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Abstract 

 

The use of an unmanned aerial system (UAS) equipped with multispectral cameras is a potential approach to acquire canopy 

reflectance to make various correlations with desired crop parameters. However, the acquired reflectance data are mixed with 

unwanted data, such as reflectance from soil, which significantly affects some commonly used vegetation indices, such as the 

NDVI. This study compares the performance of three methods for detecting the canopy area of 3-month-old sugarcane crops. 

These methods extract the canopy areas using 5 NDVI thresholds (0.2, 0.3, 0.4, 0.5, and 0.6), a principal component analysis 

(PCA) threshold, and a digital surface model (DSM) threshold. The performance assessment will deliberately consider the 

quality percentage (QP) of each method to correctly detect the canopy area of short sugarcane crops in 10 selected images. 

The results show that filtration by the PCA threshold method provides the best result with a QP of 65.89-78.72%. The NDVI 

threshold method at levels of 0.3 and 0.4 follow with QPs of 58.42-68.81% and 40.80-70.81%, respectively, and the lowest 

accuracy is obtained by the DSM threshold method, which has QPs of 14.80-30.78%. 

 

Keywords: Canopy detection, Unmanned Aerial System (UAS), Digital surface model, Principal component analysis, 

Normalized vegetation index, Multispectral image 

 

 

1. Introduction 

 

 Collecting agronomic information about crops in the 

early vegetative stage is crucial for making timely and 

effective decisions to prevent yield losses. For instance, 

sugarcane during its early vegetative stage, at 3 months, is 

when fertilizer is first applied. So the spectral reflectance of 

canopy at this stage will directly contribute to site 

management studies such as those on nitrogen assessment, 

irrigation management, germination rate [1], density of 

plants in the field, primary yield mapping, and other 

applications that use correlation regressions from canopy 

reflectance.  

 Currently, vegetation indices calculated from 

multispectral images collected using a UAS platform have 

become a popular method for calibrating prediction models 

of these studies. This is  because UAS platforms allow use of 

multispectral cameras to capture of high-resolution images, 

collect better phenotypic information of crops at the plot-

level than satellite imagery, achieve spectral reflectance in 

range of visible to the Red Edge and NIR band, which are the 

most sensitive bands in vegetation monitoring, whereas RGB 

cameras cover only visible band ranges. Furthermore, the 

acquired data are easier to analyze than data obtained from 

expensive sensors such as LiDAR, thermal IR, and 

hyperspectral sensors [2]. However, multispectral cameras 

still have some limitations. They are frequently inadequate 

for the analysis of single broadband combinations, such as 

Normalized Difference Vegetation Index (NDVI), which are 

remarkably influenced by bare soil reflectance at low LAI 

values or open-canopies such as sugarcane in early 

vegetative stage [3]. This effect causes low correlation and 

results in low prediction accuracy of key parameters.  

 In [2] the correlation between NDVI values acquired 

from a multispectral camera with SPAD values for maize in 

poor growth areas with much uncovered soil, the results 

clearly showed many soil pixels in images. NDVI plots 

(average NDVI value of plot which included soil pixels in 

plot) had lower correlations with SPAD than the average 

NDVIveg (average of only maize pixels, determined by 

manual vectorization). These values were 58% for NDVIplot 

compared to 78% for NDVIveg when considering the 

number of plots with errors of less than 10%. Additionally, 

the authors concluded that the NDVI produced by reflectance 

from both multispectral cameras was seriously influenced by 

the soil background. It is strongly recommended to reduce 

soil pixels before performing any further analysis.  

 To date, various vegetation indices, such as the soil-

adjusted vegetation index (SAVI) [4], the transformed SAVI  
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Figure 1 Flowchart of the experiment 

 

(TSAVI) [5], modified SAVI (MSAVI) [6] and optimized 

SAVI (OSAVI) [7], have been used to compensate for soil 

background reflectance. In [8] the authors tested the 

performance of SAVI, TSAVI, MSAVI, and OSAVI to 

predict the yield of onions. The results showed that those 

vegetation indices gave similar or lower R2 values 

(0.61-0.67) compared to NDVI (R2 0.66). The comparable 

accuracies of SAVI, TSAVI, MSAVI, and OSAVI with 

NDVI’s accuracy and low coefficients of these vegetation 

indices show their limited performance in making reliable 

prediction models for monitoring phenotypic information of 

crops with sparse canopy conditions. For example, this 

condition exists for sugarcane’s canopy during first through 

fifth months of growth. 

