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Abstract 

 

Determinations of higher order elastic constants, thermal properties, mechanical properties and ultrasonic behavior have been 

done for fermium monopnictides. Initially, the lattice and non-linearity parameters were used to compute the higher order 

elastic constants at temperatures of 0K, 100K, 200K and 300K by means of the Born potential mode. Variation of Cauchy’s 

relations has been found at higher temperature due to weak atomic interactions. The second order elastic constants (SOECs) 

were used to estimate mechanical parameters such as the Young’s modulus, bulk modulus, Pugh’s ratio, shear modulus, 

Zener’s anisotropy factor, hardness, and Poisson ratio. On the basis of the values of these parameters, we found a brittle nature 

of fermium monopnictides. Furthermore, the SOECs were applied to compute the wave velocities for shear and longitudinal 

modes of propagation along <100>, <110> and <111> crystallographic orientations. Properties such as the lattice thermal 

conductivity, acoustic coupling constant, thermal relaxation time and attenuation of ultrasonic waves due to thermo-elastic and 

phonon-phonon interaction mechanisms have been calculated at room temperature. The results of present investigation have 

been analysed with available findings on other rare-earth materials.  
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1. Introduction 

 

 Ultrasonics is an important branch of acoustics, which 

have tremendous applications in medical science [1], 

engineering [2] and materials science [3]. Actinide 

monopnictides have gained more research interest due           

to the presence of their partially filled electrons. Much 

research has been done to explain the role of f electrons in 

actinide monopnictides. We have found a variety of                

theoretical studies on Th, Np, U and Pu 

monopnictides/monochalcogenides that explain their 

mechanical and thermophysical properties with temperature 

and pressure in the available literature [4-11]. These studies 

considered their bulk moduli and phase transition properties 

at high pressures. Also they examined lattice dynamic 

properties, which are further used to evaluate specific heat 

of the compounds. The electronic and elastic parameters of 

fermium monopnictides were study with first principles 

calculations by Amine Monir et al. [10].These first 

principles computations with discussion of the phase-

structure and magnetic phase as well as the magnetic and 

electronic properties of the FmP were presented by Bahnes 

et al. [11]. In these studies, the authors did not consider the 

temperature dependent ultrasonic attenuation for fermium 

monopnictides (FmP, FmAs and FmSb). So we extended the  

thermosphysical and ultrasonic studies on FmPn to fill this 

gap in the literature. 

 In the present investigation, we compute the second and 

third order elastic constants (SOECs and TOECs) of fermium 

monopnictides and  ultrasonic velocity, Debye temperature, 

Debye average velocity, the acoustical coupling constant and 

attenuation loss due to thermoelastic relaxation and phonon 

viscosity phenomena along <100>, <110> and <111> 

orientations. The computational results are compared with 

other types of materials having a similar nature. 

 

2. Theory 
 

 A theoretical approach for the computation of elastic 

constants and other thermo-physical properties was done to 

compute the temperature dependent SOECs and TOECs and 

ultrasonic properties along the <100>, <110> and <111> 

directions. It has been divided into six parts, which follow 

below. 

 

2.1 Higher order elastic constants 

 

 For a crystal structure, the theory of elasticity [12-13] 

describes the relationship of stress and strain as 

 

Y= (I+ ε)X                                                                         (1) 
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where Y is the deformed lattice under the application of a 

strain matrix ε to the initial lattice vectors X (where X is a3 x 

3 unit matrix). Transformation from a unstrained domain X 

(x1, x2, x3) into a deformed domain Y (y1, y2, y3)  is 

characterized by a Jacobian matrix J asfollows: 
 

Jij =  
∂Yi
∂Xi

                                                                                      (2) 

 

The strain parameters are taken in the Lagrangian εij [14] as: 

 

ε𝑖𝑗 =
1

2
∑ (

∂y2
𝑛

∂x𝑖 ∂x𝑗
𝛅𝒊𝒋)

3
𝑛==1                                                        (3) 

 

where δ𝑖𝑗  is the Kronecker delta [15]. 

