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Abstract 

 

The fruit fly optimization algorithm (FOA) was a recently proposed. FOA has a number of advantages over other nature-

inspired algorithms such as its simple structure and ease of implementation. However, the FOA’s search procedures present a 

problem. FOA has a low success rate search and a slow convergence when it has to deal with complex problems. This is 

because FOA generates a new position around its swarm location using a random uniform distribution. To eliminate this 

drawback, our paper presents an improved fruit fly algorithm called RO-FOA. The RO-FOA technique takes knowledge of a 

mutualistic relationship common in ecosystems and biological theory. Our strategy blends two popular algorithms, i.e., the 

random walk (RW) and the opposition-based learning (OBL) algorithms, to establish a two-characteristic swarm for searching 

procedures. RO-FOA’s structure is very compact as the implementation uses only three fruit flies. Furthermore, the advantages 

of including a two-characteristic population and dynamic distribution adaptation in the evolving process can produce an 

algorithm with the necessary search efficiency to find an optimal solution. A comprehensive set of 34 benchmark functions, 

containing a wide range of dimensions were used to validate the capability of the proposed algorithm. The results show that 

RO-FOA outperformed the existing FOA, as well as seven comparatively well-known meta-heuristic algorithms. RO-FOA 

can efficiently train multi-layer perceptrons for 5-bit and 8-bit auto-encoder problems. These results demonstrate that the RO-

FOA can enhance the diversity of population distributions, solution quality and the convergence rate of the algorithm.  

 

Keywords: Optimization algorithm, Nature-inspired algorithm, Fruit fly optimization algorithm, Meta-heuristics, Ecosystem, 

Mutualistic relationship 

 

 

1. Introduction 

 

In order to solve complex optimization problems, 

researchers have started adapting knowledge from natural 

phenomena as tools for the development of several new 

algorithms. Concepts for the creation of new computational 

intelligence methods can be derived from natural 

mechanisms and principles. The main concepts of the aptly 

named 'nature-inspired algorithms' have been observed 

within successful biological systems. Accordingly, most 

nature-inspired algorithms are biologically inspired, or bio-

inspired, and mimic specific behavior in nature. Examples of 

such popular nature-inspired algorithms include the particle 

swarm optimization algorithm (PSO) [1], which was inspired 

by the social behavior of flocking birds, or schooling fish, 

the ant colony optimization algorithm (ACO) [2], which 

mimics an ant colony's behavior in their search for food, the 

artificial bee colony algorithm (ABC) [3], motivated by the 

intelligent behavior of a honey bee swarm, the cuckoo search 

algorithm (CS) [4], inspired by the parasitic bio-interactions 

of a cuckoo species that lays their eggs in the nests of other 

host birds, and the bat-inspired algorithm (BA) [5], which 

was inspired by the echolocation behavior of bats, to name 

but a few. These widely used algorithms have proven highly 

efficient in solving problems in many scientific fields, such 

as engineering [6-7], task scheduling [8], mechanical design 

problems [9], data mining applications [10] and image 

processing [11]. Each nature-inspired algorithm has different 

capabilities when it comes to finding solutions, which 

depend on the individual abilities of living things in nature. 

Developing a successful and modern nature-inspired 

algorithm is a challenging task, even today, as there is no one 

particular nature-inspired algorithm capable of solving every 

scientific problem. Hence, continual development of new 

algorithms is required. 

One of these new algorithms is the FOA, which was 

proposed by Pan [12]. The FOA, a swarm intelligence 

method-based stochastic optimization technique, mimics the 

foraging behavior of fruit flies. The FOA is user-friendly and 

because of its simplicity and shortness. FOA can be easily 

understood by most researchers in this field. This also means 

that it can more easily be implemented into program code, 

compared with other well-known algorithms such as the 

differential  evolution  (DE),  genetic  algorithms  (GA)  and  
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particle swarm optimization (PSO). The FOA possesses the 

same processing abilities for finding solution optimizations 

as the other algorithms, yet it involves fewer parameter 

settings and its processes are much shorter than other swarm 

algorithms [12]. The FOA has achieved success in several 

applications including research into optimization problems 

[13-16], neural network parameter optimization [17-18], 

swarm techniques for mini-autonomous surface vehicles 

(ASVs) [19], identification of dynamic protein complexes 

[20], support vector regression for seasonal electricity 

consumption forecasting [21], a short-term power load 

forecasting model based on the generalized regression neural 

network with a decreasing step fruit fly optimization 

algorithm [22], and efficient truss optimization using the 

contrast-based fruit fly optimization algorithm [23]. 

However, updating the position of a swarm of fruit flies 

through iterative generations remains the most challenging 

obstacle in FOA search. To seek an optimal solution, the 

FOA determines the scope of the searching radius through a 

random uniform distribution to update a new position. The 

radius values can be in the range of [0, 1] and the range is 

fixed during iterations. The drawback of this approach is that 

the FOA has to deal with variations in optimization 

problems. For example, if the algorithm needs to find the 

optimal solution in a search space between -1000 and 1000, 

the FOA generates the location of a swarm of fruit flies (in 

the range of [0, 1]), which is always far from an optimal 

solution in the early iterations. The search radius is too small 

compared with the distance from the current swarm locations 

to a promising region. In contrast, in the final iterations, a 

very small radius is needed to adjust a search vector to 

approach an optimal solution, but the search radius is very 

large. This disadvantage, referred to as the disadvantage 

ability of exploration and exploitation, has encouraged many 

research efforts into variant techniques to improve the FOA 

[14-16].    

Several researchers continue to propose various 

improved FOAs, such as the improved fruit fly optimization 

algorithm for solving optimization problems (LGMS-FOA) 

[24], the improved fruit fly optimization algorithm for 

continuous function optimization problems (IFFO) [15], and 

the novel multi-swarm fruit fly optimization algorithm 

(MFOA) [16]. These FOA-based algorithms focus on the 

'radius' through gradual and continuous updating (through 

special parameters) in the search process. However, given 

the above-mentioned disadvantage of the improved FOAs, as 

search time increases within each algorithm, the radius value 

of the population often converges slowly until it is unable to 

change at all. When the algorithms are dealing with complex 

optimization problems, they become trapped at local optima, 

and are incapable of finding a final optimum solution. 

In this paper, we imitated the natural phenomena of the 

relationships of organisms within an ecosystem, to improve 

the algorithm's searching efficiency. The proposed fruit fly 

optimization algorithm is a hybrid of a random walk and 

opposition-based learning algorithms. It is called fruit fly 

optimization algorithm (RO-FOA), mimics the relationship 

between organisms and their environment, which affects the 

survival of all organisms. The random walk is a fundamental 

random number generator used in several optimization 

algorithms [25-28]. The first attempt to implement the OBL 

concept in optimization was proposed by Rahnamayan et al. 

[29-30]. As the case study, OBL is used in the DE algorithm 

to improve its performance and it is called the opposition DE  

(ODE). In [30], a comprehensive trial was conducted to 

confirm ODE performance using a standard set of functions 

consisting of 58 global optimization problems, varying the 

impacts of dimension, spot differences, population size, 

different strategies of mutation, and the jump rate. The 

experimental results were checked, analyzed successfully 

and confirmed that ODE achieved better results than DE. 

Other than that, there are several recent literature reports that 

proposed opposition-based learning algorithms [31-34]. We 

put forth two new ideas regarding the OBL that are a 

variation of shrinking probability versus the number of 

iterations and the control of search transition from the 

exploration to the exploitation phase through this probability. 

The premise of the proposed method is based on the 

relationship of organisms within the same species, or, as 

named in various ecological studies, the 

Intraspecific Relationship [35]. The RO-FOA achieves 

better dispersion swarm locations than using the strategy of 

a random walk algorithm or opposition-based learning alone. 

Additionally, the main advantage of the RO-FOA algorithm 

is that it generates a more diversified population distribution 

than the original FOA and the existing 'improved' fruit fly 

optimization algorithms we tested. Furthermore, we found 

that the space complexity is very low as the implementation 

requires only three vectors. 

We have organized the remainder of this paper as 

follows. The FOA is presented in Section 2. The concept of 

the relationship of an organism within an ecosystem, and the 

RO-FOA strategy are described in Section 3. Then, the 

proposed random walk and opposition-based learning - fruit 

fly optimization algorithm (RO-FOA) are explained in 

Section 4. Section 5 explains the evaluation of algorithms 

and settings. The results and discussion are summarized in 

Section 6. Section 7 shows the ability of RO-FOA in multi-

layer perceptron training. Last, Section 8 concludes our 

proposed approach with suggestions for future research. 

  

2. The fruit fly optimization algorithm (FOA) 

 

 The drosophila optimized algorithm or fruit fly 

optimization algorithm (FOA), developed in 2012 by Pan 

(also can called FFO [36]), determines global optimization 

based on the foraging behavior of fruit flies. Compared to 

other species, the fruit fly possesses a keener sense of smell 

and sight in search of their food. The drosophila olfactory 

organ can detect a food source as far as 40 kilometers away, 

which triggers a flight reaction toward the target location. 

Figure 1 illustrates the pattern of the fruit flies’ search for 

food. 

 As with all swarm optimization algorithms, the first 

phase of the fruit flies' quest for food involves a random 

search, with no specific position or direction. In the second 

phase, the fruit fly with the best sense of smell, also referred 

to as best fitness, within the group is determined. In the last 

phase, the fruit fly with the best fitness updates a new 

position for each individual fruit fly. The steps of FOA are 

summarized in Algorithm 1. 

 

2.1 Disadvantages of the FOA  

 

The problems or disadvantages, which limit the 

capability of the FOA process in solving the various 

optimizations, are briefly described as follows:  
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Figure 1 The directional process of fruit fly’s search for food (Pan, 2012, p.70). 

