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Abstract 
 

Pollution levels in developing countries, such as India, have become a major source of health problems. They need to be 

monitored and controlled. Bangalore, one of the major cities in India, faces a huge amount of pollution. Due to the dire need 

to control these pollutants, a sound mathematical modeling approach needs to be created for forecasting, controlling and 

monitoring. One such approach is time series modeling. The current work addresses a time series model that has been 

developed for the major pollutants in Bangalore city. These pollutants include PM10, PM2.5, NOx and SO2. The models used 

vary from AR (autoregressive), ARMA (autoregressive moving average) and ARIMA (autoregressive integrated moving 

average) for modeling air pollution in Bangalore city. Additionally, the selection of the best models was based on the Akaike 

Information Criterion, p-value and Box-Pierce test. Various steps were followed to build the model, which included 

identification of missing and extreme values followed by creating an appropriate imputing method and then identification of 

time series models using autocorrelation and partial autocorrelation plots to obtain various time series models. The best time 

series models were chosen based on the Akaike Information criterion (AIC) and various other statistical tests.  
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1. Introduction 

 

 During the early 1900s, time series analysis was 

conducted on wheat price fluctuations. The analysis was 

termed harmonic analysis and was done using periodograms 

[1-2].  Further advancement of time series analysis was 

achieved wherein the concept of differencing was used to 

show the periodic behavior of time series, through which 

insights can be obtained on the behaviour of a dataset [3-4]. 

Later Wold [5] had highlighted the usage of moving     

average model for time series by making use of 

correlogram/autocorrelation plot, the models developed led 

to the development of auto regressive(AR) models, MA 

(moving average), ARMA (autoregressive moving average) 

models. As time progressed, further development of models 

for analysis took place, advancing the state-of-the-art in time 

series analysis. A more detailed description is given by Box 

et al. [6-7]. A good narration of historical development of 

time series and various other models has been provided [8].  

Concurrently, application of time series modelling began 

to appear in various areas, especially in economics and 

environmental science. Time series modelling began to 

appear in air pollution studies during the 1960’s. During this 

time period, Time series analysis using models such as MA, 

ARMA was applied to study pollutants such as SO2, NO2, 

Los Angeles smog and predict their behavior [9-10]. Further 

development was achieved by building univariate and 

multivariate time series regression models for prediction of 

pollutant concentration based on previous pollutant values 

and weather parameters [11].  Applying these models 

improved the understanding of the effects of various 

pollutants and weather parameters on mortality rates on 

given days [12]. 

Some authors started to investigate multivariate 

techniques such as principal component analysis, factor 

analysis,  vector autoregressive models and had applied to 

various pollutants such as particulate matter, O3, SO2, and 

CO,  for a obtaining a sound & effective model [13-19]. 

Applications of time series models also started to be 

developed in the Middle East and Asia. The ARIMA model 

was used to predict the behavior of various pollutants such 

as particulate matter, SO2, NOx in Delhi City and the models 

build had sound prediction power [20]. Similarly, other time 

series models for pollutants such as NO, NO2, SO2, CO, O3 

were used for Middle Eastern cities including Beirut and 

Isfahan [21-22]. Such modeling approaches were also 

applied in developing countries such as Nigeria as evidenced 

by various modeling work [23]. 

In India, Bangalore is a major city where there has been 

a huge investment in infrastructure development and 

industrial growth. Due to rapid growth and urbanization, the 

city now experiences significant pollution. There are various 
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pollutants which are harmful to the environment and health, 

these include fine particulate matter (PM2.5, PM10), NOx, and 

SO2.  There is a need to improve its air quality, which can be 

achieved through monitoring, prediction and control. To do 

so, mathematical models need to be developed. The amount 

of modeling achieved for air pollution is quite less in India.  

The number of models developed and literature addressing 

air pollution in India and with respect to Bangalore city is 

minimal. Hence, understanding the behavior of air pollutants 

becomes crucial as this can form a further basis of research 

growth. This particular work addresses the use of time series 

models. Its overall goal is to provide a complete approach in 

conducting time series analysis for various pollutants in 

Bangalore city. The objective of the work is to develop a 

sound methodology using time series techniques for air 

pollution data, to provide the importance of time series 

analysis in understanding the behavior of pollutants and also 

to highlight areas where the analysis is successful and where 

further research is needed for improvement. 

  

2. Mathematical models for time series analysis  

 

 Typical time series data can be stationary, weakly 

stationary or non-stationary. In order to create sound 

mathematical approach stationarity of data becomes crucial, 

. The conditions for stationarity need to be met to create a 

sound mathematical approach [6-7, 24]. To do so, a 

transformation process is necessary. Various models that 

arise out of these transformations are autoregressive (AR), 

moving average (MA), autoregressive moving average 

(ARMA) and autoregressive integrated moving average 

(ARIMA) Models [3, 7]. A data dependent system of time 

series can be transformed to a summation of independent and 

uncorrelated past random shocks 𝜀𝑡 which termed as white 

noise and the transformation of the data is given by equation 

1 [3]. The mathematical formulation are discussed below 

 

𝑥𝑡 = 𝜇 + 𝜀𝑡 + 𝜓1𝜀𝑡−1 + ⋯                                                (1) 
 

𝑥𝑡 = 𝜇 + 𝜓(𝐵)𝜀𝑡               (2) 

 

where B is called the backward shift operator and is defined 

as B 𝑥𝑡 =  𝑥𝑡−1  and 𝜇  the process average. 𝜓(𝐵) is called 

the linear operator which transforms the input white noise to 

data values.  It is given by:  

 

𝜓(𝐵) = 1 + 𝜓1𝐵 + 𝜓2𝐵2 + ⋯                            (3) 

 

The above model forms the basis for development of the AR, 

MA, ARMA and ARIMA models. 