 

Since deformation is symmetric, for our convenience, we use 

the index notation as: (11) → 1, (22) → 2, (33) → 3, (23) → 

4, (13) → 5, (12) → 6. Thus, a 3 x 3 symmetric strain matrixε, 

can be simplified to a 6-dimensional vector η: 
 

ε =  (

ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33

) =

(
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                                                   (4) 

 

The elastic constants [14,16] for a B1 structured material 

aredefinedas: 

 

Cijkl.. = (
∂nF

∂ηij ∂ηkl ∂ηmn… .
)
η=0

                                           (5) 

 

where F is the free energy denisty and η𝑖𝑗arethe components 

of the Langrangian strain tensor. The Voigt notation 𝐶𝑖𝑗𝑘𝑙.. 

usually converts into tensor notation as (11) → 1, (22) → 2, 

(33) → 3, (23) → 4, (13) → 5, (12) → 6. Thus, in a cubic 

crystal, there will be three second order and sixthird order 

elastic constants. Free energy, F, can be written for the 

second and third ordersas: 

 

F2 =(1/2!)𝐶𝑖𝑗𝑘𝑙 ∂η𝑖𝑗 ∂η𝑘𝑙                                                    (6) 

 

where  

 
𝐶𝑖𝑗𝑘𝑙 ∂η𝑖𝑗 ∂η𝑘𝑙 =  

(𝜂1, 𝜂2, 𝜂3, 𝜂4, 𝜂5, 𝜂6)

(

 
 
 

𝐶11 𝐶12 𝐶12
𝐶12 𝐶11 𝐶12
𝐶12 𝐶12 𝐶11

0 0 0
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0 0 0

0 0 0
0 0 0
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𝐶44 0 0
0 𝐶44 0
0 0 𝐶44)

 
 
 

𝜂1
𝜂2
𝜂3
𝜂4
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𝜂6

 

 

= 𝐶11(𝜂1
2 +𝜂2

2 +𝜂3
2) + 𝐶44(𝜂4

2 +𝜂5
2 +𝜂6

2)  
+ 2𝐶12(𝜂1𝜂2+𝜂3𝜂2+𝜂3𝜂1)   

 

Similarly,  

 

F3 =(1/3!)𝐶𝑖𝑗𝑘𝑙𝑚𝑛 ∂η𝑖𝑗 ∂η𝑘𝑙 ∂η𝑚𝑛                                      (7) 

 

At a finite temperature T, the total free energy density is: 

Ftotal = F0 + F vib                                                                   (8)                              

 

The vibrational free energy is: 

 

Fvib =
𝑘𝐵 𝑇

𝑁𝑉
∑ ln 2 sinh ( ℏω/2𝑠
𝑖==1 𝑘𝐵𝑇)                                 (9) 

 

where V is the volume of an elementary cell, s is the number 

of ions in the cell, N is the number of cells in the crystal and 

kB is the Boltzmann constant.F0 is the internal energy of a 

unit volume of the crystal with all ions at rest at their lattice 

points.  

 Elastic constants with respect to temperature are 

obtained by static elastic constants plus elastic constants due 

to vibrational energy contribution [17-18] as follows: 

 

Vib

IJKIJKIJK

Vib

IJIJIJ

CCC

CCC





0

0

                                                                 (10) 

 

0 (zero) and Vib represent the values of the higher order 

elastic constants (HOECs) at 0 K and at a given temperature, 

respectively. Also, first term in the 7th equation is the strain 

derivate of F0 and the second term is the strain derivate of     

F vib 

 

Energy F0 can be expressed as: 

 

F0= (½ V) ∑′∅𝑎𝑏(r0)                                                         (11) 

 

where r0 is the distance between the ath and bth ion in a unit 

cell, ∅𝑎𝑏is the interaction potential between ions, which is 

the summation of 𝜙𝑟0
𝐵 = Born-Mayer potential and 𝜙𝑟0

𝐶 = the 

Coulomb potential. Their values are given as:  

 

𝜙𝑟0
𝐵 = 𝐴 exp (

−𝑟0
𝑏
) and𝜙𝑟0

𝐶 = ±
𝑞2

𝑟0
                                   (12) 

  

where b is the hardness parameter or Born’s repulsive 

parameter, q is the electronic charge, and A is the strength 

parameter. The expression to compute A is given as: 

 

