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Abstract 
 

Modeling of pollutant degradation using artificial neural networks (ANN) has been done well. The techniques used to model 

degradation vary. This literature review was done to examine the development of the use of ANN modeling from year to year. 

It will provide an overview of predictive studies from a degradation treatment condition that will produce optimal conditions. 

These conditions will be supported by experimental data so that costs and time can be reduced at laboratory scale. Some 

relevant techniques include separation methods, coagulation, advanced oxidation processes, and chemical oxidation. The 

algorithmic approaches used are ANN-LM, ANN-BP, ANN-BP (SCG), and ANN-BFGS. Modelling using ANN has very high 

potential for further development. The perfomance indicator of an ANN method is a strong coefficient of determination (R2), 

with good RMSE, MAPE, and MSE values. 
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Abbreviations  

 

ANN : Artificial Neural Network 

MLP : Multi-layer Perceptron 

ANN-LM : Artificial Neural Network-Levenberg-  

                           Marquardt 

ANN-BP : Artificial Neural Network Backpropagation  

MGD : Momentum Gradient Descent 

GD : Gradient Descent 

SCG : Scaled Conjugate Gradient 

SOM : Self Organizing Map 

MSE : Mean Square Error 

SSE : Sum Square Error 

PCA-ANN : Principal Component Analysis Artificial   

                      Neural Network 

BFGS : Broyden–Fletcher–Goldfarb–Shanno 

SSE : Sum Of Squared Errors 

PSO : Particle Swam Optimization 

ANFIS : Adaptive Neuro-Fuzzy Inference System 

ANN-GA : Artificial Neural Network-Genetic Algorithms 

RBFNN : Radial Basis Function Neural Network 

MAPE : Mean Absolute Percentage Error 

 

 

1. Introduction 

 

Water is a basic human need for life. Human activities 

produce wastewater that contains of pollutants that can be 

harmful to life if not handled properly. Common pollutants 

include synthetic dyes, heavy metals, and persistent organic 

chemical pollutants [1]. Synthetic dyes are often used to 

improve the quality of some products. Based on research by 

Katheresan  [2], the types of human activities that use dyes 

include textiles 54%, dying 21%, paper and pulp 10%, 

tannery and paint 8%, and dye manufacture 7%. This shows 

that the use of dyes is very great. In the textile industry, the 

biggest use of dyes is to impart colors to cloth (55%), 

bleaching (25%), wet finishing (18%), and scouring (2%). 

Heavy metals and organic pollutants are species that are 

very dangerous to humans. Cr (VI), Cr (III), Pb (II), Fe (II), 

Ni (II), Cd (II), Mn (II), Co (II) and As (III) are examples 

heavy metals that can endanger humans. Other harmful 

pollutants include phosphates, naphthalene, aniline, toluene 

and triamterene. Heavy metals are toxic and these other 

pollutants can be carcinogenic. Physical, chemical and 

biological methods have been examined by numerous 

researchers to overcome the problems of dyestuff waste, 

heavy metals and other pollutants [3]. 

 The treatment of the wastewater considers a variety of 

variables that differ based on the type waste and treatment 

methods used.  To  reduce   the   cost  of   the    experimental   

process, modelling and optimization are done so that the 

waste processing can be performed optimally. Optimal 

processing will have a significant impact in terms of reduced 

costs and working times. The main key to modelling and 

optimization is to produce a removal with the lowest costs 

and operating time. Therefore, prediction of the maximum 

removal  percentage  is  necessary.  Modelling  using  highly  
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Figure 1 The architecture of a multi-layer neural network 

 

flexible computational intelligence is employed to predict 

optimum removal. Artificial neural networks (ANNs) have 

good performance. One object of this article is to describe 

the fundaments of ANNs and their use in predicting removal 

of dyes, heavy metals and other pollutants from liquid 

wastes. This review will also discuss the use of multilayer 

perceptron neural networks, fuzzy neural networks, and 

radial basis functions in modelling the degradation of 

wastewater. 

 

2. Artificial Neural Network 

An artificial neural network is a model that can mimic 

human thought and brain function, making conclusions from 

pieces of information. It uses the same structure as the human 

brain. The ability of an ANN to learn makes them useful for 

solving problems involving classification, prediction and 

forecasting in various fields. Artificial neural networks can 

be grouped by type of architecture, training method and 

learning algorithm [4]. 