 

2.1 Autoregressive (AR) & Moving Average (MA) models 

 

 Based on Equations 1-3,  𝑥𝑡 can be expressed in terms of 

their previous values as given below and is termed as an 

autoregressive process or AR of order p, termed AR(p). 

 

𝑥𝑡 = 𝜙1𝑥𝑡−1 + 𝜙2𝑥𝑡−2 + ⋯ 𝜙𝑝𝑥𝑡−𝑝 + 𝜀𝑡                               (4) 

 

 𝑥𝑡 can also be expressed in terms of the previous random 

shocks as and 𝜙 is the weight 
 

𝑥𝑡 = 𝜀𝑡 − 𝜃1𝜀𝑡−1 − 𝜃2𝜀𝑡−2 … . −𝜃𝑞𝜀𝑡−𝑞                             (5) 

 

Equation 5 is a process and is termed a moving average 

process with order q, expressed as MA(q). The weights are 

given by −𝜃1, −𝜃2, … − 𝜃𝑞.  

2.2 Autoregressive Moving Average (ARMA) and 

Autoregressive Integrated Moving Average (ARIMA) models 

  

 ARMA models encompass the properties of AR and MA 

and are given by:  

 

𝑥𝑡 = 𝜙1𝑥𝑡−1 + 𝜙2𝑥𝑡−2 + ⋯ 𝜙𝑝𝑥𝑡−𝑝 + 𝜀𝑡 − 𝜃1𝜀𝑡−1 −

𝜃2𝜀𝑡−2 … . −𝜃𝑞𝜀𝑡−𝑞                                                               (6) 

 

 The ARIMA model represented by Equation 7 is called 

ARIMA(p,d,q) where wt represents difference term  𝑥𝑡 −
 𝑥𝑡−1. 

 

𝑤𝑡 = 𝜙1𝑤𝑡−1 + 𝜙2𝑤𝑡−2 + ⋯ 𝜙𝑝𝑤𝑡−𝑝 + 𝜀𝑡 − 𝜃1𝜀𝑡−1 −

𝜃2𝜀𝑡−2 … . −𝜃𝑞𝜀𝑡−𝑞                                                              (7) 

 

3. Methodology 
 

 Figure 1 provides the methodology of model 

development. 

 

 
 

Figure 1 Methodology for time series model building 

 

3.1 Data collection  

 

 The data required for the study was extracted from 

Central Pollution Control Board databases [25]. The Board 

monitors pollutant levels at various places in Bangalore. 

Data collection is done every half an hour and is displayed 

on their website on a real-time basis. For this study, the daily 

average values were considered. The data was collected for 

SGHalli and BTM Stations. 

 The BTM Layout Station was chosen because of its 

proximity to Belandur and Koramangala, the IT hubs in 

Bangalore. Here, traffic movement is high compared to other 

areas. SGHalli was chosen because of its proximity to a 

highly industrialized area where pollution levels are high. 

 Pollution data for SGHalli Station was extracted over the 

time period 18.11.2015 to 01.03.2017. Since continuous data 

is required for ARIMA modeling, data for the time frame, 

01.08.2016 to 28.02.2017, was taken because it had few 

outliers and missing data. As such, it was continuous 

throughout the time frame. The same BTM layout can be 

used where data was extracted from 30.03.2015 to 

01.03.2017, but the time frame of 07.04.2015 to 08.05.2016 

was considered. 
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3.2 Data cleaning  

 
 Several methods for data cleaning are available, it 

involves identifying missing data, outliers, extreme values 

and accordingly making a decision on whether imputation is 

necessary [26]. When dealing with air pollution data set, 

caution needs to be exercised on removing extreme values. 

The importance and usefulness of extreme values for 

analysis have been highlighted and researched [27-29]. Thus, 

while removing of extreme values, it would be better to 

understand the correlation structure with other pollutants and 

accordingly make decisions on removal.  In case of missing 

values, the time series data as a whole needs to be examined 

based on the number of missing data points and the averaging 

method used for imputation.  

 

3.3 Autocorrelation and partial autocorrelation function 

with plots 

 

 The first step in analysis is to examine the 

autocorrelation plots. The autocorrelation function is given 

by the following equation [30]: 

 

𝜌𝑘 =
𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑥𝑡 , 𝑥𝑡−𝑘)

𝜎𝑥𝑡
𝜎𝑥𝑡−𝑘

                                                   (8) 

 

𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑥𝑡 , 𝑥𝑡−𝑘) = 𝐸[(𝑥𝑡 − 𝜇)(𝑥𝑡−𝑘 − 𝜇)] 
 

The autocorrelation estimate rk is given as: 

 

𝑟𝑘 =
∑ (𝑥𝑡 − �̅�)(𝑥𝑡−𝑘 − �̅�)𝑛

𝑡=𝑘+1

∑ ((𝑥𝑡 − �̅�)2)𝑛
𝑖=1

                                            (9) 

 
 The plot of autocorrelation values for different lags is 

called the autocorrelation function (ACF). In time series 

analysis, the ACF plots find their usefulness in identifying 

whether a model can be categorized as AR, MA, ARMA or 

ARIMA. Various models can be suggested using ACF plots 

and previous authors have provided guidance [7, 24]. The 

ACF is more useful for order identification of MA models. 

Its structure can be identified based on a cut off after a certain 

lag k (ACF value cuts after a certain lag), In AR models, the 

plots can show an exponential decay, or sinusoidal damping. 

In such cases, identifying the order for the model becomes 

difficult and therefore partial autocorrelation functions and 

plots are used. The partial autocorrelation function for a 

particular lag k is defined as: 

  

𝑃𝐴𝐶𝐹 = 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑥𝑡 − 𝑥�̂�, 𝑥𝑡−𝑘 − 𝑥𝑡−�̂�)                 (10) 

 

 Based on the PACF values, the order of an AR process 

can be determined. Typically, the way to identify a suitable 

model is to first plot the ACF and PACF and then identify 

the pattern. For example, if the ACF values cuts off after lag 

k, then a MA(k) process can be chosen, provided that PACF 

plots have an exponential decay, sinusoid dampening or a 

combination of the two. Suppose ACF shows an exponential 

decay, sinusoid dampening or a combination of both, and the 

PACF cuts off at lag k, then it is an AR(k) process. In case 

PACF shows exponential decay or sinusoidal damping or a 

combination of both then ARMA model needs to be looked. 