 

Algorithm 1: The FOA algorithm 

Step 1. Initialization of FOA parameters, consisting of a random location (𝑋_𝑎𝑥𝑖𝑠, 𝑌_𝑎𝑥𝑖𝑠), population size (sizepop), and 

the maximum iteration (maxgen). 

Step 2. Give the random position and fly direction of an individual fruit fly in their search for food. 

 𝑋𝑖 = 𝑋_𝑎𝑥𝑖𝑠 + 𝑅𝑎𝑛𝑑𝑜𝑚()  

 𝑌𝑖 = 𝑌_𝑎𝑥𝑖𝑠 + 𝑅𝑎𝑛𝑑𝑜𝑚() 

Step 3. Calculate the distance (Dist) to the food’s origin, as the exact position of the food’s location is not known at this 

stage. 

 𝐷𝑖𝑠𝑡𝑖 = √𝑥𝑖
2 + 𝑦𝑖

2. 

Step 4. The smell concentration judgment value (Si) is calculated. 

 𝑆𝑖 =
1

𝐷𝑖𝑠𝑡𝑖
. 

Step 5. The smell concentration judgment of the individual fruit fly, obtained from Step 4, is calculated by substituting Si 

into the smell concentration judgment function (also called fitness function), to find the optimal smell. 

Smelli = objective function (Si). 

 

Step 6. Determine the fruit fly with the optimal smell concentration judgment among the fruit fly group. 

 [bestSmell, bestIndex] = optimal (Smell). 

 

Step 7. Keep the best (x, y) position and the minimal concentration value; and use this position as the base point of flying 

towards the next location (in step 2). 

 

 Smellbest = bestSmell, 

 X_axis = X (bestIndex), 

 Y_axis = Y (bestIndex). 

Step 8. Enter into iterative optimization by repeating steps 2-7, and determine whether the smell concentration is better than 

the previous iterative smell concentration. If yes, go to step 7. The process will stop when the smell concentration no longer 

changes, or when the iterative number reaches the maximum iteration number. 

 

 (1) FOA cannot solve high-dimensional function 

optimization problems when the set of decision variables (𝑋𝑖 

and 𝑌𝑖 ) do not exist within Step 2. 

 (2) The smell value (Si), in according to Step 4, cannot 

appropriately evaluate the “objective function (Si)” when 

there are negative numbers in the domain because 𝑆𝑖 =
1/𝐷𝑖𝑠𝑡𝑖 > 0  so that the function cannot determine Si as 

negative. 

 (3) The fixed search radius, with random uniform 

distribution, Random ( ), within the processes, limited the 

convergence of FOA in the processes of exploration and 

exploitation. This point is the important disadvantage of 

FOA which has inspired several improved versions of FOA. 

 

2.2 The improved version of FOA for solving  

high-dimensional function optimization 

 

Several improved FOAs has been proposed to overcome 

the drawbacks of FOA [16, 36-37]. These improved FOAs 

try to improve the search efficiency by proposing a dynamic 

search radius. A brief summary of the improved FOAs are as 

follows: 
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Figure 2 Variation of search radius versus iteration of LGMS-FOA, IFFO, and MFOA. 

 

(1) The LGMS-FOA [24] presented some parameters to 

tune the radius by adding the parameter, w, when changing 

the radius. The LGMS-FOA method is: x = X_axis + w × 

rand (domain of definition), w = wo × αt, where α = 0.95, t = 

current iteration, 𝑥 ∈ 𝑋 ,x = (x1, x2, …,xn), 𝑥 ∈ ℝ𝑛 and  

X_axis is the best position obtained during iterations. 

(2) The IFFO [36] introduced a new control parameter to 

adaptively adjust the search radius. The IFFO presented the 

changing search radius dynamically during iterations such 

that 𝛌 = 𝛌max × exp (log (𝛌min / 𝛌max) × t / tmax), where 𝛌 is the 

radius variation in each iteration, 𝛌max = (UB-LB) / 2, UB is 

the upper bound and LB is the lower bound, 𝛌min = 10-5, t is 

the current iteration and tmax is the maximum iteration 

number. 

(3) The MFOA [38] presented a multi-swarm fruit fly 

that employed sub-swarms in the search space with the 

behavior of simultaneously exploring the optimal solution. 

Moreover, MFOA provided a shrunken exploration radius as 

in equation R (t) = (UB - LB / 2) × (Gmax – G / Gmax), where 

t is the current iteration, UB is the upper bound, LB is the 

lower bound, G is the number of sub-swarms,  Gmax is the 

maximum number of sub-swarms and  = 2~6. 

 (4) The MSFOA [39] presented a strategy to theoretically 

analyze the convergence of the FOA and showed that its 

convergence depends on the initial positions of the swarms. 

MSFOA used a Gaussian mutation operator rather than the 

uniform random number (as can be seen in the details of 

[39]). For a flying fruit fly, MSFOA used a linear generation 

mechanism, through the equation of 𝑥𝑖,𝑗
𝑡 = 𝑋𝑗

𝑡 + 𝜔 ×

𝑟𝑎𝑛𝑑(𝑅𝑚𝑖𝑛, 𝑅𝑚𝑎𝑥) , where 𝜔 = 𝜔0 × 𝛼𝑡 ,  𝜔0 = 1, 𝛼 =
0.95, 𝑡 is current iteration, 𝜔 is the search coefficient, 𝛼 is 

the initial weight and 𝑅𝑚𝑖𝑛, 𝑅𝑚𝑎𝑥  are obtained from the 

domain boundary of the benchmarks function. 

The graph in Figure 2 is generated from three improved 

FOAs approaches: LGMS-FOA, IFFO and MFOA. 

Parameters were set at the max-iteration number = 1000, 

max-radius = 1, min-radius = 0, X-axis is the number of 

iterations, and Y-axis is the search radius values. They 

contain an additional parameter dependent upon the 

algorithms. The search radius graph of MSFOA is similar to 

that of LGMS-FOA. The graph demonstrates that the radius 

will gradually decrease, depending on the iteration number. 

 

2.3 Disadvantages of the variant FOAs 

 There are, however, some disadvantages in the searching 

procedures of variant FOAs such as LGMS-FOA, IFFO, 

MFOA and MSFOA. They are summarized as follows: 

(1) The LGMS-FOA [24], IFFO [15], MFOA [38] and 

MSFOA [39] lacked the convergence speed to reach the 

optimal solution. The emphasis of these proposed algorithms 

was on the effect of gradually changing and adapting the 

radius range along with the iteration number. For example, 

the graphs in Figure 2 indicate that the search scope at the 

beginning was very large, and would gradually be reduced 

when the iterations increased. If the final solution is the 

minimum value, these algorithms suffered from slow 

convergence in their attempt to find a final solution. 

(2) The LGMS-FOA, IFFO, MFOA and MSFOA 

algorithms contain only one type of population that is 

generated dependent on the technique of algorithms. They 

have no other method or any special parameter for enhancing 

the search process. As a result, it is possible for algorithms 

with only one type of population to become easily trapped at 

a local optimum. Owing to this disadvantage, several novel 

optimization algorithms have been developed with more than 

one population characteristic. This alteration has increased 

these newer algorithm’s abilities in finding global solutions, 

such as in [5, 40-42]. 

This paper presents the RO-FOA, which consists of two 

types of populations for enhancing the diversity of the 

population and convergence speed. The proposed method 

was inspired by the characteristics of organisms in a natural 

ecosystem. The details of the supporting ideas for the RO-

FOA creation are in the next section. 

 

3. The relationship of an organism within an ecosystem 

and the RO-FOA strategy 

 

According to the ecosystem concept [35], organisms 

within an ecosystem are often visible in different kinds of 

dispersions, which can vary from area to area. For example, 

consumers will have dispersion relationships with organisms 

that are food. There are two types of relationships for 

organisms. The relationship between organisms of the same 

species, which is referred to as an intraspecific relationship 

and the relationship between organisms of different species, 

which is referred to as an interspecific relationship. 
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(a) Uniform distribution (b) Random distribution (c) Clumped distribution 

 

Figure 3 Dispersion simulations of same-species organisms in nature. 

 

3.1 The intraspecific relationship 

 

The intraspecific relationships, described in basic 

ecology [35] are aggregations of same-species organisms, 

which leads to individual competition, communication, and 

social interaction. These types of aggregation cause 

dispersion of the organisms, which in turn creates three types 

of population distributions. 

(1) Uniform distributions are typically found in an 

environment where resources are limited. The individual 

organisms compete for the few available resources (spaces). 

The organism occupies the resource by maximizing the 

distance between its neighbors, as shown in Figure 3(a). 

(2) Random distributions occurs in nature when the 

environment is unvaried, and the members do not group 

together. The common distribution of a random distribution 

differs from uniform distribution, in that the distance 

between its neighbors is unpredictable, as shown in 

Figure 3(b). 

 (3) Clumped distributions, found in natural settings, 

occur when the environment consists of scattered resources. 

In order to occupy the resource, the distance between 

neighbors will be minimized, as shown in Figure 3(c). 

The distribution in each population of same-species 

organisms depends on the limitation of resources in each 

environment. In order for the organisms to survive within the 

environment, they must possess the ability to adjust 

themselves fit into the environment and its available 

resources in nature. 

 

3.2 The interspecific relationship 

 

The interspecific relationship is divided into nine 

categories, neutralism, protocooperation, mutualism, 

commensalisms, predation, parasitism, parasitoid, 

amensalism and competition. Different species relate to each 

other by transferring or passing on their energy or matter. 

This kind of relationship can happen temporarily or happen 

between two species that always depend on one another. The 

proposed RO-FOA provides the strategy of mimicking the 

behaviors of “mutualism”, which can be described as 

follows. 