𝐴 = −3𝑏
𝑞2

𝑟0
𝑆3
(1) 1

6 exp(−𝜌0) + 12√2exp(−√2𝜌0)
      (13) 

 

where 𝑆3
(1)

is the lattice sum [14] and its value is -0.58252 

and 𝜌0 =
𝑟0

𝑏
  

 In this work, SOECs and TOECs of fermium 

monopnictides (FmPn) were computed at 0 K, 100 K, 200 K 

and 300 K using the Born model [17-18] upto the second 

nearest neighbour following Brugger’s definition, which 

includes a potential model approach. The SOECs and 

TOECs at room temperature have been evaluated using 

methods developed by Mori & Hiki [18], Leibfried & Haln 

[19], Leibfried & Ludwig [20] and Ghate [21] for NaCl-type 

crystals such as the chosen fermium monopnictides FmP, 

FmAs and FmSb. The detailed formulae to calculate the 

SOECs and TOECs have been previouslypublished [22]. 

 

2.2 Mechanical constants 

 

 SOECs havebeen used to determine the values of 

mechanical constants [23-24] such ashardness (Hv), bulk 

modulus(B), shear or rigidity moduli (), Young’s 

modulus(Y), Pugh’s indicator (B/) and Zener anisotropy 
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factor (ZA) for FmP, FmAs and FmSb. We can determine the 

values of the above mentioned parameters from the 

following equations: 
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                                                                                   (14) 

 

2.3 Pressure derivatives and Breazeale’s nonlinearity 

parameter 

 

 When hydrostatic pressure is applied to a cubic crystal, 

the arrangement of part of thespecific structure is preserved. 

The nonlinear elastic properties are thus defined using the 

concept of effective elastic constants, Cij(P) and is a function 

of pressure as: 

 

Cij(P) =  Cij +
dCij(P)

dP
𝑃                                                       (15) 

 

The values of the partial derivatives of Cij(P) are computed 

using SOECs that have previous been published [25].   

 When the ultrasonic waves propagate through a solid 

material, it produces a waveform distortion thatis 

characteristicofthe microstructural properties of the material. 

The various interaction processes of these acoustic waves 

can be used to distinguish the harmonic generation of 

material. Harmonic generation arises due to the nonlinearity 

of the behavior of the material component, which is 

expressed by a nonlinear stress–strain relationship. In order 

to quantify the degree of nonlinearity in parameter β,it is 

expressed in terms of HOECs. It characterizes the simple 

harmonic generation of longitudinal waves given by the 

negative ratio of the non-linear term, transforming it to 

alinear term in the nonlinear wave given by [26]:  

 

β = -(3K2 + K3 )/ K2                                                                        (16) 

 

where K2  and K3 explained in literature [25] 

 

2.4 Average ultrasonic velocity and Debye temperature 

 

 The materials chosen in our case for computational study 

are types of rock-salt. The Debye average velocity of 

ultrasonic wave plays a vital role in the computation of 

specific heat and Debye temperature of the solid material. It 

depends on the different modes of ultrasonic velocities. In a 

crystalline medium, there are three types of ultrasonic 

velocities (VL, VS1 and VS2). The ultrasonic velocities in the 

various crystallographic directions have been computed 

using the approach suggested by Thurston and Brugger [27] 

and expression of ultrasonic waves is discussed in the 

literature [28]. The expression for average ultrasonic velocity 

(VD) 𝜃𝐷is given as: 

 

Along the<100>and<111>directions:VD = [
1

3
{
1

VL
3 +

2

Vs3
}]

−
1

3

 

 

                                                                                         (17) 

 

Along the <110> direction:VD = [
1

3
{
1

VL
3 +

1

Vs1
3 +

1

Vs2
3 }]

−
1

3

 

 

                                                                                         (18) 

 

The Debye temperature plays a very important role 

characterizing a solid. It relates the elastic and 

thermos-physical properties of a material. The expression to 

evaluate the Debye temperature is: 

 

𝜃𝐷 =
ℎ

𝑘𝐵
(
3𝑛

4𝜋

𝑁𝜌

𝑀
)

1

3

𝑉𝐷                                                              (19) 

    

where n=atomic number in a unit cell, N=Avogadro’s 

constant,=density, h=Planck’s constant, kB=Boltzmann’s 

constant, M=molecular weight. 