There are three types of ANN architecture, single-layer, 

multiple-layer and competitive layer. These three 

architectures are multi- and competitive-layered. ANNs can 

be grouped according to their training methods as 

supervised, unsupervised and hybrid. Multi-layer 

architectures use supervised training methods, while 

competitive-layer architecture employs unsupervised 

training. Most well-known supervised learning algorithms 

are backpropagation and learning vector quantization, while 

the unsupervised methods include self-organizing maps 

(SOM), and radial basis function (RBF) algorithms [4-5]. 

 

2.1 The architecture of multi-layer perceptron  

backpropagation 

 

A perceptron multi-layer architecture can be trained 

using a number of algorithms, including backpropagation, 

Levenberg-Marquard, and quasi-Newton algorithms. 

Multi-layer architecture with a backpropagation learning 

algorithm is an ANN model with good ability in predictive 

applications. The learning method used in this model is 

supervised. The backpropagation algorithm uses an error 

output to change the value of the weights in the reverse 

direction. To determine the error, we need to do a forward 

propagation first. A multi-layer architecture is shown in 

Figure 1. The following is a multi-layer perceptron 

backpropagation algorithm with one hidden layer [4]: 
Step 0:  

Initialize the weights for each layer 𝑤𝑖𝑗 and 𝑣𝑗𝑘 (single 

hidden layer) 

Step 1:   

Repeat steps 2-8, if epoch <maximum and MSE> target error 

Do for each training pair 

Feedforward: 

 Step 2: Each input unit 𝑋𝑖 , 𝑖 = 1,2,3, … . , 𝑛 receives an 

input signal 𝑥𝑖 and broadcasts this signal to all units in the 

layer above (the hidden units). 

 Step 3. In each hidden unit 𝑍𝑗 , 𝑗 = 1,2,3, … , 𝑝, sum the 

weighted input signals. Then, this sum is multiplied by the 

weights, 𝑤𝑖𝑗 as: 

 

 𝑧_𝑖𝑛𝑗 = 𝑏1𝑗 + ∑ 𝑥𝑖

𝑛

𝑖=1

𝑤𝑖𝑗  (1) 

 

Apply an activation function to compute the output from the  

hidden layer as:  

 

 𝑧𝑗 = 𝑓(𝑧_𝑖𝑛𝑗) (2) 

 

and send this signal to all units in the layer above (output 

units). Step 3 is done for each of the hidden layers used. 

 Step 4: At each output unit 𝑌𝑘 , 𝑘 = 1,2,3, … , 𝑚, sum the 

weighted input signals, and multiply this result by the 

weight, 𝑉𝑗𝑘. 

 𝑦_𝑖𝑛𝑘 = 𝑏2𝑘 + ∑ 𝑧𝑗

𝑝

𝑗=1

𝑣𝑗𝑘 (3) 

 

Apply this activation function to compute an output signal. 

 𝑦𝑘 = 𝑓(𝑦_𝑖𝑛𝑘) (4) 

  

 𝑓(𝑦_𝑖𝑛𝑘
) =

1

1 + 𝑒−𝑦_𝑖𝑛𝑘
 

(5) 
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 Backpropagation: 

 Step 5. Each ouput unit 𝑌𝑘 , 𝑘 = 1,2,3, … . , 𝑚, receives a 

target pattern corresponding to the input training pattern and 

computes its error information term 𝑡𝑘 , 𝑘 = 1,2,3, … . , 𝑚  , 

which given by: 

 

 𝛿2𝑘 = (𝑡𝑘 − 𝑦𝑘)𝑓′(𝑦𝑖𝑛𝑘
) (6) 

  

 𝜑2𝑗𝑘 = 𝛿𝑘𝑧𝑗  (7) 

  

 𝛽2𝑘 = 𝛿𝑘 (8) 

 

Then, the weight correction term is determined that will be 

used later to update 𝑣𝑗𝑘 .  

