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Abstract

The use of an unmanned aerial system (UAS) equipped with multispectral cameras is a potential approach to acquire canopy
reflectance to make various correlations with desired crop parameters. However, the acquired reflectance data are mixed with
unwanted data, such as reflectance from soil, which significantly affects some commonly used vegetation indices, such as the
NDVI. This study compares the performance of three methods for detecting the canopy area of 3-month-old sugarcane crops.
These methods extract the canopy areas using 5 NDV| thresholds (0.2, 0.3, 0.4, 0.5, and 0.6), a principal component analysis
(PCA) threshold, and a digital surface model (DSM) threshold. The performance assessment will deliberately consider the
quality percentage (QP) of each method to correctly detect the canopy area of short sugarcane crops in 10 selected images.
The results show that filtration by the PCA threshold method provides the best result with a QP of 65.89-78.72%. The NDVI
threshold method at levels of 0.3 and 0.4 follow with QPs of 58.42-68.81% and 40.80-70.81%, respectively, and the lowest
accuracy is obtained by the DSM threshold method, which has QPs of 14.80-30.78%.

Keywords: Canopy detection, Unmanned Aerial System (UAS), Digital surface model, Principal component analysis,

Normalized vegetation index, Multispectral image

1. Introduction

Collecting agronomic information about crops in the
early vegetative stage is crucial for making timely and
effective decisions to prevent yield losses. For instance,
sugarcane during its early vegetative stage, at 3 months, is
when fertilizer is first applied. So the spectral reflectance of
canopy at this stage will directly contribute to site
management studies such as those on nitrogen assessment,
irrigation management, germination rate [1], density of
plants in the field, primary yield mapping, and other
applications that use correlation regressions from canopy
reflectance.

Currently, vegetation indices calculated from
multispectral images collected using a UAS platform have
become a popular method for calibrating prediction models
of these studies. This is because UAS platforms allow use of
multispectral cameras to capture of high-resolution images,
collect better phenotypic information of crops at the plot-
level than satellite imagery, achieve spectral reflectance in
range of visible to the Red Edge and NIR band, which are the
most sensitive bands in vegetation monitoring, whereas RGB
cameras cover only visible band ranges. Furthermore, the
acquired data are easier to analyze than data obtained from
expensive sensors such as LiDAR, thermal IR, and
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hyperspectral sensors [2]. However, multispectral cameras
still have some limitations. They are frequently inadequate
for the analysis of single broadband combinations, such as
Normalized Difference Vegetation Index (NDVI), which are
remarkably influenced by bare soil reflectance at low LAI
values or open-canopies such as sugarcane in early
vegetative stage [3]. This effect causes low correlation and
results in low prediction accuracy of key parameters.

In [2] the correlation between NDVI values acquired
from a multispectral camera with SPAD values for maize in
poor growth areas with much uncovered soil, the results
clearly showed many soil pixels in images. NDVI plots
(average NDVI value of plot which included soil pixels in
plot) had lower correlations with SPAD than the average
NDVIveg (average of only maize pixels, determined by
manual vectorization). These values were 58% for NDVIplot
compared to 78% for NDVIveg when considering the
number of plots with errors of less than 10%. Additionally,
the authors concluded that the NDVI produced by reflectance
from both multispectral cameras was seriously influenced by
the soil background. It is strongly recommended to reduce
soil pixels before performing any further analysis.

To date, various vegetation indices, such as the soil-
adjusted vegetation index (SAVI) [4], the transformed SAVI
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Figure 1 Flowchart of the experiment

(TSAVI) [5], modified SAVI (MSAVI) [6] and optimized
SAVI (OSAVI) [7], have been used to compensate for soil
background reflectance. In [8] the authors tested the
performance of SAVI, TSAVI, MSAVI, and OSAVI to
predict the yield of onions. The results showed that those
vegetation indices gave similar or lower R? values
(0.61-0.67) compared to NDVI (R? 0.66). The comparable
accuracies of SAVI, TSAVI, MSAVI, and OSAVI with
NDVTI’s accuracy and low coefficients of these vegetation
indices show their limited performance in making reliable
prediction models for monitoring phenotypic information of
crops with sparse canopy conditions. For example, this
condition exists for sugarcane’s canopy during first through
fifth months of growth.

Alternatively, previous researchers using canopy
detection were mainly concerned with trees and aimed to
delineate the boundaries of tree crowns [9-12]. Even though
such studies achieved good results, these methods only
performed well with evergreen trees with a rounded,
compact shape [9] and uniform tree size [11-12]. They
cannot work with the uncompact and random spread canopy
of sugarcane. Alternatively, some authors have tried to use
machine learning methods, for instance Maximum
Likelihood Classification (MLC), to detect crop canopies.
For example, one research group used a maximum likelihood
classification method to supervise image classification in
attempting to mask out soil pixels from images [13].
However, MLC cannot provide visualization of input
parameters that allows for additional observations of some
interesting effects on the studied input’s trends such as soil
color, canopy age, plantation practices, and weather
conditions, whereas Principal Component Analysis (PCA)
does. So, PCA is more advantageous when observations of
input parameter patterns are required for further analysis of
factors that cause changes or shifts in trends. This is
important information for further study and advances
allowing widespread use of such applications.