Mutualism – Two species that live together and take 

benefits from each other. If, however, they are separated, 

both can still survive. Despite this ability to survive whilst 

separated, living together would provide more benefits than 

living alone. An example of this is lichen, which 

demonstrates the relationship between fungi and 

chlorophytes. Fungi receive nutrition from chlorophytes, 

which can generate its own food, while chlorophytes receive 

moistness from the fungi. 

3.3 Concept of RO-FOA 

 

Based on a literature review that studied several 

optimization algorithms and the disadvantages of the variant 

FOAs, we found that the difficulty in finding the final 

solution in complex optimization problems corresponds to 

the variation and complexity of the domain search space in 

each problem. The search spaces in optimization problems 

can be compared to those of the environmental variables 

within an ecosystem. 

For an optimization process, if a population lacks 

diversity, an optimal solution will not be attained, just as 

organisms with only one food search pattern, will find it 

difficult to locate resources (food) necessary for their 

survival. Therefore, the organisms within an ecosystem 

survive by co-existing in order to share information, and 

have diverse populations with more than one pattern. The 

FOA lacks diversity of exploration. In order to update a new 

position (in seeking the optimal solution), the FOA 

determines the scope of the search radius using a random 

uniform distribution, without change or interruption of 

information from any special parameters. The variant FOAs 

(Section 2.3) attempt to rectify this problem through the 

application of dynamic distributions to improve their search 

abilities. However, we found that the methods used in the 

existing improved FOAs remain unsuitable for various 

optimization problems (see the results in Section 6.6, Table 

2). To overcome such disadvantages we propose the RO-

FOA, which consists of two types of fruit fly swarms and 

three distribution patterns of population. The details of which 

are described as follows: 
 (1) The first type is the fruit fly swarms generated by the 

random walk algorithm [42] with a dynamic search range. 

 (2) The second type is the fruit fly swarms generated by 

the opposition-based learning algorithm (OBL) [43] to find 

the opposite information from (1). 

 (3) Merging of the three distribution patterns (shown in 

Figure 3) produces a single-procedure RO-FOA algorithm. 

This process is achieved through the exploration and 

exploitation activities of (1) and (2) to enhance the search 

capability of the algorithm. 

 The algorithmic procedures used in finding the optimal 

solution are described in the following sub-sections. 

 

3.4. The fruit fly swarms generated by the random walk 

algorithm 

 

The random walk (RW) algorithm moves positions 

stochastically when searching for optimal solutions. The 

main benefits of the RW algorithm are: 1) movement      

within   the  search  space  is  flexible,  and,  therefore,  covers  
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Figure 4 A demonstration of points generated from the random walk algorithm of three starting points 

 

many diverse positions, and 2) the regional radius in the 

search area is not fixed. The characteristics of the population 

of RW species movements are described as: 

 

x(t) = [0, cumsum(2r(t_1 ) − 1), cumsum(2r(t_2 ) − 1),  
… , 𝑐𝑢𝑚𝑠𝑢𝑚(2𝑟(𝑡_𝑛 ) − 1)] 
                                                                                           (1) 

 

𝑟(𝑡) = {
1, 𝑖𝑓 𝑟𝑎𝑛𝑑 > 0.5
0, 𝑖𝑓 𝑟𝑎𝑛𝑑 ≤ 0.5

 , 

 

where t denotes the iteration that came to a halt, r(t) is a 

stochastic function, n is the number of max-iterations, 

cumsum is the cumulative sum, and rand is a random uniform 

point between [0,1]. As in the other swarm algorithms, the 

RW populations must continually update their positions, and 

the process is performed through the following equation: 

 

Randomwalk:        Xi
t =

(Xi
t−ai)×(bi−ci

t)

di
t−ai

+ ci,                     (2)                                              

 

where 𝑎𝑖  is the minimum boundary, bi  is the maximum 

boundary, 𝑐𝑖  is the minimum of the i-th variable at t-th 

iteration and 𝑑𝑖
𝑡 indicates the maximum of the i-th variable 

at the t-th iteration. As shown in Figure 4, the position of 

𝑋 fluctuates dramatically within the search space. The three 

movement lines, red, blue, and black, are simulated from the 

first three columns of Eq. (2). Here, the X-axis represents the 

iteration numbers, and the Y-axis represents the search 

radius (with a boundary position between -10 and 10, 

iterations = 1000). 

The transition from the exploration phase to the 

exploitation phase is controlled through the radius of the 

walk. The radii of the swarm’s random walks are decreased 

adaptively with the following equations: 

 

𝑐𝑡 =
𝑐𝑡

𝐼
,                               (3) 

 

𝑑𝑡 =
𝑑𝑡

𝐼
,                (4) 

 

where 𝑐𝑡 is the minimum of all variables at t-th iteration and 

𝑑𝑡 is the the maximum of all variables at t-th iteration. I is a 

special constant parameter that decreased the radius of the 

swarm’s random walks with an interval ratio. For the RO-

FOA processes, 𝐼 = 10𝛼 × 𝑡/𝑇 ,  𝛼  is a constant that is 

defined based on the current iteration (𝛼 = 2 when 𝑡 > 0.1 ×
𝑇, 𝛼 = 3 when 𝑡 > 0.5 × 𝑇, 𝛼 = 4 when 𝑡 > 0.75 × 𝑇, 𝛼 = 5 

when 𝑡 > 0.9 × 𝑇 , and 𝛼  = 6 when 𝑡 > 0.95 × 𝑇 ) where 

𝑡 𝑎𝑛𝑑  𝑇 are the current iteration and the maximum number 

of iterations, respectively. A demonstration of Eq. (3) and (4) 

are presented in Figure 5. 

Consequently, the behavior of the RW’s populations was 

similar to that of the group of fruit flies in their search for 

food within the search space. The RW algorithm generates a 

diverse fruit fly position within the population through the 

imagination of 𝑅𝑊_𝑋, where 𝑋𝑖
𝑡 is a matrix of populations 

as expressed in Eq. (5). 

 

RW_X = Randomwalk (Xi
t) , where 𝑅𝑊_𝑋  is the RW of 

species swarms.                                                          

                                                                                           (5) 

 

3.5. The fruit fly swarms generated by opposition-based 

learning 

 

The basic premise of the OBL algorithm was inspired by 

the fundamental tasks in machine intelligence [43], learning, 

optimization, and search. Search and optimization 

techniques start with an initial solution (population), and 

obtain successive results necessary to achieve an optimal 

solution. The intrinsic nature of each algorithm is inspired by 

a specific biological behavior. However, for the current 

solution x, the OBL premise looks for a new solution in a 

given problem that is generally estimated as x . This 

estimation can be based empirically upon the opposed 

experience, or a random guess. 

 

The concept of the opposite point is defined as: 

 

Definition 1. Let 𝑥 ∈ ℝbe a real number defined on a specific 

interval: 𝑥 ∈ [𝑎, 𝑏]. The opposite number 𝑥̅ is defined in the 

following equation: 

 

𝑥̅ = 𝑎 + 𝑏 − 𝑥.                                                            (6) 

 

while, the opposite number in a multi-dimensional space 

is defined as: 



Engineering and Applied Science Research  January – March 2020;47(1)                                                                                                                                           7                                                                                                                                                                                                                                                                                       

 

 

 

 
 

Figure 5 A demonstration of the radius of a swarm’s random walks that are adaptively decreased. The X-axis is the number 

of iterations, set to 1 – 1000 and the Y-axis is the search radius, set to 0 through 6. 

 

Definition 2. Let  𝑃 = (𝑥1, 𝑥2, … , 𝑥𝐷)  be a point in 

D-dimensional coordinate system, with 𝑥1, 𝑥2, … , 𝑥𝐷 ∈ ℝ 

and 𝑥𝑖 ∈ [𝑎𝑖 , 𝑏𝑖]. The opposite point 𝑥̅𝑖 is defined entirely by 

its coordinates as follows: 

 

𝑥̅𝑖𝑗 = 𝑎𝑗 + 𝑏𝑗 − 𝑥𝑖𝑗; j = 1, 2, ..., D    (7) 

  

According to a review of opposition-based learning [44], 

there are many swarm intelligence forms based on stochastic 

optimization methods that are capable of achieving 

satisfactory performance when their algorithm is embedded 

with the opposition point generating scheme. In this paper, a 

new concept, OBL, is proposed for an OP species generation. 

The OP species is capable of finding a solution in a local 

region. Additionally, this concept further enhances the 

search with the faster convergence speeds required in finding 

the global optimal, in various optimization problems. 

In order to achieve the strategy of RO-FOA, we applied 

OBL to generate the OP species population through each 

equation as the following procedure. 

Let 𝑈𝑏 be an upper bound to determine the max of the 

best position 𝑋_𝑎𝑥𝑖𝑠, 

𝐿𝑏 be a lower bound to determine the min of the best 

position 𝑋_𝑎𝑥𝑖𝑠, 

𝑢𝑏 be an upper bound of the domain problem, 

𝑙𝑏 be a lower bound of the domain problem, 

Sp (t) = t/T, a.k.a. a shrinking probability, where t is a 

point in an iteration, and T is the maximum iteration. 