 Alternatively, previous researchers using canopy 

detection were mainly concerned with trees and aimed to 

delineate the boundaries of tree crowns [9-12]. Even though 

such studies achieved good results, these methods only 

performed well with evergreen trees with a rounded, 

compact shape [9] and uniform tree size [11-12]. They 

cannot work with the uncompact and random spread canopy 

of sugarcane. Alternatively, some authors have tried to use 

machine learning methods, for instance Maximum 

Likelihood Classification (MLC), to detect crop canopies. 

For example, one research group used a maximum likelihood 

classification method to supervise image classification in 

attempting to mask out soil pixels from images [13]. 

However, MLC cannot provide visualization of input 

parameters that allows for additional observations of some 

interesting effects on the studied input’s trends such as soil 

color, canopy age, plantation practices, and weather 

conditions, whereas Principal Component Analysis (PCA) 

does. So, PCA is more advantageous when observations of 

input parameter patterns are required for further analysis of 

factors that cause changes or shifts in trends. This is 

important information for further study and advances 

allowing widespread use of such applications.  

 In addition to the discussed methods above, there are still 

some potential techniques, such as NDVI and digital surface 

model (DSM) methods that might work well on canopy 

detection of short-height and open-canopy crops. First, 

NDVI has better spectral separability of vegetation and bare 

soil than other vegetation indices [14]. Sugarcane canopies 

have NDVI values in the range of 0.2 to 0.6 [15]. Thus, 

NDVI values might provide a useful and easy thresholding 

method for extracting sugarcane canopy data if we have 

precise information about which threshold value of NDVI 

should be applied. Second, because crop canopies are 

normally higher than the soil background, a digital surface 

model (DSM) might also be an effective approach to mask 

out soil pixels. Canopy data extraction by the DSM method 

was studied with citrus trees [9, 16-17], and the test results 

demonstrated that this method provided satisfactory results. 

Hence, DSM is chosen to study its performance with short-

height sugarcane in this paper. 

 This study compares the performance of masking out soil 

pixels from images and the capability to precisely extract 

sugarcane canopy pixels. It also determines the suitable soil 

pixel thresholding methods and appropriate canopy 

conditions for applying these methods to achieve best 

spectral reflectance of crop canopies. This can lead to 

accurate enhancements for sugarcane yield and quality 

prediction at an early stage. 

 

2. Materials and methods 

 

 The sugarcane field used in this study is located in an 

experimental field of the Agriculture Faculty, Khon Kaen 

University, Thailand. This field was a breeding field on 

which 3-month-old sugarcane was grown (from seeds). The 

height of the sugarcane varied from 20 to 30 cm. Ten spots 

were randomly selected in this field. A flowchart for this 

experiment is shown in Figure 1. 
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Figure 2 Plot of PC1 vs PC2 in trained sample 

 

2.1 Flight mission 

 

Images were captured by a MicaSense RedEdge 3 

camera (MicaSense, RedEdge, USA), which was mounted 

on a six-rotor VESPA HEX 650 UAV (HG Robotic 

Company, Thailand). The flight mission was conducted at 

approximately 13:00 according to recommendations from 

the MicaSense RedEdge 3 user manual (2017). A ground 

sampling distance of 3 cm and an approximate height of 44 m 

were used, so that the structure of sugarcane canopy could be 

clearly seen in acquired reflectance maps, resulting in the 

production of high quality manually outlined references. 

 

2.2 Map generation 

 

 After the flight mission, all acquired images were 

processed using Pix4D Mapper Version 4.0 software (Pix4D, 

Switzerland). The final products were a reflectance map in 

five bands (blue, green, red, near-infrared, and red-edge) and 

a DSM file. After choosing 10 spots in the field and 

identifying their pixel locations in Adobe Photoshop CS6, 

Version 13.0 (Adobe, United State), all 5-band reflectance 

maps and DSM files were cropped separately in the 

MATLAB program, Version 2017 (The MathWorks, Inc., 

United States). 