When the data is of non-stationary behavior, differencing 

data should be obtained and the ACF and PACF of 

differencing data needs to be examined to choose the p and 

q parameters. 

3.4 Determination of suitable models  

 

 One of the complexities of a time series modeling is 

determination of the weights for the various models. 

Furthermore, the weight estimate can be obtained using one 

of several approaches [7, 24]. Based on ACF and PACF 

plots, various types of models can be employed. If a moving 

average model is selected based on the plots, then the choice 

of q becomes important, which is determined based on the 

cut off value of ACF at a particular lag. However there would 

be variety of models which can be looked when there is 

ambiguity in the ACF and PACF plot, in such cases based on 

plots the different combination of p,q can be chosen and the 

same is applicable for a non stationary time series wherein 

ACF and PACF plot for differencing is looked into and when 

ambiguity in these plots arises various combinations of 

ARIMA model are obtained. The weights of the model are 

listed based on the ACF and PACF plots. They are typically 

calculated considering the type of model.  

 For a moving average model of order q, the 

autocorrelation is function is expressed in terms of the 

weights as shown below [24]: 
 

𝜌𝑥(𝑘) = {

−𝜃𝑘 + 𝜃1𝜃𝑘+1 + ⋯ + 𝜃𝑞−𝑘𝜃𝑞

 1 + 𝜃1
2 + 𝜃2

2+. . 𝜃𝑞
2

          𝑘 = 1, … 𝑞

0                                              𝑘 > 𝑞

         (11) 

 

 Since an estimate for an autocorrelation function can be 

obtained using Equation 9, there would be q nonlinear 

equations with q unknowns to be solved.  

 For an autoregressive process of order p, the relation 

between autocorrelation and weights are given by the Yule – 

Walker Equation [3, 31] shown below [24]: 

 

𝜌(𝑘) = ∑ 𝜙𝑖𝜌(𝑘 − 𝑖)𝑝
𝑖=1     𝑘 = 1,2, … …                                (12) 

 

 Using Equation 9, an estimate of autocorrelation can be 

obtained. For each autocorrelation value, there will be one 

set of linear combination of weights, likewise for a lag of p, 

there would be a p set of equations with p unknown weights 

that can be solved to obtain the weights. Once the weights 

are obtained for the various models, significance tests can be 

performed for the coefficients to determine the suitability of 

the model. Typically, a p-value less than .05 indicates that 

the coefficient is significant. Therefore, for various models, 

the p-values are accordingly checked and the models chosen. 

The Box-Pierce test is also conducted to check whether white 

noise is uncorrelated and independent. A larger p-value 

indicates that the there is no autocorrelation among the 

residues or white noise. After a set of suitable models is 

obtained, Minitab and R software are used to do various 

plots, tests and building the model 

 

3.5 Identification of the best model 

 

 Once the models are identified the next step is to find the 

best suitable model, there are different criteria which can be 

used to determine the best model. One such criterion is the 

Akaike Information Criterion (AIC) developed by [32]. The 

AIC is given as:  

 

𝐴𝐼𝐶 = 𝑙𝑛 (
∑ 𝑒𝑖

2𝑁
𝑖=1

𝑁
) +

2𝑝

𝑁
                                                  (13) 

 

where N is the number of periods or number of data points, 

p is an independently attributed parameter. Various other 

criteria are also available and can be used for evaluation [24]. 
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Table 1 Basic statistics of SGHalli, BTM air pollutants before imputation 

 
 Location Data  

Before 

Imputation 

Missing 

data 

Extreme 

Values 

Mean Stdev Median Q1  

(25th 

Percentile)     

Q3  

(75th 

Percentile)     

IQR  

(Interquartile 

Range) 

PM10(µg/m3) SGHalli 185 17 0 41.3 15.91 40.34 30.09 49.97 19.88 
SO2 (µg/m3) SGHalli 185 17 0 4.83 7.34 3.58 2.76 4.61 1.85 

NOx (µg/m3) SGHalli  185 17 0 26.68 13.047 28.58 14.58 37.42 22.84 

PM2.5(µg/m3) BTM 396 2 31 224.4 8.72 52.2 17.2 76 52.8 
SO2 (µg/m3) BTM 397 1 5 3.61 15.39 1.77 1.61 2.04 .43 

NOx (µg/m3) BTM 397 1 0 9.6 8.71 7.89 4.5 11.03 6.53 

 

Table 2 Mean values for imputation after removal of extreme values 

 
Location Pollutants Imputed  Mean 

(µg/m3) 

Data  

after 

Imputation  

Data imputed  

due to error 

(Extreme values) 

Missing 

Data 

Imputed 

SGHalli PM10 Missing Data  41.3  202 0 17 
SGHalli SO2 Extreme Values & Missing Data  3.81 202 0 17 

SGHalli NOx Missing Data  26.66 202 0 17 

BTM PM2.5 Extreme Values & Missing Data  45.77 398 31 2 
BTM SO2 Extreme Values & Missing Data   2.19 398 5 1 

BTM NOx Missing Data   9.6 398 0 1 

 

 
 

Figure 2 Box Plot for SGHalli & BTM pollutants with Y axis units of µg/m3 

 

The greater the number of parameters included in the model, 

the higher the penalty incurred and a larger value of AIC is 

incurred, thus a smaller AIC is preferred among set of models 

to be identified. Therefore, based on p-values and AIC 

values, the best model is identified. 