       

𝑎𝑏𝑜𝑢𝑛𝑑 = {
𝑈𝑏, 𝑆𝑝(𝑡) < 𝑟𝑎𝑛𝑑

𝑢𝑏,              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 ,              (8) 

 

𝑏𝑏𝑜𝑢𝑛𝑑 = {
 𝐿𝑏,     𝑆𝑝(𝑡) < 𝑟𝑎𝑛𝑑
𝑙𝑏,              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 ,                            (9) 

 

𝑂𝑃_𝑋𝑖𝑗 = (𝑎𝑏𝑜𝑢𝑛𝑑 + 𝑏𝑏𝑜𝑢𝑛𝑑) − 𝑋_𝑎𝑥𝑖𝑠𝑖𝑗 × 𝑟𝑎𝑛𝑑; i = 1, 2, 

..., sizepop,   j= 1, 2, ..., D,            

                                                                                         (10) 

 

where 𝑂𝑃_𝑋𝑖𝑗  is an OP species population generated from 

OBL, 𝑎𝑏𝑜𝑢𝑛𝑑, 𝑏𝑏𝑜𝑢𝑛𝑑 are the upper bound and lower bound 

of the algorithm. 𝑋_𝑎𝑥𝑖𝑠  is the best position that can be 

obtained from the initial process of the algorithm, 𝑟𝑎𝑛𝑑() is 

a random number between [0,1). sizepop is the number of 

populations and D is the number of variables (dimension). 

 The new ideas regarding the proposed OBL are the 

variation of shrinking probability Sp (t) versus iterations that 

is illustrated in Figure 6 and the transition from the 

exploration to the exploitation phase that is controlled 

through this probability. The upper bound and lower bound 

are reduced through Sp (t). From Eq. (8) and (9), the upper 

and the lower bounds correspond to 𝑎𝑏𝑜𝑢𝑛𝑑 and 𝑏𝑏𝑜𝑢𝑛𝑑. 𝑢𝑏 

and 𝑙𝑏 are the max and min values found in the best fruit fly 

( 𝑋_𝑎𝑥𝑖𝑠 ), respectively. 𝑈𝑏  and 𝐿𝑏  are defined from the 

domain of the problem. Alternating between the two 

boundaries causes a dynamic change of the radius range. 

Consequently, the exploration ability could be improved. 

 

4. The proposed random walk and opposition-based 

learning - fruit fly optimization algorithm  

 

 In order to overcome the disadvantages of the existing 

FOAs, this paper presents the improved RO-FOA, consisting 

of both the RW and OBL algorithms. The OBL is used to 

enhance the process of the FOA to achieve a global optimum 

solution through an accelerated convergence. While the 

addition of the RW method employs functions designed to 

enhance the ability of the FOA to create greater diversity 

than the standard or variant FOAs. The steps in Algorithm 2 

outline the RO-FOA procedure and the generation of new 

parameters. 

Regarding the distribution patterns, illustrated in 

Figure 3(a-c), the RO-FOA divides the entire population into 

two groups, similar to the concept of a mutualistic 

relationship, the populations generated from the OBL, and 

those generated from the RW. For example, when the initial 

parameter of the population size (sizepop) = 50, then each 

group size = 25 populations. These two groups, OBL and 

RW, differ from the multi-swarm technique [16] in that the 

multi-swarm method creates a random uniform distribution, 

and the number of groups (or sub-swarms) depends on the 

user definitions, whereas the RO-FOA has only one group 

and two distribution patterns. Additionally, the 

computational complexity of the problem does not increase, 

compared to that of the existing FOAs (as discussed in 

Section 6.1). 
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Figure 6 Variation of Sp(t) versus iterations. 

 

Algorithm 2: The RO-FOA algorithm 

//Initial procedure 

Step 1.  Determine the initial parameters, population size (sizepop), the maximum iteration (maxgen), number of 

variables (D), upper bound (Ub) and lower bound (Lb) 

Step 2.  Initialize fruit fly swarm positions randomly 

 𝑋𝑖 = 𝑙𝑏 + (𝑢𝑏 − 𝑙𝑏) × 𝑟𝑎𝑛𝑑, i = 1, 2, …, sizepop 

Step 3.  Find the best smell concentration (fitness value) by inputting each individual fruit fly’s  

position into the objective function 

 Smelli = Objective Function (Xi), [bestSmell, bestIndex] = min (Smell), 

 Smellbest = bestSmell,  X_axis = X(bestIndex) 

//Main procedure  

Step 4. Update ub and lb using information of X_axis 

Step 5.    𝑂𝑃_𝑋𝑖𝑗 = (𝑎𝑏𝑜𝑢𝑛𝑑 + 𝑏𝑏𝑜𝑢𝑛𝑑) − 𝑋_𝑎𝑥𝑖𝑠𝑖𝑗 × 𝑟𝑎𝑛𝑑, i = 1, 2, …,sizepop/2  //Eq. (10)  

Step 6. RW species populations are obtained from random walk algorithm 

 𝑅𝑊_𝑋𝑖
𝑡 = 𝑅𝑎𝑛𝑑𝑜𝑚𝑤𝑎𝑙𝑘 (𝑋𝑖

𝑡), i = 1, 2, …, sizepop/2  //Eq. (5) 

Step 7. Use the populations for each iteration to form X , 

 X = OP_X ∪ RW_X 

Step 8. Re-evaluate the smell concentration (fitness value) of the individual fruit fly 

 Smelli = Objective Function (Xi), i = 1, 2, …, sizepop 

Step 9. Find the fruit fly with the least minimal smell concentration, 

 [new_bestSmell, new_bestIndex] = min (Smell), 

 new_Smellbest = bestSmell, new_X_axis = X (bestIndex) 

Step 10. If the new smell concentration is better than the previous iterative smell concentration, then update X_axis with 

the current best fruit fly. 

Step 11. Enter into iterative optimization.  

Repeat steps 4-10. The process will stop when the smell concentration is no longer changed, or when the iteratiion number 

reaches the maximum value. 

Output: the fruit fly with the best smell concentration. 

  

The distribution discussed in Section 3.2 is generated from 

the following RO-FOA steps: 

 (1) Step 2 generates the pattern of populations of the 

uniform distribution (Figure 3 (a)). This strategy is used in 

the initial step before entering the main RO-FOA procedure. 

 (2) Step 5 generates the new populations of the uniform 

distribution. This step provides the new position of the 

population calculated through the best position X_axis 

obtained from step 3. 

 (3) Step 6 generates the new populations of the random 

distribution. This step provides the new position of 

population calculated through the best position X_axis 

obtained from step 3. 

 (4) Step 7 - after a period of time, steps 5 and 6 generate 

the populations of the clumped distribution. 

 

5. The settings and evaluation of algorithms on 

benchmark functions 

 

In this section, we evaluate the performance of our 

proposed method through the application of 34 standard 

benchmark  functions  (11  uni-modal  and  23  multi-modal)  
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Table 1 The 34 standard benchmark functions. 

 

Function Type Function name Dimension Optimum 

f1 unimodal Sphere model 30 0 

f2 unimodal Axis parallel hyperellipsoid 30 0 

f3 unimodal Schwefel’s problem 1.2 30 0 

f4 multimodal Rosenbrock’s valley 30 0 

f5 multimodal Rastrigin’s function 30 0 

f6 multimodal Griewank’s function 30 0 

f7 unimodal Sum of different power 30 0 

f8 multimodal Ackley’s path function 30 0 

f9 unimodal Beale function 2 0 

f10 multimodal Colville function 4 0 

f11 unimodal Easom function 2 -1 

f12 multimodal Hartmann function 1 3 -3.86278 

f13 multimodal Hartmann function 2 6 -3.32237 

f14 multimodal Six Hump Camel back function 2 -1.03162 

f15 multimodal Levy function 30 0 

f16 unimodal Matyas function 2 0 

f17 multimodal Perm function 2 0 

f18 multimodal Michalewicz function 10 -9.66015 

f19 multimodal Zakharov function 10 0 

f20 multimodal Branins’ function 2 0.3979 

f21 unimodal Schwefel’s problem 2.22 30 0 

f22 unimodal Schwefel’s problem 2.21 30 0 

f23 unimodal Step function 30 0 

f24 multimodal Quartic function 30 0 

f25 multimodal Kowalik’s function 4 0.0003075 

f26 multimodal Shekel’s Family (1) 4 -10.2 

f27 multimodal Shekel’s Family (2) 4 -10.4 

f28 multimodal Shekel’s Family (3) 4 -10.5 

f29 multimodal Tripod function 2 0 

f30 unimodal De Jong’s function 4 (no noise) 2 0 

f31 multimodal Alpine function 30 0 

f32 multimodal Schaffer’s function 6 2 0 

f33 multimodal Pathological function 30 0 

F34 multimodal Inverted cosine wave function (Masters) 4 -n+1 

 
taken from [45-48]. Each function contains different 

dimension levels (see Table 2). The definition of each 

benchmark function and their global optima are listed in 

Appendix A. Each algorithm was coded in MATLAB. 

Experiments were conducted using MATLAB 7.10.0 

(2010a) on a personal computer, with a 3.2 GHz CPU, 8 GB 

RAM running a Microsoft Windows 7 operating system. For 

MSFOA, 15 benchmark functions used in [39] are also used 

in this paper. Therefore the experimental results relating that 

15 functions are taken from Tables 3 and 4 of [39] and are 

used to compare with that of the proposed RO-FOA. 

 

5.1 Parameters and settings 

 

In the parameter settings, the maximum iteration number 

(maxgen) of each algorithm was fixed at 1000, and the 

population sizes (sizepop) at 50. The mean value (Mean) and 

standard deviations (Std) over 30 independent runs are 

presented for each algorithm. 

 (1)  Comparison between the RO-FOA and variant FOAs 

  We compared the performance of the RO-FOA and 

other variant FOAs with the same benchmark functions 

(Table 2). The individual parameters of the LGMS-FOA [37] 

are sizepop = 50, n = 0.005, w0 = 1, and α = 0.95. The IFFO 

parameters [15] are 𝛾𝑚𝑎𝑥 = 𝑈𝐵 − 𝐿𝐵/2, and  γmin = 10-5 . 