 

 ∆𝑣𝑗𝑘 = 𝛼𝜑2𝑗𝑘 (9) 

 

A bias correction term is calculated (and used to update 𝑏2𝑘 

later). 

 

 ∆𝑏2𝑘 = 𝛼𝛽2𝑘 (10) 

  

Step 5 is done for all hidden layers. 

 Step 6: Each hidden unit, 𝑍𝑗 , 𝑗 = 1,2,3, … , 𝑝 , sums its 

delta inputs from units of the layer above: 

  

 𝛿_𝑖𝑛𝑗 = ∑ 𝛿2𝑘𝑣𝑗𝑘

𝑚

𝑘=1

 
(11) 

 

Then, this term is multiplied by the derivative of its 

activation function to calculate an error information term: 

 

 𝛿1𝑗 = 𝛿_𝑖𝑛𝑗𝑓′(𝑧𝑖𝑛𝑗) (12) 

  

 𝜑1𝑖𝑗 = 𝛿1𝑗𝑥𝑗 (13) 

  

 𝛽1𝑗 = 𝛿1𝑗 (14) 

 

A weight correction term is calculated and later used to 

update 𝑤𝑖𝑗 .  

 

 ∆𝑤𝑖𝑗 = 𝛼𝜑1𝑖𝑗 (15) 

 

A bias correction term is calculated and later used to update 

𝑏1𝑗.  

 

 ∆𝑏1𝑗 = 𝛼𝛽1𝑗 (16) 

  

 Step 7:  Each output unit 𝑌𝑘 , 𝑘 = 1,2,3, … , 𝑚, 𝑗 =
1,2,3, … , 𝑝 updates its bias and weight.  

 

 𝑣𝑗𝑘(𝑛𝑒𝑤) = 𝑣𝑗𝑘(𝑜𝑙𝑑) + ∆𝑣𝑗𝑘  (17) 

  

 𝑏2𝑘(𝑛𝑒𝑤) = 𝑏2𝑘(𝑜𝑙𝑑) + ∆𝑏2𝑘 (18) 

 

Each hidden unit, 𝑍𝑗 , 𝑗 = 1,2,3, … . , 𝑝, i=1,2,3,…,n updates 

its bias and weight. 

 

 𝑤𝑖𝑗(𝑛𝑒𝑤) = 𝑤𝑖𝑗(𝑜𝑙𝑑) + ∆𝑤𝑖𝑗 (19) 

  

 𝑏1𝑗(𝑛𝑒𝑤) = 𝑏1𝑗(𝑜𝑙𝑑) + ∆𝑏1𝑗  (20) 

 

 Step 8: Calculate the MSE or SSE (perfomance 

indicator), where 𝑡𝑘 is an output target. 

 

 𝑀𝑆𝐸 =
∑ (𝑡𝑘 − 𝑦𝑘)2𝑛

𝑘=1

𝑛
 

(21) 

  

 𝑆𝑆𝐸 = ∑(𝑡𝑘 − 𝑦𝑘)2

𝑛

𝑘=1

 (22) 

 

Back Step 1 

 The backpropagation algorithm is performed after the 

training stage. The testing process is different from the 

training process. In a MLP, the testing algorithm is only 

feedforward, using weight and bias results from training. The 

backpropagation algorithm can use a number of improved 

algorithms, such as the momentum gradient descent (MGD) 

[6], scaled conjugate gradient (SCG) [7], and Bayesian 

regularization (BR) [8]. ANN performance for predictions is 

measured using the coefficient of determination, R2 

expressed in Equation (23) [9], RMSE in Equation (24), and 

MAPE in Equation (25). 

 

 𝑅 =
∑ (𝑡𝑘 − 𝜇𝑇)(𝑦𝑘 − 𝜇𝑜)𝑛

𝑘=1

√∑ ((𝑡𝑘 − 𝜇𝑇)2𝑛
𝑘=1 √(𝑦𝑘 − 𝜇𝑜)2

 (23) 

  

 𝑅𝑀𝑆𝐸 = √
∑ (𝑡𝑘 − 𝑦𝑘)2𝑛

𝑘=1

𝑛
 (24) 

  

 𝑀𝐴𝑃𝐸 =
∑ |

∑ 𝑡𝑘 − 𝑦𝑘
𝑛
𝑘=1

𝑦𝑘
|𝑛

𝑘=1

𝑛
 

(25) 

 

where 𝜇𝑇 is the average of the target, while 𝜇𝑜 is the average 

of the predicted output. 