 

2.5 Thermal conductivity 

 

 Thermal conductivity depends on the anharmonicity of 

the inter-atomic potential. It is an important parameter in 

various applications. For example, low thermal conductivity 

materials are used as thermal barrier coatings (e.g., for gas 

turbines). Thermal conductivity is associated with the 

transfer of energy in a material through lattice vibration. 

Under this consideration and using the Cahill approach [29], 

the thermal conductivity along three modes of lattice 

vibration are given as: 

 

𝜅 =
𝑘𝐵
2.48

× 𝑛
2

3(𝑉𝐿 + 𝑉𝑆1 + 𝑉𝑆2)                                            (20) 

 

2.6 Ultrasonic attenuation 

 

 When ultrasonic waves propagate through a specimen, 

their energy is dissipated in various form such as absorption, 

diffraction, and scattering, among others. The main cause of 

attenuation of ultrasonic waves arises due to phonon-phonon 

interaction (p-p), thermo-elastic relaxation and electron-

phonon (e-p) interaction mechanisms [30]. 

 At high temperatures, the attenuation of ultrasonic waves 

occurs by two mechanisms, i.e., by the thermo-elastic 

phenomenon and p-p interactions. The e-p mechanism is 

absent at high temperatures (≥100 K) because there is no 

interaction taking place between electrons and acoustical 

phonons. In our study, we calculated attenuation/loss of 

ultrasonic waves propagating along various orientations in 

fermium monopnictides at room temperature. Attenuation 

per frequency squared of ultrasonic waves is due to the 

phonon-phonon interaction mechanism in the longitudinal 

mode (
𝛼

𝑓2
)
𝐿
and, shear modes of propagation(

𝛼

𝑓2
)
𝑠
 are given 

as: 

 

(
𝛼

𝑓2
)
𝐿

=
4𝜋2𝜏𝑙𝐸0𝐷𝐿

6𝜌𝑉𝐿
3 , (

𝛼

𝑓2
)
𝑆1

=
4𝜋2𝜏𝑠𝐸0𝐷𝑆1

6𝜌𝑉𝑆1
3  

and (
𝛼

𝑓2
)
𝑆2

=
4𝜋2𝜏𝑠𝐸0𝐷𝑆2

6𝜌𝑉𝑆2
3                                                    (21) 

 

Here E0=Energy density at given temperature, f=frequency 

of ultrasonic wave, D=acoustic coupling constant and = 

thermal relaxation time. E0 was computed using the D/T 

table of the AIP Handbook [31].  
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Table 1 Temperature dependencies SOECs and TOECs of FmP, FmAs and FmSb [in 1011 N/m2] 

 

Material Temp.[K] C11 C12 C44 C111 C112 C123 C144 C166 C456 

FmP 0 5.35 1.53 1.57 -86.60 -6.21 2.45 2.61 -6.40 2.59 

FmP[10] B1 0 18.85 1.26 4.61 - - - - - - 

 100 5.41 1.48 1.57 -86.70 -6.04 2.12 2.62 -6.38 2.59 

 200 5.58 1.39 1.57 -87.47 -5.69 1.62 2.64 -6.38 2.59 

 300 5.77 1.30 1.57 -88.46 -5.34 1.11 2.66 -6.38 2.59 

FmAs 0 4.95 1.32 1.36 -82.15 -5.34 2.16 2.27 -5.47 2.26 

FmAs [10] B2 0 15.02 1.46 5.52 - - - - - - 

 100 5.03 1.26 1.35 -82.42 -5.12 1.77 2.28 -5.46 2.26 

 200 5.21 1.18 1.35 -83.34 -4.77 1.27 2.29 -5.46 2.26 

 300 5.41 1.09 1.34 -84.37 -4.42 0.76 2.31 -5.46 2.26 

FmSb 0 4.29 0.99 1.00 -74.37 -3.94 1.65 1.73 -4.04 1.73 

FmSb [10] B2 0 10.09 3.34 5.17 - - - - - - 

 100 4.39 0.92 1.00 -74.73 -3.70 1.23 1.74 -4.03 1.73 

 200 4.57 0.85 1.01 -75.68 -3.36 0.72 1.76 -4.03 1.73 

 300 4.75 0.76 1.01 -76.71 -3.01 0.19 1.77 -4.03 1.732 

 