 

2.3 Thresholding by NDVI 

 

 As discussed in the introduction, sugarcane canopies 

have NDVI values in the range of 0.2 to 0.6 [15]. So, NDVI 

values have a potential to be a useful and simple thresholding 

method for extracting sugarcane canopy measurements if we 

have precise information about which age of sugarcane 

canopy that each level of the NDVI threshold can provide the 

best performance. Hence, this experiment was conducted to 

find a NDVI threshold level that gives the best performance 

with 3 month old sugarcane. This is the stage when fertilizer 

is first applied.  

 First, the NDVI maps were calculated for each spot, and 

then five threshold levels (0.2, 0.3, 0.4, 0.5, and 0.6) were 

individually applied to those NDVI maps. Pixels with NDVI 

values lower than the given threshold level were masked out 

by assigning the value “Not a Number” or “NaN”, whereas 

the remaining pixels with higher NDVI values were assigned  

an input value of “1”. Finally, a masked map for each spot 

was produced. All steps were run in MATLAB with written 

codes. 

 

2.4 Thresholding by Principal Component Analysis 

 

 Principal component analysis or PCA is a variable 

compression method that reduces a large data set of a 

X (K × N) matrix to a simple one that consists of smaller A 

variables called the principal components (PCs) to more 

accurately interpret data [18]. Thus, correlated variables in 

the original large data set will form into new groups called 

“principal components or PCs”. PCA can be expressed as a 

mathematical model that follows [18]: 

 

X=TPT+E               (1) 

 

where T (N× A) is a score matrix containing the A scores for 

the PCs. The scores are intensities of the new A variables for 

the samples. P (K×A) is a loading matrix containing the A 

loadings for the PCs, and E (K× N) is a matrix of model 

residuals. 

 In this study, we used five soil matrices (S1, S2, S3, S4, 

S5) and five canopy matrices (C1, C2, C3, C4, C5) to form a 

“trained sample”. Each matrix has a size of 36×5, where 36 

rows represent the reflectance value of each pixel of the 

trained sample image. Each column is reflectance data in 

blue, green, red, near-infrared, and red-edge bands. These ten 

matrices are combined into one large 360×5 matrix called the 

“trained sample”, whose first 180 rows are canopy data, and 

the last 180 rows are soil data. After applying the PCA 

method, plots of PC1 and PC2 (Figure 2) were visualized, in 

which the canopy scores are marked in blue, and the soil 

scores are in orange. The locations of the soil scores were 

identified, and the conditions required to recognize the soil 

scores were determined. Consequently, the mean value of 

each factor, loading matrix and the condition of the soil 

scores, PC2> 0, were obtained and applied to the data from 

all flight missions. 

 The 5-band reflectance data from each test sample were 

transformed  into  a  5-column  matrix,  and  then  the 5-factor  
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Figure 3 Flowchart of PCA 

 

 
 

Figure 4 The extracted canopies of sample number 8 

overlaid on a reference canopy using a thresholding method 

by NDVI levels of 0.2, 0.3, 0.4, 0.5, and 0.6 (a, b, c, d, and 

e), thresholding by PCA (f), thresholding by DSM (g), and 

image in RGB (h). Dark blue = soil pixels, light blue (TP) = 

correct canopy detection, white (FP) = missed canopy 

detection, black (FN) = over-canopy detection 
 

matrix was substituted with the mean value of each factor 

from the trained sample. The data were then multiplied by 

the loading of the trained sample to achieve the scores. 

Finally, the locations of the soil score whose PC2>0 were 

identified. Pixels with score values in the range of the soil 

score were masked out by assigning a “Not a Number” or 

“NaN” value, whereas the remaining pixels were assigned an 

input value of “1”. Finally, a masked map for each spot was 

produced. A flowchart of the PCA process is shown in 

Figure 3. 

 

2.5 Thresholding by Digital Surface Model 

 

 For DSM thresholding, the µ-σ value of the DSM of 

samples was determined and applied as a threshold [11]. 

Hence, pixels with DSM values lower than the threshold 

were assigned a “Not a Number” or “NaN” value, whereas 

the remaining pixels were given the input value of “1”. 

Subsequently, a masked map for each sample was created. 