 

2.2 The architecture of a multi-layer quasi-Newton (BFGS) 

algorithm 

 

 Quasi-Newton multi-layer architecture is a feedforward 

ANN with a learning algorithm that uses a numerical 

optimization technique, namely the quasi-Newton approach 

[10]. The quasi-Newton algorithm belongs to the conjugate 

gradient category, which more rapidly converges to an 

optimum value. The basic concept of weight change in ANN 

is: 
 

 Wt+1 = Wt − Ht
−1. gt     (26) 

 

where:  

W is weight and bias vector 

gt is the gradient vector  

H is a Hessian matrix 

 

 The quasi-Newton method provides for rapid training, 

but it requires considerable resources in each epoch. The 

Hessian matrix contains second derivatives that have been 

replaced by a function for the gradient. This training 

algorithm is known as the BFGS algorithm. 

 

2.3 The architecture of multi-layer Levenberg-Marquardt 

 

 The Levenberg-Marquardt (LM) multi-layer is a 

feedforward algorithm that is also based on a Hessian matrix 

to determine the weights in the ANN. The Hessian matrix is 

a derivative of a performance function for each weight and 

bias component [11]. The performance function is derived 

using Equation (22). The change process employs a gradient 
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function. If the performance function uses the sum of squared 

errors (SSE), then, the Hessian matrix can be estimated using 

Equation (27): 

 

 H = JTJ + ηI       (27) 

 

where: 

𝜂: the Marquardt parameter  

I: Identity matrix  

J: a Jacobian matrix that consists of the first derivative of 

network error on each component of weight and bias. 

 

2.4 Multi-layer radial basis function architecture (RBF) 

 

 The RBF multi-layer architecture is included in 

feedforward ANN, but it uses hybrid training methods, 

namely a combination of supervised and unsupervised 

learning algorithms [12]. In the first layer, the ANN employs 

unsupervised trained, usually using clustering algorithms, 

while the hidden layer goes to the output layer in training 

using a supervised method, such as a perceptron. 

 

2.5 Optimization of ANN 

 

 ANN sometimes provides good performance when 

tested using training data, but poor performance using testing 

data. These problems can be overcome by combining ANN 

with a number of algorithms including particle swarm 

optimization (PSO) and genetic algorithms (GA). PSO is an 

algorithm that models the behavior of animals in a swarm 

when they are influenced by the behavior of individuals and 

their groups. A population in the form of particles is treated 

as a point in a given dimension of space. Then, there are two 

factors that update the status of particles in the search space, 

their position and velocity [13]. The best position and the 

best group for each iteration are stored as a solution. 

 Genetic algorithms are search algorithms that are based 

on the mechanism of natural selection and genetics. Genetic 

algorithms begin with the process of population generation 

and evaluation of fitness. Then, population selection is done 

to get parent candidates. In the next stage, crossover, 

mutation, and reevaluation of individuals in the population 

occurs. This reshapes the new population that survives. The 

process is repeated up to the maximum number of 

generations desired [14]. ANN optimization with PSO or GA 

can be done in two ways. First, PSO or GA is used to 

determine an initial weight for an ANN. After that, training 

is done with algorithms such as LM. Second, ANN is trained 

using algorithms such as Levenberg-Marquardt (LM), and 

then optimized using PSO or GA. 

 

3. Literature review 

 

 Review of studies of applications from artificial neural 

networks was objectively done. The methods used for 

modelling pollutant degradation processes, as well as for 

mitigation of azo dyes and heavy metal vary greatly. The 

uses of artificial neural networks in this review are shown in 

Table 1. 