 

3.6 Model adequacy 

 

 Model adequacy can be validated by understanding the 

behavior of the residues or white noise. The basic assumption 

for building a time series lies in understanding the white 

noise or residues. White noise should be independent and 

uncorrelated.  Thus,   to  identify  the   independence  of   the  

residue, the behavior of residue over time is examined to 

determine if there is pattern. ACF plots can be used to 

understand correlation.  If the values are small then it can be 

said that residues are uncorrelated. Also, the performance of 

the model is also quite important in terms of root mean 

square and mean absolute error. The smaller these values, the 

better the performance. These equations are given below. 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑒𝑡)2𝑛

𝑡=1

𝑛
  where et =𝑥𝑡 − 𝑥�̂�                            (14) 

 

𝑀𝐴𝐸 =
∑ |𝑒𝑡|𝑛

𝑡=1

𝑛
                                                                                    (15) 
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4. Results and discussion 

 

4.1 Data cleaning 

 

 For SGHalli Station, the dataset for PM10, NOx, SO2 was 

considered. It is also important to note that particulate matter 

(PM10 or PM2.5) is formed due to complex interaction of 

various pollutants such as NOx, SO2, CO, hydrocarbons and 

environmental factors.   To conduct time series analysis, 

missing data, outliers and any other abnormality must be 

identified.  Based on the dataset considered, it was found that 

17 data points were missing for PM10 out of a dataset 

containing 212 points, i.e., the percentage of missing points 

was less than 10%. Typically in such cases, if instances of 

missing data are sufficiently low, then any kind of approach 

for imputation can be applied [23]. Several other researchers 

have done study on imputation of missing data and found that 

for low percentage of missing data most of the imputation 

methods work well [26, 33-34]. In the current study, the 

mean value of the data is substituted for the missing data 

points. The mean value and other statistics are shown in 

Table 1. 

 The Box plot of the dataset before imputation is shown 

in Figure 2. It can be seen there are few extreme values and 

they were not large. The outliers were not removed since they 

provide useful information and could be part of normal 

processes. The missing values were imputed using the mean 

value. Imputed values are shown in Table 2. The time series 

data after imputation of the mean value is shown in Figure 3. 

Time series data provides useful information on the behavior 

of the dataset. It can be seen that the mean of the data set for 

SGhalli Station PM10 seems to be stable. However 

somewhere around 90 days, there seem to be changes in the 

variance and the data seems to be autocorrelated (as noticed 

by downward and upward values). This needs to be verified 

by considering an autocorrelation plot.  

 In the Box plot of the dataset for SGHalli Station, NOx 

before imputation is shown in Figure 2. Based on this Box 

plot, there are no extreme values or outliers. From the time 

series data in Figure 3, a change in mean around 50 days with 

an upward trend and there seems upward and downward 

trend as evidenced in the plot (data from 150 days onwards). 

This shows that data may be non-stationary, and hence a 

more detailed study of the ACF, PACF and differencing plot 

is essential.  

 The Box plot for SGHalli Station shows extreme values 

for SO2. Therefore, the relationships between the extreme 

values and other variables were examined. It was found that 

extreme values did not exhibit correlation with other 

variables, so these values were removed and the mean was 

calculated (Table 2) and accordingly imputed using the mean 

value approach. The time series data is plotted after 

imputation in Figure 3. For the SGHalli Station SO2 level, 

the mean seems to be stable except at the beginning stages in 

the dataset. This could be indicative of a process that is 

weakly stationary. However to further examine this 

assertion, ACF, PACF plots are needed.  

 There are numerous large extreme values in the BTM 

station PM2.5 data in Figure 2 Box plots.  Typically such very 

large extreme values do not occur. However, since they are 

many and sufficiently larger values and large amount, a 

scatter plot of the extreme values of PM2.5 with other 

variables were looked into, to identify whether other 

pollutants are the cause for such extreme value and the 

scatter plot is shown in Figure 4. The relation between 

extreme  values  of  the variables can be judged  based on the  

correlation value or by using the red lines in this figure. The 

correlation values indicate that there is no relationship 

between the extreme values for any of the variables. The red 

lines in the graphs indicate the fit of data between two 

variables. Regression lines (red line) show the fit between 

PM2.5 and SO2, PM2.5 and NOX, PM2.5 and CO. It can be seen 

that this line is almost parallel to the y-axis for PM2.5 vs. SO2 

and parallel to x-axis for PM2.5 vs. NOX. In case of PM2.5 vs. 

CO, it can be seen that most of the values are not correlated, 

as indicated by the straight line parallel to the x-axis (for CO 

values between 0 to 2). Thus, these values may have been 

caused due to instrumentation or human error, hence a 

decision was made to remove them and accordingly impute 

with the recalculated mean values shown in Table 2. 

Likewise, it is noted after imputation that there was a sharp 

decrease in mean value. This was mainly from large extreme 

values due to instrumentation or human error. After 

imputation, the time series dataset is plotted as shown in 

Figure 3. It can be seen from the plot that there is a change 

in the mean value and also there seems to be a trend in mean 

indicating that the dataset is non-stationary. Further details 

on modeling need to be obtained by understanding ACF, 

PACF and difference data.  

 A Box plot of BTM SO2 shows extreme values. These 

values were removed and accordingly imputed based on the 

recalculated mean as shown in Table 2. The time series plot 

after imputation shows that the mean seems to be stable, 

indicating a weakly stationary process.  

 The Box plot for NOx (Figure 2) shows extreme values 

and outliers, but these values are not large enough to be 

removed. Hence they were retained. The dataset contains one 

missing value that was imputed using recalculated mean 

values as shown in Table 2. 

 The NOx time series data shows that at the beginning 

stages there seems to be trend, but after a certain period the 

mean seems to be stable, whereas there seems to be variance 

changes occurring after a certain period of time, an analysis 

of ACF and PACF plot would provide a clear picture on the 

behavior. 