 

2.6 Validation 

 
 The reference canopy area of each sample was manually 

outlined in Adobe Photoshop CS6 using a reflectance map in 

the near-infrared band. The canopy area calculated using the 

above methods was compared with the reference canopy 

area, and qualitative accuracy assessment was performed 

using the following parameters [9]: 

 

Branching factor (BF): BF =  FP ÷ TP             (2) 
 
Miss factor (MF): MF =  FN ÷ TP             (3) 

 

Tree detection percentage (TDP):  

TDP = 100 × TP ÷ (TP + FN)             (4) 

 

Quality percentage (QP): 

QP = 100 × TP ÷ (TP + FN + FP)             (5) 

     

 where TP = true positive (correct canopy detection), FN 

= false negative (missed canopy detection), and FP = false 

positive (over-canopy detection). 

 

3. Results and discussion 

 

 Figure 4 illustrates that the detected canopies of sample 

number  8  were  overlaid  on  its  reference canopy. The light  
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Table 1 The accuracy assessment results of extraction approach by NDVI threshold level 0.2, 0.3, 0.4, 0.5, 0.6, PCA threshold, 

and DSM threshold 

 

Parameter 
Sample/ 

methods 
1 2 3 4 5 6 7 8 9 10 

BF 

NDVI  

level 0.2 

1.47 1.64 2.32 1.51 2.08 1.12 2.48 1.65 2.35 1.16 

MF 0 0 0 0.01 0 0.01 0.01 0 0 0.02 

TDP 100 100 100 98.95 100 98.98 99.25 100 100 97.70 

QP 40.54 37.81 30.09 39.64 32.45 46.88 28.63 37.72 29.81 45.70 

BF 

NDVI  

level 0.3* 

0.41 0.52 0.70 0.61 0.43 0.28 0.58 0.55 0.69 0.36 

MF 0.06 0.03 0.01 0.04 0.03 0.30 0.02 0.01 0.02 0.13 

TDP 94.73 97.56 98.67 96.59 97.27 77.16 98.12 99.19 97.73 88.51 

QP 68.41 64.81 58.49 60.93 68.81 63.60 62.59 64.16 58.42 67.25 

BF 

NDVI  

level 0.4* 

0.13 0.14 0.17 0.16 0.03 0.05 0.17 0.16 0.11 0.06 

MF 0.38 0.41 0.32 0.29 0.69 1.40 0.25 0.25 0.46 0.81 

TDP 72.46 70.73 75.86 77.43 59.09 41.62 80.08 80.00 68.64 55.17 

QP 66.37 64.44 66.98 68.76 58.04 40.80 70.53 70.81 63.71 53.33 

BF 

NDVI  

level 0.5 

0.01 0 0.04 0.03 0 0 0.02 0.05 0.02 0 

MF 1.34 1.99 1.45 1.19 4.64 10.59 1.16 1.13 2.61 5.21 

TDP 42.77 33.45 40.85 45.67 17.73 8.63 46.24 47.03 27.73 16.09 

QP 42.52 33.45 40.21 45.08 17.73 8.63 45.72 46.03 27.60 16.09 

BF 

NDVI  

level 0.6 

0 0 0 0 NaN NaN 0 0 0 0 

MF 5.17 12.67 6.25 5.35 NaN NaN 5.05 4.00 13.67 57.00 

TDP 16.21 7.32 13.79 15.75 0 0 16.54 20.00 6.82 1.72 

QP 16.21 7.32 13.79 15.75 0 0 16.54 20.00 6.82 1.72 

BF 

PCA* 

0.18 0.12 0.12 0.30 0.10 0.12 0.19 0.19 0.18 0.15 

MF 0.16 0.19 0.30 0.09 0.19 0.40 0.15 0.08 0.13 0.33 

TDP 85.94 84.32 77.19 91.34 84.09 71.57 87.22 92.97 88.18 75.29 

QP 74.70 76.34 70.80 71.60 77.73 65.89 74.60 78.72 76.08 67.88 

BF 

DSM 

3.21 3.13 2.42 2.54 4.98 4.68 3.65 2.25 5.75 4.51 

MF 0 0 0 0 0 0 0.02 0 0 0 

TDP 100 100 100 100 100 100 98.50 100 100 100 

QP 23.74 24.24 29.22 28.29 16.73 17.61 21.42 30.78 14.80 18.14 
NaN = Not a Number, because there are no TP (correct canopy detection) in sample 5 and 6 by NDVI threshold level 0.6 method. 
* = refer to methods that provides good performance 

 

blue color (TP) represents correct canopy detection, whereas 

the white color (FN) indicates missing canopy detection. 