Within the parameter settings of the proposed MFOA [16], 

the multi swarm number, M, is set at = 5, and θ is set at values 

from 2 to 6. 

 (2)  Comparison between the RO-FOA and the meta-

heuristic algorithms 

  The parameters of the meta-heuristic algorithms 

include the particle swarm optimization (PSO), where c1 = 

2, c2 = 1.5, wmax = 1.3, wmin = 0.3, and vmax is limited to 20% 

of the domain [49]. Differential evolution (DE) was done 

with a scaling factor (F) = 0.5, and the crossover probability 

constant (CR) = 0.9 [50]. Harmony search (HS) had a 

harmony memory size (HMS) = sizepop. The harmony 

memory consideration rate (HMCR) = 0.90, and the pitch 

adjusting rate (PAR) = 0.35 [51]. The gravitational search 

algorithm (GSA) [52], and the grey wolf optimizer (GWO) 

[53],   flower pollination algorithm (FPA) [54], and a 

modified flower pollination algorithm (MFPA) [55] were 

also examined. These algorithms were coded in MATLAB 

and obtained from https://www.mathworks.com/ 

matlabcentral/fileexchange/. The default parameters of each 

algorithm are shown in Appendix B. 

 

6. Benchmarking results and discussion 

 

In brief, this paper presents the RO-FOA, which consists 

of both the RW and OBL algorithms. The experimental 

results show that the RO-FOA improves the performance 

over the original FOA in finding an optimal solution within 

the optimizing function. Furthermore, the proposed method 

increases search capability and diversity during exploration, 

through the use of the RW to expand the population's 

position,   while  the  OBL   accelerates   the   speed  of   the  



10                                                                                                                                         Engineering and Applied Science Research  January – March

 

 

 

  
(a) Convergence curve on Rosenbrock’s valley (f4) (b) History of indices of the best fruit fly on Rosenbrock’s 

valley (f4) –uni-modal function case 

 
 

(c) Convergence curve on Six Hump Camel back function 

(f14) 

(d) History of indices of the best fruit fly on Six Hump 

Camel back function (f14) – multi-modal function case 

 

Figure 7 Graphic of the convergence curves and indices of the best fruit fly history that were produced during two runs of 

RO-FOA. The triangle was produced by the RW and the circle was produced by the OP. 

 

exploration process and convergence in locating the 

promising region. 

 

6.1 Computational complexities of the RO-FOA and original 

FOA  

  

 The number of function calls (NFCs) determines 

computational complexity, and it is the most commonly used 

metric in recent literature [30, 56]. The computational 

complexity of the original FOA was calculated through the 

sum of the NFCs of each individual fruit fly, in each of the 

two phases. The initial phase calculates the cost of a 

candidate solution to establish the best initial position. The 

second phase computes the updated position of each 

individual fruit fly. In this paper, the computational 

parameters involve a set of population sizes in the initial and 

the updated phases, in which each phase = 50, and the max 

iteration = 1000. In the original FOA, the resulting NFCs = 

50 + (50 × 1000) = 50050. Within these same computational 

settings, the proposed RO-FOA generated a population with 

the best initial position = 50, similar to the initial phase of the 

original FOA. The updated phase of the RO-FOA then 

combined the OBL and RW characteristics of each 

individual fruit fly (Step 5 and 6), resulting in a population = 

50. The complexity of the RO-FOA is therefore calculated as 

(50) + (25+25 × 1000), and the NFCs = 50050. In the 

proposed of RO-FOA, the fruit fly's behaviors (Steps 7), 

inspired from previous research [5, 40-42], proves more 

capable of finding the optimal solution than with a single 

characteristic. This technique can further enhance the 

diversity of the population of the algorithms' exploration 

capabilities, and has the potential to accelerate convergence 

to quickly obtain the optimal solution. In summary, we may 

conclude that the complexity of the RO-FOA is not 

significantly different from that of the original FOA, as the 

RO-FOA employed two populations (OBL and RW). Yet the 

population size did not increase. In the next section, we 

discuss the capabilities of the RO-FOA through the 

evaluation of several commonly used benchmark functions, 

and compare them with other meta-heuristic algorithms. 

 

6.2 The benefit of having both RW and OBL together 

  

 In Figure 7, each graph was generated by RO-FOA, 

including both RW and OBL. The left column shows the 

convergence curve while the right column shows the 

historical indices of best fruit flies produced from the 

Rosenbrock’s  valley  and  Six  Hump Camel  back  functions,  
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(a) FOA,1 to 10 iterations (b) FOA,1 to 1,000 iterations 

  
(c) IFFO, 1 to 10 iterations (d) IFFO, 1 to 1,000 iterations 

  
(e) LGMS, 1 to 10 iterations (f) LGMS, 1 to 1,000 iterations 

 

Figure 8 The f5 best search routes produced by the RO-FOA and variant FOA algorithms 

 

respectively. As can be seen in Figures 7 (a) and (c), the blue 

lines show that the convergence curve tends to continue 

reducing and converging quickly to the solution. In Fig. 7 (b) 

and (d), the pink dots are the best positions obtained from OP 

species and the blue triangles are the best positions obtained 

from RW species. In Fig. 7 (b), the Rosenbrock’s valley 

function is a uni-modal function. Successful exploration is 

done by the OP species and successful exploitation is done 

by the RW species, in the early and e latter phases, 

respectively. In Fig. 7 (c), the Six Hump Camel back   

function is a multi-modal function. In the early phase, 

successful   exploration   is  done   by   cooperation   of   the  
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(g) MFOA, 1 to 10 iterations (h) MFOA, 1 to 1,000 iterations 

  
(i) RO-FOA,1 to 10 iterations (j) RO-FOA, 1 to 1,000 iterations 

 

Figure 8 (continued) The f5 best search routes produced by the RO-FOA and variant FOA algorithms. 

 

two species. When the algorithms evolve to the exploitation 

phase, successful exploitation is done by RW species. 

 

6.3 Enhancement of population diversity  

 

 To show enhancement of the diversity of exploration of 

the RO-FOA, the best search routes of the RO-FOA and 

those of the variant FOA algorithms are presented in 

Figure 8. Each graph displays the results rendered from the 

multi-modal Rastrigin function (f5). The f5 details are 

elaborated in Table 1 and Appendix A. The figures illustrate 

the populations’ starting positions through the end of the 

search processes in the original FOA, IFFO, LGMS, MFOA, 

and RO-FOA algorithms. The simulation parameters were 

set at population=10, the iteration numbers ran from 1 to 10 

in the left column, and 1 to 1,000 in the right column, where 

the X- and Y-axes represent the two dimensional position of 

the population within the range of the search space 

between -5.12 and 5.12. Each algorithm population began 

with the same value, employing a random uniform 

distribution. The optimal solution of f5= (0, 0). 

 The RO-FOA algorithm significantly enhances the 

diversity of exploration by spreading and moving its 

population search, compared with the other variant FOAs. 

The figures of the proposed RO-FOA (Figures 8 (i) and 8 (j)) 

show the highest population diversity and the most accurate 

solution. Within the first ten iterations, shown in the left 

column of Figure 8, the population diversities of the original 

FOA, IFFO, LGMS, and MFOA gradually change or adapt, 

depending on the iteration number. They tend to align with 

one another or move in a slightly different direction.  In 

contrast, the RO-FOA (Figure 8 (i)) produces a dramatic 

fluctuation of the population, and refracts, thereby improving 

its position. When expanding the RO-FOA’s iterations to 

1,000 (Figure 8 (j)), the population continues to demonstrate 

a more positive refracted direction, and is able to obtain the 

optimal solution. 

 

6.4 Comparison of the adjusted radius within the RO-FOA 

and the variant FOA algorithms  

 

As discussed above, a primary disadvantage of the 

variant FOAs is the way in which they adjust or change the 

radius in both exploration and exploitation. The RO-FOA 

strategy adjusts the radius within the course of its iterations, 

through two techniques, which produce a substantial 

advantage. The first technique adjusts the interval of the RW. 

The second calculates probabilities through opposition based 

learning, in adapting the radius within the course of 

iterations.  As  a  demonstration, the  2-D  Rastrigin  function  
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(a) RO-FOA (b) RO-FOA (500 iterations) 

  

(c) FOA (d) IFFO 

  
(e) LGMS (f) MFOA 

 

Figure 9 The adjusted radii of the RO-FOA, FOA, IFFO, LGMS, and MFOA over the course iteration. 

 

(f5) was selected, and solved with 50 populations, over 1,000 

iterations, as depicted in Figure 9 (with the exception of 

Figure 9 (b), which is enlarged to examine the RO-FOA 

through 500 iterations). The X-axis represents the number of 

iterations, and the Y-axis represents the boundary values. In 

Figure 9 (a), the red line demonstrates the wider radius of the 

RO-FOA in the first 100 iterations and an increase in the 

number of shorter radii of the final process in subsequent 

iterations. This behavior is a result of the RW algorithm, 

Eq. (2), which provides a more advantageous exploration 

and exploitation, and higher solution accuracy. Figure 9(b), 

examines only 500 iterations   and more   closely   examines    
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Table 2 Solution quality comparisons of the RO-FOA and variant FOAs within 34 benchmark functions. For the MSFOA, its 

results were taken from [39]. Lower is better. N/A means no available data. Minimum Means and Stds are in bold. The h 

values signify the results of the rank-sum test. 

