed mean 2.3497 Number of independents 04 

Predictions mean 2.3490 SVM type Regression1 

Observed S.D. 0.4866 Kernel type Radial basic function (RBF) 

Predictions S.D. 0.4334 Number of SVs 17(6 bounded ) 

Mean squared error 0.0181 Decision constant 0.59581682229 

Error mean 0.0007 Used random sampling  

Error S.D. 0.1381 Testing 75% 

Abs. error mean 0.1183 Speed 1000 

S.D. ratio 0.2837 Gamma 0.25 

Correlation 0.9615 Max iteration 1000 

 

3.3 MRR prediction using support vector regression (SVR) 

 

 A support vector machine or support vector regression 

(SVR) was also used for the prediction of the MRR. SVR 

was used for prediction of real responses. The parameters 

selected for the SVR are tabulated in Table 8. The 

effectiveness of the SVR prediction primarily depends on the 

selection of the kernel parameter. SVR predicted results 

during the training and the testing are shown in Figure 13(a). 

The actual and SVR predicted MRR values are compared as 

shown in Figure 13(b). 

4. Conclusions 

 

 In this work, RSM and ANN models were developed to 

predict the MRR in the WEDM of OHNS. Parameters such 

as PON, POFF, I and WFR were examined by means of an L27 

Taguchi array. The data obtained were used to develop 

various models for MRR prediction. From the results, it was 

observed that I is the most influential parameter on MRR 

followed by POFF and WFR. The FFBPNN training 

algorithms with Levenberg–Marquardt (LM) were used to 

predict the ANN response. The best co-relational model was  
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(a) 

 
(b) 

 

Figure 13 (a) MRR prediction using SVR in training and testing phase, (b) comparison between actual and SVR predicted 

MRR 

 

obtained with a 4-3-1 ANN topology. The developed models 

were compared with the experimental values to judge their 

forecasting ability. The predicted values were found to be 

very close to their experimental counterparts. The formulated 

models can be successfully used to predict MRR in WEDM 

process. In the ANN model, the R2 values found during 

training, validation and testing were 99.8266%, 99.7861% 

and 87.6632%, respectively, while it achieved a value 

of90.9928% in RSM. From the developed models, it was 

observed that the ANN model produced superior 

performance over RSM. ANN is an effective and efficient 

approach to predicting MRR. In the future, researchers can 

effectively use RSM, SVR and ANN toolsin other fields of 

engineering. SVR models show good performance to 

represent systems in a very effective way.  

 The approach suggested by this work was used to predict 

the performance of WEDM of OHNS steel. ANN modelling 

is suggested as a better approach to predict the performance 

of such systems. Effective use of ANN in such analyses can 

save time and expense. Our work will help operators to 

machine OHNS materials in a very effective and efficient 

way. This will help them to increase their profits and 

maximize utilization of their resources.  
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