This means that canopy exists in the reference image, but the 

approach failed to identify it. Conversely, the black color 

(FP) indicates over-canopy detection, which implies that this 

is soil area, but the approach distinguished it as canopy area. 

For ten samples using each extraction method, the 

calculated BF, MF, TDP, and QP values are demonstrated in 

Table 1. The TDP values using an NDVI threshold of 0.2 are 

almost 100% while the QP values are still low at 28.63-

45.70% because the detected areas contain large over-

detected areas. For NDVI thresholds of 0.5 and 0.6, their 

TDPs are 8.63-47.03% and 0-20%, and the QPs are 8.63-

46.03% and 0-20%, which are the lowest percentages due to 

the considerable misdetected areas. The best results are at 

NDVI thresholds of 0.3 and 0.4, which have TDP values of 

77.16-99.19% and 41.62-80.08% and QP values of 58.42-

68.81% and 40.80-70.81%, respectively. This better 

performance likely occurred because the sugarcane crops 

used in this experiment were only two months old. They had 

sparse and light green canopies, which were similar to the 

canopies of grasslands or shrubs with NDVI values ranging 

from 0.3 to 0.4 [19]. Thus, the canopy conditions in this study 

result in good performance at these two specific levels. 

The filtration approach of PCA has TDPs in the range of 

71.57-92.97 with the highest QPs of 65.89-78.72%. This 

result indicates that the reflectance values of the five bands 

acquired from a narrow-band multispectral camera can be 

effectively used to train a classifier to separate the soil and 

green canopy using the principal component analysis 

technique. Since the application of the classifiers produced 

by PCA relies on the input data, there is a possibility to 

develop artificial intelligence, such as machine learning, for 

detecting canopy areas using the reflectance of these five 

bands and PCA methods. 

 Detection methods by DSM can determine canopy areas 

with TDPs of 100%, but the QP values will be low at only 

14.80-30.78% due to over-detection. This result is contrary 

to the results other published results [9], which obtained 

good accuracy using DSM data to detect citrus tree crowns. 

The first reason for this disparity might be that these 

experiments examined tall citrus trees with have average 

heights of 4.5 m, whereas this study tested with short-height 

sugarcane, which was only 0.2-0.3 m tall. Thus, even a slight 

slope or uneven soil surfaces in a field will significantly 

affect canopy extraction by the DSM method. Second, this 

field represents the conditions of sugarcane fields in the 

northeast region of Thailand. Here, sugarcane farming is 

characterized as rain-fed farming [20]. Therefore, a smooth 

and well-balanced field is not essential because there is no 

requirement to keep water in the field for long periods. Third, 

sugarcane is planted in rows, so it is inevitable to have raised 

soil around the rows. For these three reasons, there is low 

performance of canopy detection by the DSM method, even 

though the test samples were only small blocks in the field 

that contained 2-3 stalks. 

 

4. Conclusions 

  

 This study presents the performance of three simple but 

essential extraction methods for canopy area detection. 

According to the experimental results, extraction by the PCA 
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approach provides the best detection, but it requires a 

complicated process. However, if more wide-range data are 

used as inputs, machine learning for identifying canopy areas 

can possibly be developed. Alternatively, filtration using an 

NDVI threshold is easy and generally applicable, However, 

users must pay more attention to the conditions of the canopy 

in the test plot because a sugarcane canopy has an NDVI in 

the range of 0.2 to 0.6 [15]. Therefore, users should utilize 

the appropriate NDVI threshold level. Alternatively, the 

canopy extracted by the DSM method did not provide good 

results when applied to short sugarcane with heights of 

0.2-0.3 m grown in fields with rugged surfaces. Thus, the 

user should consider the current crop heights and the 

conditions of the field including the slope and unevenness of 

the field surface before using the DSM method for canopy 

filtration. With the good results of the PCA method, the 

authors will study and input additional data to develop a 

machine learning method for extracting canopy data using 

the PCA method. 
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