 
Function Criteria FFO LGMS_FOA IFFO MFOA MSFOA RO-FOA +/−/≈ 

f1 

Mean 1.51e+02 5.77e+00 2.45e-04 4.48e-02 1.70e+00 0  

Std 3.88e+01 6.07e-01 1.96e-02 1.04e-01  0  

h 1 1 1 1 1  5/0/0 

f2 

Mean 1.42e-08 3.22e-02 9.50e-09 2.76e-02 8.98e-01 0  

Std 2.73e-08 5.30e-02 1.84e-03 4.10e-02  0  

h 1 1 1 1 1  5/0/0 

f3 

Mean 4.08e+02 2.99e+01 1.16e-01 9.89e-12 3.09e+00 0  

Std 2.55e+02 3.01e+01 7.44e+00 1.77e-11  0  

h 1 1 1 1 1  5/0/0 

f4 

Mean 9.32e+02 6.32e+02 2.81e+01 4.47e+01 2.89e+01 1.17e-06  

Std 4.62e+02 7.04e+02 1.54e+00 3.37e+01  1.16e-06  

h 1 1 1 1 1  5/0/0 

f5 

Mean 9.63e+01 2.39e+01 2.00e-02 1.47e+01 8.82e-01 0  

Std 1.88e+01 8.41e+00 6.04e-01 6.88e+00  0  

h 1 1 1 1 1  5/0/0 

f6 

Mean 1.06e+00 9.77e-03 9.73e-02 2.47e-04 9.66e-01 0  

Std 1.25e-02 9.83e-03 2.74e-01 1.35e-03  0  

h 1 1 1 1 1  5/0/0 

f7 

Mean 1.65e-03 1.70e-38 2.83e-159 8.54e-56 1.60e−09 0  

Std 8.21e-03 8.52e-38 6.18e-57 4.68e-55  0  

h 1 1 1 1 1  5/0/0 

f8 

Mean 1.01e+01 1.48e+00 6.08e-02 1.29e+00 5.92e-01 8.88e-16  

Std 5.01e-01 8.51e-01 4.44e-01 1.36e+00  0  

h 1 1 1 1 1  5/0/0 

f9 

Mean 5.34e+00 3.92e-03 6.57e-02 2.86e-01  1.30e-13  

Std 4.96e+00 5.38e-03 4.70e-02 1.43e+00 N/A 1.47e-13  

h 1 1 1 1   4/0/0 

f10 

Mean 9.32e+03 7.09e-01 1.76e+00 4.66e+01  3.33e-07  

Std 1.50e+04 1.16e+00 1.12e+01 6.05e+00 N/A 5.51e-07  

h 1 1 1 1   4/0/0 

f11 

Mean -0.19 -0.99 -0.99 -8.34e-09  -1  

Std 3.34e-01 3.33e-03 2.42e-01 2.13e-08 N/A 0  

h 1 1 1 1   4/0/0 

f12 

Mean -2.04444 -3.53052 -3.82067 -0.06797  -3.86278  

Std 6.78e-01 3.14e-01 3.28e-02 0 N/A 4.52e-16  

h 1 1 1 1   4/0/0 

f13 

Mean -1.82364 -2.39944 -2.92143 -1.33252  -3.03862  

Std 2.51e-01 2.28e-01 6.81e-02 6.78e-16 N/A 1.17e-02  

h 1 1 1 1   4/0/0 

f14 

Mean 20.9856 -0.94249 -1.0280 -0.82828  -1.0316  

Std 7.11e+01 7.84e-02 1.04e-01 1.87e-01 N/A 6.78e-16  

h 1 1 1 1   4/0/0 

f15 

Mean 8.94e+00 2.82e+01 2.47e+00 3.31e+00  2.22e-12  

Std 7.34e+00 1.27e+01 1.59e-01 7.13e-02 N/A 1.83e-12  

h 1 1 1 1   4/0/0 

f16 

Mean 3.02e+00 1.32e-03 3.20e-09 1.90e-04  0  

Std 4.09e+00 1.51e-03 1.39e-04 2.57e-04 N/A 0  

h 1 1 1 1   4/0/0 

f17 

Mean 7.93e+04 1.24e-01 9.59e+04 4.65e+04  7.30e-04  

Std 2.32e+04 2.18e-01 7.03e+02 2.42e+02 N/A 6.86e-04  

h 1 1 1 1   4/0/0 

f18 

Mean -2.61898 -2.85910 -4.94701 -1.10669  -8.87573  

Std 5.79e-01 4.88e-01 3.71e-01 3.79e-01 N/A 4.16e-01  

h 1 1 1 1   4/0/0 

f19 

Mean 2.37e+02 8.55e+07 1.88e+11 1.13e+02  8.03e-13  

Std 5.30e+01 2.43e+08 2.37e-03 3.50e+02 N/A 1.87e-12  

h 1 1 1 1   4/0/0 

f20 

Mean 11.7302 0.4520 0.3991 37.6936  0.3979  

Std 1.29e+01 7.30e-02 8.84e-02 4.32e+00 N/A 2.78e-13  

h 1 1 1 1   4/0/0 

f21 

Mean 7.48e+09 7.20e+01 1.23e-08 8.03e-10 2.46e-05 0  

Std 4.08e+10 3.96e+01 1.85e-01 5.42e-10  0  

h 1 1 1 1   4/0/0 

f22 

Mean 4.74e+00 1.61e+01 8.10e-09 7.45e-08 4.17e-01 0  

Std 2.04e-01 7.33e+00 4.38e-01 9.59e-08  0  

h 1 1 1 1   4/0/0 

f23 

Mean 2.21e+02 1.09e+01 6.47e+01 3.33e-02 0 0  

Std 3.91e+01 4.73e+00 1.35e+02 1.83e-01  0  

h 1 1 1 1   4/0/1 

f24 

Mean 1.27e+02 1.11e-01 1.54e-03 4.20e-03 7.60e−08 2.61e-09  

Std 5.95e+01 2.71e-02 1.29e-02 1.55e-03  2.08e-09  

h 1 1 1 1 1  5/0/0 

f25 

Mean 13.12 0.0054480 0.0008350 0.0012568  0.0003079  

Std 2.68e+01 8.37e-03 4.60e-03 3.62e-03 N/A 5.40e-07  

h 1 1 1 1   4/0/0 

f26 

Mean -0.2 -1.1 -6.8 -8.6  -10.2  

Std 2.23e-01 6.78e-01 8.87e-01 2.37e+00 N/A 3.61e-15  

h 1 1 1 1   4/0/0 
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Table 2 (continued) Solution quality comparisons of the RO-FOA and variant FOAs within 34 benchmark functions. For the 

MSFOA, it results were taken from [39]. Lower is better. N/A means no available data. Minimum Means and Stds are in bold. 

The h values signify the results of the rank-sum test. 

 
Function Criteria FFO LGMS_FOA IFFO MFOA MSFOA RO-FOA +/−/≈ 

f27 

Mean -0.2 -1.4 -6.2 -9.5  -10.4  

Std 1.55e-01 8.58e-01 7.87e-01 2.01e+00 N/A 0  

h 1 1 1 1   4/0/0 

f28 

Mean -0.3 -2.0 -5.8 -9.9  -10.5  

Std 1.39e-01 1.62e+00 6.61e-01 1.65e+00 N/A 3.71e-10  

h 1 1 1 1   4/0/0 

f29 

Mean 7.91e+00 8.00e-01 4.42e+00 6.33e-01  6.80e-06  

Std 1.12e+01 8.47e-01 4.70e-01 6.69e-01 N/A 3.12e-06  

h 1 1 1 1   4/0/0 

f30 

Mean 1.59e-18 1.25e-99 0 2.83e-81  0  

Std 3.92e-18 6.05e-99 3.11e-13 8.12e-81 N/A 0  

h 1 1 1 1   4/0/0 

f31 

Mean 5.70e+01 6.83e+00 1.19e-09 5.16e-03 5.36e-02 0  

Std 1.88e+01 2.04e+00 8.49e-02 1.42e-02  0  

h 1 1 1 1 1  5/0/0 

f32 

Mean 4.25e-01 2.82e-02 1.57e-02 1.02e-02  0  

Std 1.21e-01 2.80e-02 2.43e-02 1.99e-02 N/A 0  

h 1 1 1 1   4/0/0 

f33 

Mean 1.51e-02 3.60e-06 5.74e-09 -4.81e-17 4.46e+00 0  

Std 1.69e-02 1.05e-05 7.40e-04 1.06e-15  0  

h 1 1 1 1 1  4/0/0 

f34 

Mean -20.70 -23.13 -23.89 -13.72 -28.92 -28.93  

Std 6.61e-01 5.03e-01 1.12e-01 4.49e-01  2.33e-01  

h 1 1 1 1   4/0/0 

Total        146/0/1 

 

Table 3 Solution quality comparisons of the RO-FOA with seven meta-heuristic algorithms on 34 benchmark functions. Lower 

is better. Minimum Means and Stds are in bold. The right most column is the results from the rank-sum test. The h values 

signify the results of the rank-sum test. 