Table 2 First order pressure derivate FOPD (in 10-12 N/m2) and β of FmP, FmAs and FmSb at room temperature 

 

Materials FmP FmAs FmSb 

dC11/dp 10.140 10.558 11.428 

dC12/dp 1.987 1.925 1.805 

dC44/dp 0.0200 0.0400 0.1556 

β 

<100> 12.319 12.595 13.159 

<110> 5.858 5.871 5.913 

<111> 1.500 1.529 1.605 

 

 Thermal phonons are distorted when ultrasonic waves 

pass through a medium. The time in which it regains its 

original shape through a relaxation mechanism is termed, 

relaxation time, and is defined as: 

 

2𝜏𝑡ℎ𝐶𝑉𝑉𝐷
2 = 2𝜏𝑠ℎ𝐶𝑉𝑉𝐷

2 = 𝜏𝑙𝑜𝑛𝑔𝐶𝑉𝑉𝐷
2 = 6𝜅                      (22) 

 

 The specific heat over a unit volume (CV) also has been 

computed using data from the AIP Handbook [31]. The 

acoustic coupling constant is a scaling parameter for the 

interchange of acoustic energy into thermal energy in the 

relaxation process or vice versa. Itis given as: 

 

𝐷 = 9 〈(𝛾𝑖
𝑗
)
2
〉 −

3〈𝛾𝑖
𝑗〉2𝐶𝑉𝑇

𝐸𝜃
                                                 (23) 

 

The ultrasonic attenuation caused by thermo-elastic 

relaxation is expressed as [30]: 

 

(
𝛼

𝑓2
)
𝑡ℎ

=
4𝜋2 < 𝛾𝑖

𝑗
>2 𝜅𝑇

2𝜌𝑉𝐿
5                                                   (24) 

 

3. Results and discussion 

 

3.1 Second and third order elastic constants 

  

 SOECs and TOECs are evaluated over a temperature 

range 0-300 K with the help of a lattice parameter for 

fermium monopnictides FmPn (Pn=P, As and Sb) that have 

diameters of 5.57 Å,5.76 Å, 6.17 Å, respectively. The 

hardness/non-linearity parameter b is 0.303 Å for all the 

chosen materials. The obtained values of the  SOECs             

and TOECs are given in Table 1. The elastic constants       

such as C11, C166 and C144increased, while C12, C112 and C123  

decreased with the temperature, while C456 was constant at 

all the temperatures. 

 The changes in the elastic constants were due to the 

change in atomic interactions with temperature. If inter-

atomic distance changed with temperature, then interaction 

potential also changed, which altered elastic values. The 

calculated values of the third-order elastic constants were 

found sensitive to external stresses of temperature and small 

changes, except C111. The high value of C111 shows crystal 

anisotropy. The values of C11, C12 and C44were compared 

with the first principles calculations of Monir et al. [10] for 

FmP. The comparison results have variations due to the 

different approaches used to compute the elastic constants. 

Similar trends were found in other FCC materials with same 

range of elastic constants at higher orders such as strontium 

chalcogenides [32] curium monopnictides [33] and actinide 

monocarbides [34]. 

 

3.2 Mechanical properties 

 

 The obtained SOECs were applied to evaluate the first 

order pressure derivative FOPD values of elastic constants as 

well as the mechanical properties at room as presented in 

Tables 2 and 3. We also evaluated the nonlinearity parameter 

β of the ultrasonic wave of fermium monopnctides along 

three different directions. From the analysis of Table 2, we 

surmise that the highest values are obtained for the FmSb 

along the <100> axis. We observe small linear growth with 

atomic weight having the same rate of variation. This implies 

that the waveform distortion is slower for fermium 

monopncitdes. The first order pressure derivatives, dC11/dp, 

dC12/dp, are negative for all fermium compounds. dC44/dp is 

negative whereas FmP can be positive or negative depending 

on the crystal type. Also, dC111/dp increases with molecular 

weight whereas the values of dC12/dp, dC44/dp decrease with 

increased molecular weight of the chosen materials. This is 

due to the effect of the elastic constants of materials. The 

obtained FOPD values and β were compared with 

praseodymium monopnictides [25]. 