 

4. Results and analysis 

 

 Pollutants, dyes, and heavy metals are very dangerous 

species if they are released into the environment without 

appropriate treatment. Azo dyes are one type of synthetic 

chemical that are widely used in industry. These dyes have a 

complex structure because of the presence of azo (-N=N-) 

bonds that are toxic and slowly decompose in the 

environment. The azo bonds found in dyes actually have two 

azo bonds called diazo bonds. Some have three azo bonds 

and are called poliazo. Most azo compounds have an 

aromatic structure and with sulphate substituent groups or 

nitrate salts. These substituent groups cause azo compounds 

to have strong intermolecular strength, a physical appearance 

that is sharp and bright in color, and difficult to degrade in a 

simple way. The molecular bond strength of azo compounds 

with fabric or paper substituents is very great because the 

presence of Van der Waals or hydrophobic bonds makes 

these compounds are very durable. Industries that use dyes 

include the textiles, paper, paint, and cosmetics industries. 

 Human activities can produce pollution that is carried 

away in waste. The processes of coloring, dyeing, or painting 

will create waste streams carrying these species and 

discharge them into the aquatic environment. Techniques are 

needed to degrade the dyestuff structures so that when they 

enter the environment, they becomes species that do not 

endanger the aquatic biota or humans. Methods continue to 

be developed to maximally degrade pollutants and azo dyes, 

as well as sequester heavy metals. These methods are 

depicted in Figure  2. Based on the results of a review of the 

reports in Table 1, it can be concluded that techniques for 

promoting degradation of organic pollutants and azo dyes, as 

well as removing heavy metals, vary widely. The 

degradation processes can be modelled using artificial neural 

networks (ANN). 

 ANN applications predict optimal conditions for 

pollutant degradation and/or mitigation with relatively good 

performance. The use of ANN in predicting optimal 

conditions uses many training algorithms, but numerous 

studies used ANN with backpropagation training algorithms. 

The backpropagation training algorithm has good prediction 

capability. The weakness of the backpropagation algorithm 

is in terms of its training speed. A number of subsequent 

studies used ANN with the Levenberg-Marquardt 

(ANN-LM) training algorithm. LM algebra has training 

capabilities that are faster than other algorithms. 

Additionally, LM is quick to converge and also provides 

relatively better performance compared to a number of other 

algorithms. Model development, can also employ Fuzzy 

approaches such as adaptive fuzzy inference systems 

(ANFIS) as was done by Porhemmat et al. [15]. Fuzzy based 

degradation models tend to have poor performance in terms 

of optimization, so this type of research is relatively sparse 

[16]. 

 Development of prediction system models to obtain 

optimal conditions was done from 2006-2018. Research 

using this algorithm ranks second among  the  use  of  training  

algorithms  in  ANN,  as shown in Figure  3. Development 

was done using ANN and its optimization. The distribution 

of research carried out in modelling from 2006-2018 is 

depicted in Figure  4. In this figure, it can be seen that the 

model predictors of optimum degradation using ANN and 

optimization were most numerous in 2017. In 2018, the trend 

relaxed slightly. From 2006-2018 modeling research was 

very active. Development was done emphasizing several 

areas, including various ANN methods, objects modeled, 

variables of the objects used and degradation methods 

modeled. This, of course, will greatly affect the parameters 

predicting degradation.  
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Table 1 Summary of investigation on modeling of pollutant removal 

 

Author (s) Dyes 
Method of 

Degradation 

Parameters of  

Method 

Method of ANN 

modelling 

Optimum Number 

of Neurons 

Performance 

Degradation 

Dyes 

Elemen 

[17], 2012 

Reactive Red 

141 

Organoclay using 

hexadecyltrimethyla

mmonium bromide 

 

Contact time, initial dye 

concentration, adsorbent 

dosage, temperature 

ANN-BP 

(SCG) 

4-5-1 R2 = 0.978 

MSE = 0.027364 

Daneshvar 

[18], 2006 

Basic Yellow 28 Electrocoagulation  

 

Current density, initial pH, 

time electrolysis, initial dye 

concentration, the distance 

between the electrodes, 

retention time, solution 

conductivity. 

ANN-BP 

(SCG) 

7-10-1 R2 = 0.93 

 

Khataee 

[19], 2009 

Basic Red 46 Photocatalytic using 

TiO2 nanoparticle  

Initial dye 

concentration, UV light 

intensity, time and initial pH 

ANN-BP 6-10-1 R2 = 0.95 

Aleboyeh 

[20], 2008 

Acid orange 7 Photochemical 

which consist of 

combination UV and 

H2O2.  