 
Function Criteria PSO HS GSA DE GWO FPA MFPA RO-FOA +/−/≈ 

f1 

Mean 1.86e-12 1.42e+01 2.00e-17 6.67e-17 5.87e-73 2.47e+01 1.20e-04 0  

Std 8.64e-12 2.95e+00 6.44e-18 8.82e-17 1.30e-72 3.38e+00 4.53e-04 0  

h 1 1 1 1 1 1 1  7/0/0 

f2 

Mean 5.94e-77 3.68e-05 7.19e-122 0 0 1.66e-02 3.17e-110 0  

Std 2.38e-76 4.81e-05 3.90e-121 0 0 3.92e-02 1.65e-109 0  

h 1 1 1 0 0 1 1  5/0/2 

f3 

Mean 1.83e-03 1.06e+04 1.81e+01 1.14e-03 1.47e-29 4.02e+01 8.70e+00 0  

Std 3.69e-03 1.65e+03 8.62e+00 4.82e-03 7.21e-29 1.34e+01 1.04e+01 0  

h 1 1 1 1 1 1 1  7/0/0 

f4 

Mean 2.03e+01 4.91e+02 2.61e+01 2.51e+01 2.67e+01 5.48e+03 7.39e+01 1.17e-06  

Std 1.89e+00 1.03e+02 1.82e+01 1.28e+00 7.83e-01 1.56e+03 6.28e+01 1.16e-06  

h 1 1 1 1 1 1 1  7/0/0 

f5 

Mean 9.42e+00 1.08e+01 3.02e+00 1.02e+01 0 1.84e+02 5.76e+01 0  

Std 4.57e+00 2.70e+00 1.72e+00 7.55e+00 0 1.78e+01 1.22e+01 0  

h 1 1 1 1 0 1 1  6/0/1 

f6 

Mean 5.07e-02 5.39e+01 4.45e+00 2.79e-03 3.67e-03 6.81e-01 2.20e-02 0  

Std 1.31e-01 1.14e+01 2.11e+00 5.63e-03 7.44e-03 5.37e-02 3.19e-02 0  

h 1 1 1 1 1 1 1  7/0/0 

f7 

Mean 0 1.33e-72 0 0 0 8.94e-41 0 0  

Std 0 7.27e-72 0 0 0 3.25e-40 0 0  

h 0 1 0 0 0 1 0  2/0/5 

f8 

Mean 1.42e+00 1.35e+01 3.51e-09 3.10e-02 1.36e-14 4.78e+00 3.95e+00 8.88e-16  

Std 1.07e+00 8.32e-01 4.92e-10 1.70e-01 2.75e-15 2.85e-01 2.14e+00 0  

h 1 1 1 1 1 1 1  7/0/0 

f9 

Mean 5.08e-02 1.30e-02 7.27e-21 0 2.46e-08 8.33e-01 0 1.30e-13  

Std 1.93e-01 2.72e-02 7.24e-21 0 2.32e-08 3.52e-01 0 1.47e-13  

h 1 1 1 -1 1 1 -1  5/2/0 

f10 

Mean 3.16e-05 4.42e+01 1.18e+00 2.68e-05 6.02e-01 2.47e+01 4.00e-24 3.33e-07  

Std 3.60e-05 7.04e+01 1.58e+00 1.47e-04 1.34e+00 2.09e+01 1.20e-23 5.51e-07  

h 1 1 1 1 1 1 -1  6/1/0 

f11 

Mean -1 -0.18 -0.95 -1 -1 -0.01 -1 -1  

Std 6.60e-02 3.64e-01 1.97e-01 0 6.68e-08 5.68e-03 0 0  

h 1 1 1 0 1 1 0  5/0/2 

f12 

Mean -3.86202 -3.86202 -3.86278 -3.86278 -3.86176 -1.96715 -3.86278 -3.86278  

Std 1.90e-04 7.90e-04 3.16e-15 3.12e-15 2.60e-03 9.23e-01 3.16e-15 4.52e-16  

h 1 1 1 1 1 1 0  6/1/0 

f13 

Mean -3.01636 -3.01636 -3.01246 -2.99125 -3.01995 -1.37914 -3.02812 -3.04862  

Std 3.10e-02 1.65e-02 1.36e-15 2.33e-02 3.36e-02 9.95e-02 2.64e-02 1.17e-02  

h 1 1 1 1 1 1 1  7/0/0 

f14 

Mean -1.0316 -1.0315 -1.0316 -1.0316 -1.0316 -0.8917 -1.0316 -1.0316  

Std 4.52e-16 1.37e-04 4.52e-16 4.52e-16 2.23e-09 1.44e-01 4.52e-16 6.78e-16  

h 0 1 0 0 1 1 0  3/0/4 

f15 

Mean 4.42e-02 4.42e-02 1.35e-31 1.79e-01 7.91e-08 2.27e-01 1.35e-31 2.22e-12  

Std 6.53e-01 8.95e-02 6.68e-47 4.59e-01 7.61e-08 1.68e-01 6.68e-47 1.83e-12  

h 1 1 0 1 1 1 0  5/0/2 
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Table 3 (continued) Solution quality comparisons of the RO-FOA with seven meta-heuristic algorithms on 34 benchmark 

functions. Lower is better. Minimum Means and Stds are in bold. The right most column is the results from the rank-sum test. 

The h values signify the results of the rank-sum test. 

 
Function Criteria PSO HS GSA DE GWO FPA MFPA RO-FOA +/−/≈ 

f16 

Mean 1.26e-65 9.36e-03 6.32e-89 2.29e-23 2.20e-28 4.54e-03 1.33e-55 0  

Std 6.77e-65 1.42e-02 1.71e-88 0 0 4.76e-03 7.14e-55 0  

h 1 1 1 1 1 1 1  7/0/0 

f17 

Mean 8.87e+04 8.54e+04 9.16e+04 4.43e-02 5.93e-01 9.33e+04 9.47e-04 7.30e-04  

Std 2.80e+03 5.13e+02 4.57e+03 1.22e-01 6.89e-01 4.91e+03 8.77e-04 6.86e-04  

h 1 1 1 1 1 1 0  6/0/1 

f18 

Mean -7.93635 -8.00890 -8.62540 -5.13600 -7.65460 -8.54994 -8.57597 -8.87573  

Std 7.86e-01 4.34e-01 5.07e-01 1.38e+00 8.92e-01 2.61e+00 5.03e-01 4.16e-01  

h 1 1 1 1 1 1 1  7/0/0 

f19 

Mean 1.10e+01 3.64e+02 5.18e+01 1.23e+00 2.14e-27 8.33e+00 2.64e-10 8.03e-13  

Std 2.37e+01 5.40e+01 1.09e+01 1.03e+00 3.33e-27 1.09e+00 6.68e-10 1.87e-12  

h 1 1 1 1 -1 1 1  6/1/0 

f20 

Mean 0.3979 0.3980 0.3979 0.3979 0.3979 8.3250 0.3978 0.3979  

Std 0 9.95e-05 0 3.71e-02 5.86e-05 1.09e+00 0 2.78e-13  

h 0 1 0 0 0 1 0  2/0/5 

f21 

Mean 7.07e-02 1.85e+01 2.18e-08 5.78e-08 4.08e-41 2.14e+01 8.28e-02 0  

Std 1.83e-01 2.40e+00 3.17e-09 5.14e-08 4.50e-41 2.24e+00 3.87e-01 0  

h 1 1 1 1 1 1 1  7/0/0 

f22 

Mean 6.01e-01 5.87e+01 3.74e-02 1.26e+01 2.79e-17 1.70e+00 2.07e+01 0  

Std 4.29e-01 5.95e+00 2.05e-01 6.17e+00 6.01e-17 9.47e-02 5.49e+00 0  

h 1 1 1 1 1 1 1  7/0/0 

f23 

Mean 6.57e+00 5.15e+03 0 1.33e-01 0 2.37e+01 1.47e+00 0  

Std 9.84e+00 8.44e+02 0 3.46e-01 0 4.68e+00 6.20e+00 0  

h 1 1 0 1 0 1 1  5/0/2 

f24 

Mean 1.32e-02 3.31e+00 2.07e-02 4.18e-02 5.33e-04 5.84e+02 9.62e-02 2.61e-05  

Std 6.75e-03 1.03e+00 8.90e-03 9.42e-03 2.96e-04 1.84e+02 3.79e-02 2.08e-05  

h 1 1 1 1 1 1 1  7/0/0 

f25 

Mean 0.000499 0.003529 0.002330 0.000374 0.002405 0.035233 0.0003074 0.0003079  

Std 4.29e-04 5.24e-03 1.16e-03 2.33e-04 6.09e-03 3.36e-02 1.83e-19 5.40e-07  

h 1 1 1 1 1 1 0  6/0/1 

f26 

Mean -4.6 -5.7 -7.0 -9.8 -9.6 -1.5 -10.1 -10.2  

Std 2.75e+00 3.51e+00 3.63e+00 1.28e+00 1.55e+00 8.62e-01 6.45e-15 3.61e-15  

h 1 1 1 1 1 1 1  7/0/0 

f27 

Mean -7.0 -6.2 -10.4 -10.4 -10.4 -1.3 -10.4 -10.4  

Std 3.69e+00 3.60e+00 7.38e-16 0 1.87e-04 7.76e-01 5.71e-16 0  

 1 1 0 0 1 1 1  5/0/2 

f28 

Mean -5.0 -5.5 -5.0 -10.3 -10.3 -1.38 -10.5 -10.5  

Std 3.15e+00 2.86e+00 1.40e+00 1.18e+00 1.14e+00 7.42e-01 3.83e-15 3.71e-10  

h 1 1 1 1 1 1 0  6/0/1 

f29 

Mean 5.00e-01 2.21e+00 5.33e-01 1.0e-181 7.38e-01 4.82e+01 3.26e-41 6.80e-06  

Std 6.30e-01 1.38e+00 7.30e-01 0 7.39e-01 1.85e-01 5.96e-41 3.12e-06  

h 1 1 1 -1 1 1 -1  5/2/0 

f30 

Mean 1.3e-161 4.66e-12 2.80e-51 0 0 4.85e-06 9.0e-199 0  

Std 0 1.14e-11 1.33e-50 0 0 2.06e-05 0 0  

h 1 1 1 0 0 1 0  4/0/3 

f31 

Mean 4.24e-03 1.03e+01 2.11e-09 3.56e-04 6.41e-05 1.62e+01 2.44e-02 0  

Std 1.16e-02 2.06e+00 2.99e-10 9.39e-04 1.62e-04 2.93e+00 9.23e-02 0  

 1 1 1 1 1 1 1  7/0/0 

f32 

Mean 0 1.37e-01 8.19e-03 0 0 4.76e-02 7.83e-03 0  

Std 0 1.12e-01 8.74e-03 0 0 3.56e-02 4.29e-02 0  

 0 1 1 0 0 1 1  4/0/3 

f33 

Mean -2.6e-16 1.6e-02 2.0e-03 -1.1e-15 1.2e-05 1.6e-03 4.3e-05 0  

Std 2.92e-16 2.03e-02 4.17e-03 8.52e-16 1.89e-05 1.19e-03 9.38e-05 0  

h 1 1 1 1 1 1 1  7/0/0 

f34 

Mean -3.19 -3.07 -3.00 -3.50 -3.41 -2.42 -2.75 -3.53  

Std 3.00e-01 2.60e-01 1.51e-01 1.81e-15 2.56e-01 2.41e-01 1.42e-01 2.33e-01  

h 1 1 1 1 1 1 1  7/0/0 

Total          197/5/26 

 

the adjusted   radii created through the opposition algorithm 

(black dots), Eq. (7), where the radius is shorter than that 

from the RW algorithm. Based on these two radii, the RO-

FOA produces a superior search solution to the variant FOAs 

that possess only a single technique to adjust the radius. 