               (in 10
3
m/s) and  Debay temp. (in K) at room temp 
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Table 3 B, Y, , B/, ZA, Hv andρ of FmP, FmAs and FmSb at room temperature 

 

Fermium 

Monopnictides 
B 

(1010Nm-2) 

Y 

(1010Nm-2) 

 

(1010Nm-2) 

B/ 

 

ZA 

 

Hv 

(1010Nm-2) 

ρ 

(g/cm3) 

FmP 2.793 

7.12 

4.468 1.811 

5.99 

1.54 

1.18 

0.703 

0.787 

0.322 11.057 

FmP [10]    

FmAs 2.529 

6.76 

4.027 1.631 1.56 0.626 0.288 11.488 

FmAs [10]       

FmSb 2.093 

4.86 

3.291 1.329 1.57 0.507 0.232 10.731 

FmSb [10]       

 

 
 

Figure 1 Directional dependency of VD for FmPn at room temperature 

 

 The values of mechanical constants such as the bulk (B), 

Young’s (Y)and shear moduli (), as well as Pugh’s indicator 

(B/),the Zener anisotropy factor (ZA), and hardness (Hv) 

were computed and presented in Table 3. 

 From this table, we observed that there is a deviation in 

the value of the bulk modulus calculated by Amine Monir et 

al. [10] using first principles investigation since we used a 

different theoretical approach. Computational values of bulk 

and shear moduli for fermium monopnictides at room 

temperature satisfied the Born mechanical stability 

criterion (𝐵 =
𝐶11+2𝐶12

3
> 0, 𝐶𝑠 =

𝐶11−𝐶12

2
> 0, C44 > 0) . 

Hence, our method of computation for SOECs and TOECs is 

consistent. The Pugh indicator B/ [35] has been found 

between 1.54 and 1.57, so these compounds exhibit brittle 

behaviour at room temperature. It is clear from Table 3 that 

FmP has the largest value of  (18.11GPa) among all the 

monopnictides compounds, whereas the lowest shear 

modulus (13.29 GPa) for FmSb, shows that this 

monopnictide has little resistance to deformation. FmP has 

the largest Young’s modulus (44.68 GPa) compared to other 

compounds. This shows that FmP is the stiffest among these 

monopnictides. Compressibility of a material is inversely 

related to its bulk modulus. With increased temperature, the 

C11 factor of the elastic constant increased, which in turn 

increased the value of the bulk modulus, and hence 

compressibility decreased with increased temperature. The 

C12 factor of the elastic constant decreased with increased 

temperature, which shows that the anisotropy of the material 

decreased with increased temperature. The densities of 

fermium monopnictides Fm, P, As and Sb are 9.7 gcm-3, 1.82      

gcm-3, 5.78 gcm-3and 6.68 gcm-3 respectively. The densities 

of FmP, FmAs and FmSb, in our case, are 11.06 gcm-3, 11.49 

gcm-3 and 10.73 gcm-3 respectively. This indicates that 

materials became lighter after alloying with fermium. 

 

3.3 Directionally dependent thermal and ultrasonic 

properties 

 

 The values of ultrasonic average velocity/Debye velocity 

and Debye temperature (θD) for fermium monopnictides 

along three different orientations are calculated using SOECs 

and are shown in Figures 1-2, respectively. Due to the 

unavailability of experimental data for fermium 

monopnicitides, we relate the results with other FCC based 

materials such as semimetallic materials [34]. It was found 

that the Debye velocity and Debye temperature follow the 

same trend similar as semimetallics compounds. The Debye 

velocity along various crystallographic directions is depicted 

in Figure 1. The Debye temperature is shown in Figure 2, 

also along various orientations. The lattice atomic weight of 

phosphorous is less than other fermium monopnictides since 

FmP has highest Debye velocity and Debye temperature 

along the<111> crystallographic axis, as shown in Figures 1-

2. The Debye temperature is an important parameter that can 

be used to calculate ultrasonic attenuation/losses along three 

different orientations and is presented in Table 4. The 

evaluated values of thermal conductivity are visualized in 

Figure 3. FmP has the highest thermal conductivity along the 

<111> direction at room temperature as is presented in 

Figure 3. Hence, the FmP material is the most thermally 

conductive material. 
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Figure 2 Directionally dependent D for FmPn at room temperature 