Initial dye concentration, the 

concentration of H2O2, pH, 

time of UV irradiation 

ANN-BP 

(SCG) 

4-8-1 R2=0.996 

Ghaedi 

[21], 2017 

 

Methylene blue 

(MB) and 

brilliant green 

(BG) 

Graphite oxide 

nanoparticle 

 

pH, initial dye 

concentration, contact time 

and adsorbent dosage  

 

ANN-LM 

ANN-BP 

(GD) 

3-8-1 MB:  

R2= 0.9816,  

RMSE=0.0012 

BG: 

R2 = 0.981  

RMSE = 0.001 

Dil [22], 

2016 

Crystal Violet 

(CV) 

Zinc oxide nanorods   Initial dye concentration, 

pH, adsorbent dosage, 

sonication time 

ANN-BP 4-4-1 MSE=0.0011 

R2=0.9815 

Ali [23], 

2018 

Amido black Iron composite 

nanomaterial 

 

Dye amount, agitation time, 

pH, nanomaterial dosage, 

temperature 

ANN-BP 4-11-1 R2= 0.94 

Fatimah 

[24], 2017 

Acid orange 7 Ozonation. 

 

Initial dye concentration, 

temperature, pH, ozone 

contact 

ANN-BFGS 4-30-25-1 MAPE=0.00776 

Dutta [25], 

2010 

Reactive black TiO2 

 

pH, amount of TiO2, initial 

dye concentration, time 

ANN-LM 3-11-1 R2= 0.993 

Salari [26], 

2009 

Basic yellow 

 

Peroxide coagulation 

 

Electrolysis time, initial pH, 

applied current, initial dye 

concentration 

ANN-BP 4-16-1 R2= 0.97 

Porhemmat 

[15], 2017 

Methylene blue 

and sunset 

yellow 

Nanocomposites The concentration of dye, 

nanocomposite dosage 

ANFIS 4-10-1 R2= 0.999 for MB 

R2= 0.999 for SY 

 

Khataee 

[27], 2012 

Acid blue 92 Phytoremediation  Initial dye, pH, temperature, 

amount of plant and 

reusability of L. minor (day) 

ANN-BP 

(SCG) 

5-14-1 R2= 0.954 

Zarei [28], 

2010 

Basic blue 3, 

Malachite green, 

basic red 46, 

basic yellow 2 

Carbon nanotube-

PTFE  

 

Electrolysis time, initial pH, 

applied current, initial dye 

concentration 

ANN-BP 

(SCG) 

4-14-1 R2= 0.989 

Ardekani 

[29], 2017 

Metylne blue  zinc hydroxide 

nanoparticles  

 

pH, adsorbent dosage, 

sonication time 

ANN-LM 4-11-1 R2= 0.98 

MSE = 0.0529 

Aber [30], 

2007 

Acid orange 7 Powder activated 

carbon. 

 

Initial dye concentration, 

initial pH, temperature 

ANN-BP 

(SCG) 

3-2-1 R2= 0.998 

Kasiri [31], 

2008 

Acid Red 14 Photo-Fenton 

 

Dye concentration, catalyst 

concentration, pH, the 

concentration of H2O2 

ANN-BP 5-10-1 R2= 0.976 

Ghaedi 

[32], 2015 

Malachite Green Adsorption onto 

copper nanowires  

Solution pH, adsorbent 

dosage, contact time, and 

initial MG concentration  

ANN-LM 5-11-1 R2= 0.989 

MSE = 0.00023 

Ghaedi 

[33], 2014 

Phenol red Gold and titanium 

dioxide nanoparticles  

 

pH, dye concentration, 

adsorbent dosage, contact 

time 

ANN-LM 4-15-19-1 R2= 0.9962 

MSE = 0.00003 

Hajati [34], 

2015 

Acid yellow 41 

and sunset 

yellow 

SnO2 nanoparticle 

 

Contact time, adsorbent 

dosage, pH, AY41 

concentration and SY 

concentration 

PCA-ANN-LM 4-20-1 R2= 0.95 (AY41) 

R2= 0.98 (SY) 

 