In addition to the discussed methods above, there are still
some potential techniques, such as NDVI and digital surface
model (DSM) methods that might work well on canopy
detection of short-height and open-canopy crops. First,
NDVI has better spectral separability of vegetation and bare
soil than other vegetation indices [14]. Sugarcane canopies
have NDVI values in the range of 0.2 to 0.6 [15]. Thus,
NDVI values might provide a useful and easy thresholding
method for extracting sugarcane canopy data if we have
precise information about which threshold value of NDVI
should be applied. Second, because crop canopies are
normally higher than the soil background, a digital surface
model (DSM) might also be an effective approach to mask
out soil pixels. Canopy data extraction by the DSM method
was studied with citrus trees [9, 16-17], and the test results
demonstrated that this method provided satisfactory results.
Hence, DSM is chosen to study its performance with short-
height sugarcane in this paper.

This study compares the performance of masking out soil
pixels from images and the capability to precisely extract
sugarcane canopy pixels. It also determines the suitable soil
pixel thresholding methods and appropriate canopy
conditions for applying these methods to achieve best
spectral reflectance of crop canopies. This can lead to
accurate enhancements for sugarcane yield and quality
prediction at an early stage.

2. Materials and methods

The sugarcane field used in this study is located in an
experimental field of the Agriculture Faculty, Khon Kaen
University, Thailand. This field was a breeding field on
which 3-month-old sugarcane was grown (from seeds). The
height of the sugarcane varied from 20 to 30 cm. Ten spots
were randomly selected in this field. A flowchart for this
experiment is shown in Figure 1.
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Figure 2 Plot of PC1 vs PC2 in trained sample
2.1 Flight mission

Images were captured by a MicaSense RedEdge 3
camera (MicaSense, RedEdge, USA), which was mounted
on a six-rotor VESPA HEX 650 UAV (HG Robotic
Company, Thailand). The flight mission was conducted at
approximately 13:00 according to recommendations from
the MicaSense RedEdge 3 user manual (2017). A ground
sampling distance of 3 cm and an approximate height of 44 m
were used, so that the structure of sugarcane canopy could be
clearly seen in acquired reflectance maps, resulting in the
production of high quality manually outlined references.

2.2 Map generation

After the flight mission, all acquired images were
processed using Pix4D Mapper Version 4.0 software (Pix4D,
Switzerland). The final products were a reflectance map in
five bands (blue, green, red, near-infrared, and red-edge) and
a DSM file. After choosing 10 spots in the field and
identifying their pixel locations in Adobe Photoshop CS6,
Version 13.0 (Adobe, United State), all 5-band reflectance
maps and DSM files were cropped separately in the
MATLAB program, Version 2017 (The MathWorks, Inc.,
United States).

2.3 Thresholding by NDVI

As discussed in the introduction, sugarcane canopies
have NDVI values in the range of 0.2 to 0.6 [15]. So, NDVI
values have a potential to be a useful and simple thresholding
method for extracting sugarcane canopy measurements if we
have precise information about which age of sugarcane
canopy that each level of the NDVI threshold can provide the
best performance. Hence, this experiment was conducted to
find a NDVI threshold level that gives the best performance
with 3 month old sugarcane. This is the stage when fertilizer
is first applied.

First, the NDVI maps were calculated for each spot, and
then five threshold levels (0.2, 0.3, 0.4, 0.5, and 0.6) were
individually applied to those NDVI maps. Pixels with NDVI
values lower than the given threshold level were masked out
by assigning the value “Not a Number” or “NaN”, whereas
the remaining pixels with higher NDV1 values were assigned
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an input value of “1”. Finally, a masked map for each spot
was produced. All steps were run in MATLAB with written
codes.

2.4 Thresholding by Principal Component Analysis

Principal component analysis or PCA is a variable
compression method that reduces a large data set of a
X (K x N) matrix to a simple one that consists of smaller A
variables called the principal components (PCs) to more
accurately interpret data [18]. Thus, correlated variables in
the original large data set will form into new groups called
“principal components or PCs”. PCA can be expressed as a
mathematical model that follows [18]:

X=TP"+E @

where T (Nx A) is a score matrix containing the A scores for
the PCs. The scores are intensities of the new A variables for
the samples. P (KxA) is a loading matrix containing the A
loadings for the PCs, and E (Kx N) is a matrix of model
residuals.