 

4.2 Model building using ACF, PACF plots for actual and 

differencing data 

 

4.2.1 Model building for SGHalli Station  

 

 The autocorrelation and partial autocorrelation plots for 

PM10, NOX and SO2 of SGHalli station are shown in 

Figure 5.  The autocorrelation plot of PM10 indicates a 

gradual dip around the fourth lag and there seems to be a 

sinusoidal pattern of decay. This indicates that the model can 

be either an AR or ARMA type. For confirmation, the PACF 

plots were examined. The PACF cuts at lag 1, indicating an 

AR(1) model. However, there seems to be sinusoidal pattern 

and since the cut off is around lag 4, so it could also be 

ARMA (1,1), ARMA(1,2), ARMA(1,3) and ARMA(1,4) 

models. Table 3 gives these possibilities. 

 For NOx, there is long exponential decay in the ACF plot, 

indicating a non-stationary time series. This can be verified 

by observation of the time series plot in Figure 3 (trend in 

data). Additionally, the PACF plot indicates large values at 

various lags, thereby creating a need to build an ARIMA 

model with various p-values. In order to model a 

non-stationary series, a differencing method needs to be 

used. Based on the stationarity of the order of differences, an 

ARIMA model can be created. The first order differencing 

plot  was  calculated  and  the  ACF  and  PACF  differencing   
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Figure 3 Time series plot (SGHalli and BTM) for NOx, PM10, SO2, y-axis units in µg/m3 

 

Table 3 Time series model types for various pollutants 

 

Pollutants Time Series Model types 

PM10 (SGHalli) AR(1), ARMA(1,1), ARMA(1,2), ARMA(1,3), ARMA(1,4) 

NOx (SGhalli) ARIMA(1,1,1), ARIMA(1,1,2), ARIMA(1,1,3), ARIMA(2,1,1), ARIMA(2,1,2), ARIMA(2,1,3) 

SO2 (SGhalli) ARIMA(1,1,1), ARIMA(1,1,2) 

PM2.5 (BTM) ARIMA(0,1,1) 

NOx (BTM) ARIMA(0,1,1), ARIMA(0,1,2), ARIMA(0,1,3), ARIMA(0,1,4) 

SO2  (BTM) AR(1), AR(2) 
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Figure 4 Correlation and scatter plots of extreme values of pollutants (x, y-axis units in µg/m3) 

 

plots for NOx are shown in Figure 6. It is seen from the plot 

that the autocorrelation is low and PACF values are well 

within limits, indicating that first order differencing makes 

the dataset stationary, and hence suitable for creating an 

ARIMA model. There are various possible models that can 

be built using ARIMA. Table 3 gives these possibilities. 

 For SO2, the ACF plot indicates a non-stationary model. 

This is evidenced by observing the time series plot in 

Figure 3, which is indicative of mean changes. The 

differences are taken between consecutive data. 

Accordingly, the ACF and PACF are examined. Based on the 

plots in Figure 6, it can be seen that first order differencing 

is stationary, indicating an ARIMA model with a first order 

difference. Based on the order difference and the PACF plot 

suitable ARIMA models can be built. Table 3 presents the 

various combination for a difference of order 1.  

 

4.2.2 Model building for BTM Station  

 

 It is seen from the plots of ACF (long decay) and PACF 

(long decay) from Figure 5 for PM2.5, that the dataset is 

non-stationary. Thus, differencing of data was conducted and 

the ACF and PACF plots for differencing were obtained as 

shown in Figure 6. Based on these plots, ACF value cuts off 

after lag 1 can be seen and the PACF has an exponential 

decay thereby leading to the conclusion that a differencing 

model with MA(1) is needed. In other words, 

ARIMA (0,1,1) would be a suitable model.  

 For NOx, the ACF and PACF plots indicate that the 

dataset is non-stationary as seen by the long ACF decay 

process. The time series plot is indicative of a non-stationary 

process. Based on the ACF and PACF, it can be also be 

interpreted as a MA model. In such cases, it is worthwhile to 

look at differencing plots. The ACF and PACF plots for a 

first order difference are drawn. It seen from the plot in 

Figure 5 that the ACF cuts after lag 1 and the PACF seems 

to have to low values. However, there seems to be an 

exponential decay indicating that an MA model for 

differencing should be used. It is seen from the PACF plot 

that various ARIMA models with different p and q values 

can be used. The various models that can be used are shown 

in Table 3.  

 The ACF and PACF for SO2 indicates that there is an 

exponential decay for ACF and the PACF values are small 

which cut after lag 1. This indicates either an AR(1) or an 

AR(2) model. 

 

4.2.3 Determining suitable models using a t-test for 

parameters 

 

 Table 4 provides a list of models with significant 

p-values for the various parameters used in model building. 

For SGHalli Station PM10, the p-values for model AR(1) 

were significant. For the other models from ARMA(1,1) to 

ARMA (1, 4), the p-values were not significant. Thus, AR(1) 

was a suitable model. It can be seen from Table 4 that AIC, 

BIC values of AR(1) are smaller than for ARMA(1, 4), thus 

confirming suitability. 