Malekbala 

[35], 2015 

Acid red 57 mesoporous carbon-

coated monoliths 

 

Initial pH, initial dye 

concentration, and contact 

time 

ANN-BP 4-8-11 R2= 0.99 

MSE = 0.003 

Soleymani 

[36], 2011 

Direct Red 16 

(DR16) 

UV/K2S2O8 process Contact time, pH,  

potassium peroxydisulfate 

dosage, temperature, dye 

concentrations 

ANN-BFGS 5-9-1 R2 = 0.9968 

MSE = 0.000256 

 

Fatimah 

[37], 2017 

Acid Black 1 

(AB1) and Acid 

Yellow 19 

(AY19) 

Ozonation Dye concentration, ozone 

concentration, pH, and 

temperature 

ANN-LM 4-20-15-1 AB1 : 

MAPE=0.00448 

MSE=0.00756 

AY19 : 

MAPE=0.00441 

MSE=0.007 
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Table 1 (continued) Summary of investigation on modeling of pollutant removal 

 

Author (s) Dyes 
Method of 

Degradation 

Parameters of  

Method 

Method of ANN 

modelling 

Optimum Number 

of Neurons 

Performance 

Degradation 

Organic pollutants 

Hasani 

[38], 2018 

Humic acid Electrocoagulation-

flotation.  

Initial humic acid 

concentration, pH, electrical 

conductivity, time pulse, 

number of pulse, voltage. 

NN-BP 

(GDM) 

 And ANN-LM 

5-9-1 

 

5-6-1 

R2=0.971, 

MSE=0.0031 

R2=0.999, 

MSE=0.00006 

Nidheesh 

[3], 2018 

Organic 

pollutants 

Electrochemical 

Oxidation Process 

(EAOPs) 

Dosage of oxidators, current 

density, initial pH, time 

electrolysis, initial dye 

concentration, distance 

between the electrodes, 

retention time, solution 

conductivity 

ANN 4-8-1 R2 = 0.998 

Dlamini 

[39], 2014 

Trichlorophenol Chromolaena 

odorata stem 

pH, initial dye 

concentration, adsorbant 

dosage, time contact, 

ANN-LM 5-10-1 R2= 0.98 

MSE = 0.30 

Deshmukh 

[40], 2012 

Toluene Biolfilter time period by daily 

measurement of inlet VOC 

concentration, retention 

time, pH, temperature and 

packing moisture content  

RBFNN 5-27-1 R2= 0.9755 

MSE = 0.03 

Xie [41], 

2018 

Textile dye 

sludge 

Combination of 

O2/N2 and O2/CO2 

 

Temperature, mass 

concentration rate, residual 

mass, comprehensive 

stability index, 

comprehensive combustion 

index 

ANN-BP 

(BR) 

4-16-1 R2= 0.9989 

RMSE = 0.8506 

Metal pollutants 

Hoseinian 

[42], 2017 

Ni(II) Ion flotation  pH, collector concentration, 

frother concentration, 

impeller speed and flotation 

time, the removal percentage 

of Ni(II) ions and water 

during ion flotation 

ANN-BP + GA 5-27-1 for Ni(II) 

5-12-1 for water 

R2= 0.943 

RMSE = 0.0771 

Kiran [43], 

2017 

Cadmium Biosorption with 

Spirulina sp. 

Initial concentration, 

biosorbant dosage, agitation 

speed, pH. 

ANN  4-9-1 R2= 0.99 

Mohan 

[44], 2015 

Cr(VI) CuO nanoparticles 

 

Different initial Cr(VI) 

concentrations, pH, 

temperature and CuONPs 

dosage. 