In this study, we used five soil matrices (S1, S2, S3, S4,
S5) and five canopy matrices (C1, C2, C3, C4, C5) to form a
“trained sample”. Each matrix has a size of 36x5, where 36
rows represent the reflectance value of each pixel of the
trained sample image. Each column is reflectance data in
blue, green, red, near-infrared, and red-edge bands. These ten
matrices are combined into one large 360x5 matrix called the
“trained sample”, whose first 180 rows are canopy data, and
the last 180 rows are soil data. After applying the PCA
method, plots of PC1 and PC2 (Figure 2) were visualized, in
which the canopy scores are marked in blue, and the soil
scores are in orange. The locations of the soil scores were
identified, and the conditions required to recognize the soil
scores were determined. Consequently, the mean value of
each factor, loading matrix and the condition of the soil
scores, PC2> 0, were obtained and applied to the data from
all flight missions.

The 5-band reflectance data from each test sample were
transformed into a 5-column matrix, and then the 5-factor
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Figure 4 The extracted canopies of sample number 8
overlaid on a reference canopy using a thresholding method
by NDVI levels of 0.2, 0.3, 0.4, 0.5, and 0.6 (a, b, ¢, d, and
e), thresholding by PCA (f), thresholding by DSM (g), and
image in RGB (h). Dark blue = soil pixels, light blue (TP) =
correct canopy detection, white (FP) = missed canopy
detection, black (FN) = over-canopy detection

matrix was substituted with the mean value of each factor
from the trained sample. The data were then multiplied by
the loading of the trained sample to achieve the scores.

Finally, the locations of the soil score whose PC2>0 were
identified. Pixels with score values in the range of the soil
score were masked out by assigning a “Not a Number” or
“NaN” value, whereas the remaining pixels were assigned an
input value of “1”. Finally, a masked map for each spot was
produced. A flowchart of the PCA process is shown in
Figure 3.

2.5 Thresholding by Digital Surface Model

For DSM thresholding, the p-c value of the DSM of
samples was determined and applied as a threshold [11].
Hence, pixels with DSM values lower than the threshold
were assigned a “Not a Number” or “NaN” value, whereas
the remaining pixels were given the input value of “1”.
Subsequently, a masked map for each sample was created.

2.6 Validation

The reference canopy area of each sample was manually
outlined in Adobe Photoshop CS6 using a reflectance map in
the near-infrared band. The canopy area calculated using the
above methods was compared with the reference canopy
area, and qualitative accuracy assessment was performed
using the following parameters [9]:

Branching factor (BF): BF = FP + TP (2)
Miss factor (MF): MF = FN <+ TP (3)

Tree detection percentage (TDP):
TDP = 100 x TP + (TP + FN) @)

Quality percentage (QP):
QP = 100 x TP + (TP + FN + FP) (5)

where TP = true positive (correct canopy detection), FN
= false negative (missed canopy detection), and FP = false
positive (over-canopy detection).

3. Results and discussion

Figure 4 illustrates that the detected canopies of sample
number 8 were overlaid on its reference canopy. The light
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Table 1 The accuracy assessment results of extraction approach by NDVI threshold level 0.2, 0.3, 0.4, 0.5, 0.6, PCA threshold,

and DSM threshold

parameter S2MPlE/ 4 2 3 4 5 6 7 8 9 10
methods
BF 147 164 232 151 208 112 248 165 235 116
MF NDVI 0 0 0 001 0 001 001 0 0 0.02
TDP level 0.2 100 100 100 9895 100 9898 9925 100 100  97.70
QP 4054 37.81 3009 39.64 3245 4688 2863 37.72 2981 4570
BF 041 052 070 061 043 028 058 055 069  0.36
MF NDVI 006 003 00l 004 003 030 002 00l 002 013
TDP level 0.3* 9473 9756 9867 9659 9727 7716 9812 9919 97.73 8851
QP 68.41 6481 5849 6093 6881 6360 6259 6416 5842 67.25
BF 013 014 017 016 003 005 017 016 011 0.6
MF NDVI 038 041 032 029 069 140 025 025 046 081
TDP level 0.4 7246 7073 7586 7743 5909 4162 80.08 80.00 68.64 5517
QP 66.37 6444 6698 6876 5804 40.80 7053 7081 6371 53.33
BF 001 0 004 003 0 0 002 005 002 0
MF NDVI 134 199 145 119 464 1059 116 113 261 521
TDP level 0.5 4277 3345 4085 4567 1773 863 4624 4703 2773  16.09
QP 4252 3345 4021 4508 1773 863 4572 4603 27.60  16.09
BF 0 0 0 0 NaN_  NaN 0 0 0 0
MF NDVI 517 1267 625 535 NaN  NaN 505 400 1367 57.00
TDP level 0.6 1621 732 1379 1575 0 0 1654 2000 6.82 172
QP 1621 732 1379 1575 0 0 1654 2000 682 172
BF 018 012 012 030 010 012 019 019 018  0.15
MF PCAx 016 019 030 009 019 040 015 008 013  0.33
TDP 8594 8432 7719 9134 8409 7157 87.22 9297 8818 7529
QP 7470 7634 7080 7160 7773 6589 7460 7872 7608 67.88
BF 321 313 242 254 498 468 365 225 575 451
MF DSM 0 0 0 0 0 0 002 0 0 0
TDP 100 100 100 100 100 100 9850 100 100 100
QP 2374 2424 2922 2829 1673 1761 2142 3078 1480 18.14