 For SGHalli Station NOx, p-values for the coefficients of 

the ARIMA(1,1,2), ARIMA(1,1,3), ARIMA(2,1,2) and 

ARIMA(2,1,3) models are large and thus not significant. The 

ARIMA(1,1,1) and ARIMA(2,1,1) models have p-values 

less than .05, so in the final model, the AIC, BIC criteria are 

used. It is seen from Table 5 that the AIC, BIC values for 

ARIMA (2,1,1) are smaller than for ARIMA(1,1,1). At the 

same time, the p-values for the lags using a modified 

Box-Pierce test are large. In a Box-Pierce test, larger 

p-values indicate that residual autocorrelation is minimal, 

indicative of white noise [24] in comparison to 

ARIMA(1,1,1). Based on this, ARIMA (2,1,1) was chosen 

as the model.  
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Figure 5 ACF, PACF plots for SGHalli (PM10, NOx, SO2), BTM pollutants (PM2.5, NOx, SO2) 

 

Table 4 Coefficients values and p-values for various significant models 

 
Pollutants Model types Coefficients p-value 

  Const AR1 AR2 MA1 MA2 MA3 MA4 AR1 AR2 MA1 MA2 MA3 MA4 

PM10 SGHalli AR(1) 16.29 .602 -- -- -- -- -- 0.0 -- -- -- -- -- 

NOx SGHalli ARIMA(1,1,1) 0.025 .478 -- .866 -- -- -- 0.0 -- 0.0 -- -- -- 

 ARIMA(2,1,1) .036 .386 -.24 -.70 -- -- -- 0.0 .03 0.0 -- -- -- 

SO2  SGHalli    ARIMA(1,1,1) 8*10-4 .821 -- 1.00 -- -- -- 0.0 -- 0.0 -- -- -- 

PM2.5 BTM ARIMA(0,1,1) .086 -- -- .803 -- -- -- -- -- 0.0 -- -- -- 

NOx  BTM ARIMA(0,1,1) -.017 -- -- .371 -- -- -- -- -- 0.0 -- -- -- 

 ARIMA(0,1,2) -.017 -- -- .363 .134 -- -- -- -- 0.0 0.0 -- -- 

SO2  BTM AR(1) 1.79 .183 -- -- -- -- -- 0.0 -- -- -- -- -- 
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Figure 6 ACF, PACF plots for differences of SGHalli (NOx, SO2) and BTM pollutants (PM2.5, NOx) 

 

Table 5 AIC, BIC and Box-Pierce p-value statistics for various model types 

 

Pollutants Model types Box-Pierce Test p-Value 

  AIC BIC Lag12 Lag24 Lag36 Lag48 

PM10 SGHalli   AR(1) 1595 1604 0.080 0.265 0.009 0.011 

NOx SGHalli     ARIMA(1,1,1) 1356 1366 0.035 0.081 0.096 0.108 

 ARIMA(2,1,1) 1351 1364 0.648 0.574 0.667 0.726 

SO2  SGHalli   ARIMA(1,1,1) 507 517 0.925 0.466 0.875 0.822 

PM2.5 BTM ARIMA(0,1,1) 3587 3594 0.677 0.778 0.820 0.828 

NOx BTM ARIMA(0,1,1) 2370 2378 0.000 0.000 0.009 0.051 

 ARIMA(0,1,2) 2364 2376 0.003 0.012 0.130 0.337 

SO2  BTM AR(1) 1700 1712 0.227 0.000 0.001 0.002 
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Table 6 Best identified models for various pollutants and ADF test for stationarity 

 

Pollutants Model ADF value Significant 

PM10 SGHalli   AR(1) -7.16 Yes 

NOx SGHalli    ARIMA(2,1,1) -4.99 Yes 

SO2  SGHalli    ARIMA(1,1,1) -4.24 Yes 

PM2.5 BTM ARIMA(0,1,1) --8.3 Yes 

NOx BTM ARIMA(0,1,2)  -4.75 Yes 

SO2  BTM AR(1) -16.89 Yes 
 

 For SGHalli Station SO2, it is seen that the for 

ARIMA(1,1,1), p-values are significant for AR1, MA1 

coefficients and for ARIMA(1,1,2), the p-value is not 

significant for MA2 coefficients (p-value =. 64), indicating 

ARIMA(1,1,1) as a suitable model. 

 For BTM Station PM2.5, only one model was found 

suitable. The p-value shows significance for MA1, thus this 

model is suitable for BTM Station PM2.5.  

 For BTM Station NOx it is seen that the ARIMA(0,1,3) 

model has large p-values for MA2 (p value = .0167), 

ARIMA(0,1,4) has large p values for MA2  (p-value = .2) 

and MA4 (p-value = .67) coefficients, indicating that these 

two models are not suitable. The p-values for ARIMA(0,1,1) 

and ARIMA(0,1,2) models have significant p-values, as 

shown in Table 4. Since there is a tie, AIC values are used to 

make a decision, and the ARIMA(0,1,2) model has a lower 

value. Additionally, the Box-Pierce test statistics show a 

large p-value for ARIMA (0,1,2), indicating that errors are 

white noise. Thus, based on this, ARIMA(0,1,2) is chosen. 

 For BTM Station SO2, AR(1) has significant p-values for 

AR1 coefficients and AR(2) has a large p-value for AR2 

coefficients (p-value = .743). Therefore, the AR1 model is 

chosen. The final model selected is listed in Table 6. 

Additionally, the ADF (Augmented Dickey Fuller) test was 

conducted to check for stationarity of the selected models. It 

is seen from Table 6 that the ADF values have large negative 

values, suggesting rejection of the null hypothesis 

(non-stationary). Hence, it can be concluded that the models 

are stationary. 

 

4.3 Model adequacy  

 
 The typical way of checking model adequacy is to 

examine whether the residuals are white noise. This can be 

done by checking the autocorrelation structure of the 

residues using the Box-Pierce test. Changes in variances can 

be identified from the plot  by observing the general behavior 

of residues using histograms, QQ plots, and residue vs. fit 

data.  Table 5 provides the p-values for the Box-Pierce test 

conducted for the various models. It is seen that for most of 

models selected, the p-values are larger than .05, indicating 

that residues are white noise, which is a primary requirement 

for time series modeling.  

 For SGHalli PM10, the p-value for the Box-Pierce test for 

AR(1) shows large values indicating that the residuals are 

white noise and not correlated. This can be cross-checked 

from the ACF and PACF plot shown in Figure 7. It is seen 

from Figure 7 that the histogram is symmetrical and there is 

random order as seen in plot of residue vs order.  