ANN-BP-GA 4-10-1 R2= 0.9947 

MSE = 0.021 

 

 
 

Figure 2 Methods of removing organic pollutants, azo dyes, and heavy metals 
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Figure 3 The distribution of ANN training algorithms 
 

 
 

Figure 4 The distribution of ANN and optimization articles from 2006-2018 

 

 The ANN methods for modeling pollutant removal will 

produce variable performance depending on the training 

algorithm used. Modeling dye degradation using ANN 

usually produces very high R2 values, close to 1 for all types 

of training algorithms used. There are a number of studies 

that require a complex ANN architecture using two hidden 

layers, such as Ghaedi [33] and Fatimah [24]. The 

complexity of the ANN architecture, in addition to the 

number of hidden layers, is also influenced by the number of 

neurons in the hidden layer. The influence of the numbers of 

hidden layers and neurons will affect the time required for 

training. In the structure with one hidden layer, the fewest 

neurons with good performance is two [30]. In the case of 

other types of dye, for example Acid Orange 7, a different 

ANN architecture can be employed depending on the 

degradation method used. When using an ozonation 

degradation method modeled with the ANN-BFGS 

algorithm, a more complex architecture is required than for 

ANN-BP (SCG), which is indicated by the number of hidden 

layers. This condition was demonstrated in research 

conducted by Fatimah [24], Aber [30] and Aleboyeh [20]. A 

similar case also occurs for an ozonation method to treat 

wastewater for AB1 and AY19 dyes. This also required a two 

hidden layer architecture using ANN-LM. The structure of 

Acid Orange 7 presents a sodium sulfonate salt group. In the 

presence of activated carbon, the sulfonate salt group will be 

easily adsorbed into activated carbon pores. This adsorption 

process causes more effective interaction between the 

molecules of Acid Orange 7 and activated carbon. Then Acid 

Orange 7 splits into intermediate compounds. 

 Modeling organic pollutants with ANN-BP (GDM) and 

ANN-LM is simpler compared with RBF-NN and ANN-BP 

(BR). There are fewer neurons in the hidden layer. Modeling 

a heavy metal pollutant with ANN without optimization 

provides performance that is comparable to ANN optimized 

with GA. The use of GA gives insignificant performance 

improvement with a requirement of additional computational 

effort. Another consideration is that GA has a number of 

random processes, such as selection, crossover and gene 

mutation. These processes may produce different results 

when the ANN-GA model is retested. The use of GA in ANN 

also requires a relatively greater number of neurons in the 

hidden layer compared to other ANN training algorithms. 

Modeling metal pollutant mitigation requires more hidden 

layers. In a study conducted by Hoseinian [42] on Ni (II) 

removal, there were 27 hidden layers that produced an R2 

value of 0.943. The research of Kiran [43] and Mohan [44]  

modeled Cd (VI) and Cr (VI) removal. This study produced 

an R2 value of 0.99, which is an improvement over 

Hoseinian's modeling. Removal techniques that involve ion 

flotation will have more steric considerations due to 

molecular competition. 

 From this analysis, using ANN in modeling pollutant 

removal will provide suggestions for optimizing laboratory 

scale processes. ANN modeling provides specific 

descriptions of the parameters of each method used. These 

parameters can be optimized through estimation by ANN for 

greater efficiency. The disadvantages of using ANN in 

modeling pollutant removal include the need for relatively 

large amounts of training and testing data to produce accurate 
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results. Another drawback is that the method may identify 

local rather than global optima, so more testing is needed. 

 There are several things that must be considered in ANN 

modelling to predict the degradation of pollutants and azo 

dyes, as well as heavy metal mitigation. First, the 

experiments must  be designed to capture data measuring the 

parameters that will be affected. This stage determines the 

independent and dependent variables. Second is inputing the 

data and output of each parameter. The third is normalization 

of input and output data to increase the performance of 

network training. Fifth is random separation of the generated 

data into training and testing data sets. A training data set is 

employed to enable the ANN to learn the input model. The 

testing of the data sets is used externally with the parameters 

of the trained ANN. Sixth is construction and training of the 

ANN model and then optimizing it to produce the most 

accurate results. Last is selection of the best ANN model 

based on performance criteria and extraction of results from 

the trained model. 

 

5. Conclusions 

 

 Review of the research on modeling of pollutant 

degradation processes has been done by numerous 

researchers. Various modeling studies using ANN show that 

this approach is growing in popularity and application. The 

algorithms used also vary. ANN-LM, ANN-BP, ANN-BP 

(SCG), and ANN-BFGS have been employed. Degradation 

techniques also vary. ANN modelling can provide good 

performance and high accuracy. Therefore, further 

modelling studies need to be done combining ANN with 

other algorithms for optimization and feature selection. 
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