NaN = Not a Number, because there are no TP (correct canopy detection) in sample 5 and 6 by NDV| threshold level 0.6 method.

* = refer to methods that provides good performance

blue color (TP) represents correct canopy detection, whereas
the white color (FN) indicates missing canopy detection.
This means that canopy exists in the reference image, but the
approach failed to identify it. Conversely, the black color
(FP) indicates over-canopy detection, which implies that this
is soil area, but the approach distinguished it as canopy area.

For ten samples using each extraction method, the
calculated BF, MF, TDP, and QP values are demonstrated in
Table 1. The TDP values using an NDV1 threshold of 0.2 are
almost 100% while the QP values are still low at 28.63-
45.70% because the detected areas contain large over-
detected areas. For NDVI thresholds of 0.5 and 0.6, their
TDPs are 8.63-47.03% and 0-20%, and the QPs are 8.63-
46.03% and 0-20%, which are the lowest percentages due to
the considerable misdetected areas. The best results are at
NDVI thresholds of 0.3 and 0.4, which have TDP values of
77.16-99.19% and 41.62-80.08% and QP values of 58.42-
68.81% and 40.80-70.81%, respectively. This better
performance likely occurred because the sugarcane crops
used in this experiment were only two months old. They had
sparse and light green canopies, which were similar to the
canopies of grasslands or shrubs with NDV1 values ranging
from 0.3t0 0.4 [19]. Thus, the canopy conditions in this study
result in good performance at these two specific levels.

The filtration approach of PCA has TDPs in the range of
71.57-92.97 with the highest QPs of 65.89-78.72%. This
result indicates that the reflectance values of the five bands
acquired from a narrow-band multispectral camera can be
effectively used to train a classifier to separate the soil and
green canopy using the principal component analysis
technique. Since the application of the classifiers produced

by PCA relies on the input data, there is a possibility to
develop artificial intelligence, such as machine learning, for
detecting canopy areas using the reflectance of these five
bands and PCA methods.

Detection methods by DSM can determine canopy areas
with TDPs of 100%, but the QP values will be low at only
14.80-30.78% due to over-detection. This result is contrary
to the results other published results [9], which obtained
good accuracy using DSM data to detect citrus tree crowns.
The first reason for this disparity might be that these
experiments examined tall citrus trees with have average
heights of 4.5 m, whereas this study tested with short-height
sugarcane, which was only 0.2-0.3 m tall. Thus, even a slight
slope or uneven soil surfaces in a field will significantly
affect canopy extraction by the DSM method. Second, this
field represents the conditions of sugarcane fields in the
northeast region of Thailand. Here, sugarcane farming is
characterized as rain-fed farming [20]. Therefore, a smooth
and well-balanced field is not essential because there is no
requirement to keep water in the field for long periods. Third,
sugarcane is planted in rows, so it is inevitable to have raised
soil around the rows. For these three reasons, there is low
performance of canopy detection by the DSM method, even
though the test samples were only small blocks in the field
that contained 2-3 stalks.

4. Conclusions
This study presents the performance of three simple but

essential extraction methods for canopy area detection.
According to the experimental results, extraction by the PCA
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approach provides the best detection, but it requires a
complicated process. However, if more wide-range data are
used as inputs, machine learning for identifying canopy areas
can possibly be developed. Alternatively, filtration using an
NDV!I threshold is easy and generally applicable, However,
users must pay more attention to the conditions of the canopy
in the test plot because a sugarcane canopy has an NDVI in
the range of 0.2 to 0.6 [15]. Therefore, users should utilize
the appropriate NDVI threshold level. Alternatively, the
canopy extracted by the DSM method did not provide good
results when applied to short sugarcane with heights of
0.2-0.3 m grown in fields with rugged surfaces. Thus, the
user should consider the current crop heights and the
conditions of the field including the slope and unevenness of
the field surface before using the DSM method for canopy
filtration. With the good results of the PCA method, the
authors will study and input additional data to develop a
machine learning method for extracting canopy data using
the PCA method.
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