 

 
 

Figure 3 Directionally dependent thermal conductivity 

 

Table 4 Directionally dependent  (in Wm–1K–1), DL, DS, τth (in ps), (α/f2)th, (α/f2)l , (α/f2)s and (α/f2)total all (α/f2) in                       

10-13Nps2m-1 at room temperature 

 

Fermium Monopnictides Direction  DL Ds1 τth (α/f2)th (α/f2)L (α/f2)s (α/f2)total 

FmP <100> 0.3219 14.53 1.053 5.7 0.0048 1.903 0.484 2.391 

 <110> 0.3283 17.00 0.931 5.1 0.0187 2.357 0.337 2.713 

 <111> 0.3309 15.03 18.21 4.8 0.0174 2.065 4.738 6.820 

FmAs <100> 0.2789 15.18 1.062 6.6 0.0052 2.382 0.668 3.055 

 <110> 0.2866 17.76 0.891 5.8 0.0223 3.059 0.482 3.563 

 <111> 0.2897 15.36 19.20 5.2 0.0224 2.560 5.555 8.137 

FmSb <100> 0.2274 16.55 1.088 8.1 0.0053 3.186 1.070 4.261 

 <110> 0.2366 19.47 0.832 6.8 0.0267 4.325 0.668 5.019 

 <111> 0.2409 16.09 21.27 5.6 0.0312 3.336 6.550 9.917 

 

 From Table 4, we also observed that values of the 

acoustic coupling constants (DL, DS) are much less for FmP 

monopnictide compounds. FmAs and FmSb correspond to 

different orientations at room temperature. On inspection of 

Table 4, it can be seen that the magnitude of the thermal 

relaxation time is on the order of 10-11 s, which confirms its 

semi-metallic nature [36-37] that increases with the lattice 

molecular weight of monopnictides. Also, the value of 

ultrasonic attenuation is lowest for FmP along 

the<100>direction, so FmP has potential applications in 

industry. The order and nature of ultrasonic attenuation/loss 

is found similar to other rare-earth materials such as; 
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gadolinium monopnictides [38], ytterbium monopnictides 

[39], rare-earth monoarsenides [40] and scandium based 

intermetallics [41]. 

 

4. Conclusions 

 

 A simple theoretical approach was used to evaluate the 

ultrasonic properties of fermium monopnictides. It is found 

in good agreement with the results available for other rare-

earth monopnictides. At room temperature, FmP has the 

largest value of its higher order elastic constant, 5.774 GPa. 

Thus, the elastic properties of FmP are greater than those of 

FmAs and FmSb. The Born-stability criterion was followed 

by these actinide monopnictides and thus these materials are 

mechanically stable. The hardness of the materials decreased 

with increasing molecular weight of fermium 

monopnictides. The Pugh’s indictor is found to be less than 

1.75, indicating that fermium monopnictides are brittle in 

nature. The ultrasonic average velocity supports anisotropic 

characterization for these monopnictides. Also, FmP has the 

highest value of average ultrasonic velocity (along the<100> 

direction at room temperature). Thus, FmP is the most 

appropriate material for crystallographic study at room 

temperature. Its Debye temperature and the thermal 

conductivity were found highest for FmP along the <111> 

crystallographic axis. So, FmP(the lightest material) has 

good thermal performance. The quantum of the thermal 

relaxation time for these materials is of the order of 

picoseconds, which confirms the semi-metallic behaviour of 

fermium monopnictides at room temperature. The value of 

total thermal attenuation is minimal for FmP and maximal 

for FmSb. The value of ultrasonic attenuation was found 

lowest for FmP along the<100> direction, where the shear 

wave was polarised along the <110> direction and highest 

along the <111> direction. Minimal attenuation of the 

ultrasonic wave when passed through a material along the 

<100> direction reveals that this is most suitable direction 

for an anisotropic study of these materials. Hence, the 

achieved results deliver a good understanding of the elastic 

and thermophysical properties of the chosen fermium 

monopnictides, which may be used for further research 

investigations and in material producing industries. 
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