 For SGHalli NOx ARIMA (2,1,1), the p-value for the 

Box-Pierce test shows very large values indicating that the 

residuals are white noise and not correlated. The QQ plot 

shows normality of the data (however, normality is not a 

criteria for white noise) as evidenced by the histogram. Also 

there is randomness in data shown by residue vs. order plot.  

 For SGHalli SO2 ARIMA (1,1,1), the Box-Pierce test 

shows large-p values indicating no correlation among 

residues, which is also evidenced by the residue vs. order 

plot, ACF, PACF plot, thus indicating a sound model.  

 For BTM PM2.5 ARIMA(0,1,1), the Box-Pierce test, 

based on Table 5, shows large p-values as well as the ACF 

and PACF shown in Figure 7, with no correlation, thereby 

indicating a white noise structure. The QQ plot shows 

skewness towards the right and is shown by the histogram. 

The residue vs. order structure indicates that the dataset is 

random.  

 For BTM NOx ARIMA(0,1,3), the Box-Pierce test shows 

large p-values. Furthermore, the ACF and PACF values of 

residues show that there is no autocorrelation, indicating that 

the residues are white noise. The residue vs. order plot shows 

that the data is random. Therefore the model is sound.  

 For BTM SO2 AR(1), the Box-Pierce test result is small, 

indicating there could be an autocorrelation structure. 

However, the ACF plot for residue indicates that there is no 

autocorrelation.  

 It is essential to check how much of a difference exists 

between the actual and the fitted values. There are measures, 

such as root mean square error, that can indicate the 

performance of the model. The lower this value, the better 

the performance. Additionally, a plot of actual and fitted 

values would indicate how well the model can perform. 

Figure 8 shows the actual and predicted values for SGHalli 

and BTM pollutants. It is seen from the plot, the models 

obtained are able to depict similar behavior and there seems 

to be little variation between the actual and fitted values. 

However, this needs to be verified statistically. Equations 14 

and 15 provide the RMSE and MAE, where smaller values 

indicate better fit.  

 The mathematical formulations for the selected models 

are given below, in equation form, for SGHalli PM10, NOx 

and SO2 and BTM PM2.5, NOx and SO2, in Equations 16 

through 21. 

 

𝑥𝑡 = 16.29 +. 602𝑥𝑡−1 + 𝜀𝑡                                           (16) 

 

𝑤𝑡 = .036 + .386𝑤𝑡−1 − .24𝑤𝑡−2 + 𝜀𝑡 − .752𝜀𝑡−1 +
.06𝜀𝑡−2                                                                             (17) 

 

𝑤𝑡 = .0008 + .821𝑤𝑡−1 + 𝜀𝑡 − 𝜀𝑡−1                          (18) 

 

𝑤𝑡 = −.017 + 𝜀𝑡 − .371𝜀𝑡−1                           (19) 

 

𝑤𝑡 = −.022 + 𝜀𝑡 − .342𝜀𝑡−1 + .073𝜀𝑡−2 − .155𝜀𝑡−3   (20) 

 

𝑥𝑡 = 1.74 +. 183𝑥𝑡−1 + 𝜀𝑡                           (21) 

 

4.4 Discussion 

 

 Since there is no complex time series model built for 

Bangalore city and Sharma et al. [20] has presented a detailed 

study  on  the  performance  based on Delhi pollution data, it 
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Figure 7 QQ plot, residue vs. fit and order, histogram, ACF&PACF for residues of SGhalli and BTM pollutants (units of 

residue and fitted values are µg/m3) 



260                                                                                                                                      Engineering and Applied Science Research  July – September

 

 
 

 

 
 

Figure 8 Actual and predicted values for SGHalli and BTM pollutants, y-axis units in µg/m3 
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Figure 9 Scatter plot of fitted value vs. actual values of various pollutants (SGhalli, BTM) (µg/m3) 

 

would be useful to understand the differences and provide a 

comparison based on performance. 

 There are various measures to find the performance. 

Sharma et al. [20] used RMSE based on fitting a regression 

model for the predicted and observed values. The formula 

obtained by Sharma et al. [20] has been based on Willmott et 

al. [35] and are shown in Equations 23 and 24. In similar 

lines for comparison with Sharma et al. [20] and 

understanding the prediction power, the formulas are applied 

to the final applied model. 

 It is to be noted regression modeling is more suitable 

when the data set is stationary. However, that scenario would 

be more applicable when the regression is done on a set of 

independent variable, and in this case since the regression is 

based on the fitted value vs observed value, regression model 

can be applied. Additionally, a scatter plot for the fitted and 

observed values shows a linear relationship except for BTM 

SO2. The formulas are shown in Equations 22, 23,24 and is 

applicable more often while conducting linear regression 

analysis where RMSEs is a systematic component and 

RMSEu an unsystematic component. 

 

𝑅𝑀𝑆𝐸 =  √𝑅𝑀𝑆𝐸𝑠
2 + 𝑅𝑀𝑆𝐸𝑢

2             (22) 

 

𝑅𝑀𝑆𝐸𝑠 = (
∑ 𝑤𝑖|𝑝�̂� − 𝑜𝑖|

2𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

)

2

= (
∑ |𝑝�̂� − 𝑜𝑖|

2𝑛
𝑖=1

𝑛
)

2

(𝑤ℎ𝑒𝑛 𝑤𝑖 = 1) 

                                                                                         (23) 

 

𝑅𝑀𝑆𝐸𝑢 = (
∑ 𝑤𝑖|𝑝�̂�−𝑝𝑖|2𝑛

𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

)
2

= (
∑ |𝑝�̂�−𝑝𝑖|2𝑛

𝑖=1

𝑛
)

2

(𝑤ℎ𝑒𝑛 𝑤𝑖 = 1)                                                    

                                                                                         (24) 

 

where 𝑝�̂� is the estimated predicted value, 𝑝𝑖 is the predicted 

value obtained by modeling time series and 𝑝�̂� is obtained by 

regressing fitted values 𝑝𝑖 on observed values 𝑜𝑖. Thus, the 

regression equation is 𝑝�̂� = 𝛽0̂ + 𝛽1̂𝑜𝑖 . Based on the 

regression model of predicted vs. observed values, R2 values 

are obtained. The 𝑅𝑀𝑆𝐸𝑠, 𝑅𝑀𝑆𝐸𝑢 and lower proportionality 
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Table 7 RMSE, RMSEs, RMSEu and (
𝑅𝑀𝑆𝐸𝑠

𝑅𝑀𝑆𝐸
)

2
 values for predicted vs. observed values in a regression model 

 

Station Model R2 RMSEs RMSEu RMSE (
𝑹𝑴𝑺𝑬𝒔

𝑹𝑴𝑺𝑬
)

𝟐

 (
𝑹𝑴𝑺𝑬𝒖

𝑹𝑴𝑺𝑬
)

𝟐

 Authors 

PM10 SGHalli  AR(1) .501 9.89 7.32 12.34 64.21% 35.79%  

NOx SGHalli    ARIMA(2,1,1) .71 2.98 6.25 6.92 90.31% 9.69%  

SO2  SGHalli   ARIMA(1,1,1) .703 .178 .532 .5612 10.0% 90.00% 
Current 

work 

PM2.5 BTM ARIMA(0,1,1) .46 14.58 16.46 21.99 43.97% 56.03%  

NOx BTM ARIMA(0,1,3) .718 7.97 3.62 8.75 82.88 17.12%  

SO2  BTM AR(1) .0303 4.00 .1376 2.03 98.8% 1.2%  

SPM Ashokvihar Delhi ARIMA(1,0,1) .9681 .436 .2841 .515 70.22% 29.78%  

NO2 Ashokvihar Delhi ARIMA(0,1,1) .9065 .3238 .1921 .376 73.96% 26.04% [20] 

SO2 Ashokvihar Delhi ARIMA(1,1,1) .9060 .7614 .1178 .770 96.04% 3.96%  

SPM Shahzada bagh Delhi ARIMA(1,0,1) .9437 .4668 .1476 .499 87.42% 12.58%  

NO2 Shahzada bagh Delhi ARIMA(0,1,1) .9001 .4029 .2781 .489 67.89% 32.11% [20] 

SO2 Shahzada bagh Delhi ARIMA(1,1,1) .9431 .289 .0952 .304 90.21% 9.79%  

 

of (
𝑅𝑀𝑆𝐸𝑢

𝑅𝑀𝑆𝐸
)

2
, indicate a more precise model [35].  

 It is to be noted that Sharma et al. [20] have not used the 

proportionality of (
𝑅𝑀𝑆𝐸𝑢

𝑅𝑀𝑆𝐸
)

2
but this research has used 

because it has been mentioned by Willmott et al. [35] on the 

usefulness of the proportionality to understand the precision 

of the model wherein lower the ratio of (
𝑅𝑀𝑆𝐸𝑢

𝑅𝑀𝑆𝐸
)

2
the more 

precise the model. For this reason, a comparison is made 

based on the above formula with Sharma et al. [20] and 

details are provided in Table 7. 

 A regression model was built using an ordinary least 

squares method determining the values of RMSE based on 

Equations 20, 21 and 22. A scatter plot was made and 

examined for linear relationships. From Figure 9, it is seen 

that fitted and the actual values are linearly related except for 

those of SO2. The models are build, the predicted values, 

coefficient of determination (R2), residue values and the 

coefficients β0, β1 are calculated. Accordingly, 𝑝�̂�  is 

calculated based on 𝑝�̂� = 𝛽0̂ + 𝛽1̂𝑜𝑖 , in which RMSE, 

RMSEs, RMSEu are calculated. The values are shown in 

Table 7.  

 Table 7 gives the RMSE and the ratio values for the 

current work based on the regression model and a 

comparison is shown with other work. To compare in similar 

ways, two locations were chosen, one of which is an 

industrialized area (Shahzada bagh, Delhi) and the other a 

residential area (Ashok vihar, Delhi) from Sharma et al. [20]. 

As far as model precision is concerned, most of the models 

in the current and earlier work seems to be sound, and have 

low (
𝑅𝑀𝑆𝐸𝑢

𝑅𝑀𝑆𝐸
)

2
 values except for SO2 in SGHalli. Also, it is 

notable that most of the models built for Bangalore and Delhi 

pollutants are based on 1st differencing. Thus as far as time 

series modeling is concerned, there seems to be similar 

behavior of the pollutants. 

 An important question arises. Why is it that there is high 

value of   (
𝑅𝑀𝑆𝐸𝑢

𝑅𝑀𝑆𝐸
)

2
 for SO2 at SGHalli Station? When the 

time series plot from Figure 3 is examined, there seems to be 

a complex data structure for SO2. At a casual glance of the 

plot, it looks like the data set has mixture of changes such as 

trend at the beginning, change in mean, sharp change in mean 

and after certain period of time, a change in mean, change in 

variance and downward trends, indicating that time series 

model might not be suitable. In the case of time series data 

for other pollutants, such marked changes are not seen. 

Hence, better precision was obtained. This can be only be 

ascertained when more variety of time series data at different 

places and for various pollutants are obtained and analyzed. 

This research thus leads to questions of how to tackle such 

complex scenarios and what would be suitable models when 

such complexity arises, a wider area of exploration.  

 

5. Conclusions  

 

 It is shown that time series modeling can be developed 

for modeling air pollutants in Bangalore city. Suitable 

models can be obtained by selecting a sound methodology. 

It is also seen that time series seems to perform better for 

stationary processes as far prediction is concerned compared 

to processes that are highly non-stationary. Therefore to 

understand the complexity of the process and the 

effectiveness of time series model, more amount of modeling 

work needs to be looked at various cities in India to 

understand the reason for superior performance and 

moderate performance. This can be looked as a future 

research objective for developing air pollution models in 

INDIA.  
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