Figures 9 (c-f) illustrate the adjusted radii through the course 

of any iteration produced by the variant FOAs. In  Figure 9 

(d-f), the radii illustrate continuously decreasing boundaries, 

each of which is generated by only one mechanism. 

 

6.5 The solution quality comparisons of the RO-FOA and the 

variant FOA algorithms 

 

The solution quality of each algorithm’s search (and 

success) in locating the global optimum in each of the 34 

benchmark   functions  is  presented  in  Table  1.  The  final  

objective values produced from each algorithm are 

represented by their mean value (Mean) and standard 

deviation (Std). The h values signify the results of the rank-

sum test in which an h value equal to 1 or -1, represented by 

the symbols (+) and (-), respectively, are given in the last 

column of Tables 2 and 3. The RO-FOA may therefore be 

viewed as being significantly better or worse, than the 

competing algorithms. The best results in each function are 

highlighted in bold. However, a comparison of two 

algorithms in which the h value is equal to zero (≈), would 

indicate that the algorithms are not statistically different.  

From Table 2, the RO-FOA outperformed each of the 

five algorithms, as evidenced by its lowest average final 

Means and Stds. For example, in function f1, the mean       

final   objective   values   attained   by   the   FFO   (1.51E+02),  
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Figure 10 Convergence curve graphs that compare FFO, LGMS, IFFO, MFOA and RO-FOA 

 

LGMS_FOA (5.77E+00), IFFO (2.45E-04), MFOA 

(4.48E-02), and MSFOA (1.70E+00) were out performed by 

the proposed RO-FOA, which obtained the best solution, 

with the optimum value of f1 = 0. The rank-sum test 

statistically confirmed this claim. 
 

6.6 The solution quality comparisons of the RO-FOA and 

meta-heuristic algorithms  
 

 In order to better evaluate the performance of the 

proposed  RO-FOA,  we  compared  the  final  fitness  values  

produced by seven widely used meta-heuristics algorithms, 

PSO, HS, GSA, DE, GWO, FPA, and MFPA (shown in 

Table 3). The 'winning' algorithms in any case are 

highlighted in bold. While the RO-FOA's final fitness value 

was not superior in all functions, the summary values of the 

rank-sum tests did find the RO-FOA superior in performance 

to all of the competing algorithms. The RO-FOA won 197 

out of 238 cases. The rank-sum test statistically supports our 

claim. 
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Figure 11 Convergence curve graphs that compare DE, GSA, PSO, HS, GWO, FPA, MFPA and RO-FOA. 

 

6.7 Examples of the convergence graphs of the RO-FOA 

results and the comparative algorithms. 

 

The advantage of incorporation of the opposition (OBL) 

and the random walk algorithms within the RO-FOA is that 

the new algorithm can quickly find the promising region of 

the search space, depending on the best solution index in any 

iteration. Unlike the variant FOAs, the boundary or radius in 

the search phase depends upon the convergence of the time 

interval when the radius must be changed, which is very time 

consuming. The RO-FOA  renders  a  faster  time in  locating  

the best solution, compared to all of the competing 

algorithms (Figures 10 and 11). Graph histories are displayed 

in two sections. The first section, shown in Figure 10, depicts 

a convergence graph that compares the RO-FOA and variant 

FOAs. The second section, shown in Figure 11, depicts a 

convergence graph that compares the RO-FOA with seven 

meta-heuristic algorithms. The graph is presented in a log-

log scale plot, where the X-axis is the number of iterations, 

and the Y-axis is the average fitness values obtained at that 

the corresponding iterations from the algorithms. 
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Table 4 Experimental results for the 5-bit and 8-bit auto-encoder datasets 

 

Algorithm 

5-bit auto-encoder 8-bit auto-encoder 

MSE (AVE ± STD) 
Classification 

Rate (%) 

Mean of 

Weights’ 

Magnitude 

MSE (AVE ± STD) 
Classification 

Rate (%) 

Mean of 

Weights’ 

Magnitude 

RO-FOA 5.80e-01 ± 1.06e-02 47.18 2.772 6.22e-01 ± 7.59e-02 24.11 2.204 

MFPA 7.02e-01 ± 1.46e-01 40.20 7.120 1.76e+00 ± 1.04e-01 21.70 7.465 

FPA 3.65e-01 ± 3.72e-02 25.41 1.149 2.56e-01 ± 2.27e-02 20.58 1.131 
MVO 6.44e-01 ± 1.39e-01 41.35 4.793 6.39e-01± 1.66e-01 20.15 4.784 

GWO 5.98e-01 ± 9.14e-02 40.72 3.002 6.29e-01 ± 1.09e-01 18.48 2.693 

PSO-GSA 7.68e-01 ± 1.49e-01 39.68 6.091 7.89e-01 ± 1.38e-01 17.96 6.432 
FFO 1.57e+00 ± 1.89e-01 28.43 4.773 1.61e+00 ± 1.51e-01 16.87 4.894 

LGMS 1.62e+00 ± 8.61e-02 24.06 4.813 1.68e+00 ± 1.22e-01 18.75 4.912 

IFFO 6.62e-01 ± 1.32e-01 39.62 13.112 8.08e-01 ± 140e-01 22.34 11.738 
MSFOA 1.84e+00 ± 2.65e-01 27.50 4.5611 2.05e+00 ± 1.79e-01 21.66 5.283 

 

 As can be seen in Figure 10, the RO-FOA, represented 

by a red line, has a faster convergence and is capable of 

finding a solution faster than the variant FOAs, in all of the 

example functions (f2, f4, f6, f8, f10 and f13).The RO-FOA 

further demonstrates the ability to converge faster and find a 

better solution than the seven well-known meta-heuristic 

algorithms, DE, GSA, PSO, HS, GWO, FPA, and MFPA, as 

can be seen in Figure 11. 

 We conclude from the above results, that the proposed 

RO-FOA outperforms all variant FOAs and competitive 

meta-heuristic algorithms in finding solutions to 

unconstrained function optimization problems. 

 

7. How effective is the RO-FOA in training auto-encoder 

multi-layer perceptrons? 

 

The multi-layer perceptron [57] is one of most successful 

tools for expert systems or intelligent systems applications. 

This section employs the proposed RO-FOA for training 

Multi-Layer Perceptron (MLP) for the first time. The 

structure of the MLPs has been fixed, while all the weights 

and biases are simultaneously determined by the training 

algorithms to reduce the MLP's overall error. The RO-FOA 

training methodology begins with collection, normalization 

and feeding of the data set. Each layer of the network is ready 

for training if the network is structured for a specific 

application, including the required neuron number settings. 

 

7.1 Settings 

 

The sigmoid function is selected as the activation 

function of a MLP. The MLP structure is defined by the 

number of layers and number of neurons in the layer. The 

greater number of hidden layers and nodes, the more 

complex the network. The number of incoming and outgoing 

neurons in the MLP network depends on the problem. When 

using RO-FOA to optimize the weight and bias in a network 

with one hidden layer, a vector encoding method is utilized. 

Therefore, the dimension of each fruit fly, D, is computed 

using Eq. (11): 

  

𝐷 =   (𝐼 × 𝐻) + (𝐻 × 𝐶) + 𝐻𝑏𝑖𝑎𝑠 + 𝐶𝑏𝑖𝑎𝑠                      (11) 

 

where 𝐼, 𝐻, and  𝐶 refer to the number of input, hidden, and 

output neurons of a MLP, respectively. Also, 𝐻𝑏𝑖𝑎𝑠 

and 𝐶𝑏𝑖𝑎𝑠  are the number of biases in the hidden and output 

layers, respectively.  

Two datasets including 5-bit auto-encoder and 8-bit 

auto-encoder datasets are utilized to benchmark the 

performance of the proposed RO-FOA. The first dataset 

contains 32 patterns of 5-bit binary input/output data, the 

second dataset contains 256 patterns of 8-bit binary 

input/output data. As it is the auto-encoder problem, the input 

pattern and the output pattern are the same. For verification, 

the results are compared with Multi-Verse Optimizer (MVO) 

[58], MFPA, FPA, GWO, PSO-GSA, FOA, LGMS, IFFO, 

and MSFOA algorithms. For these two problems, the number 

of hidden nodes (H) is set to three. Therefore, the dimension 

of a fruit fly for 5-bit auto-encoder is 38, and the dimension 

of a fruit fly for 5-bit auto-encoder is 50. 

For each algorithm, all individual solutions are evaluated 

for their qualities. This assessment is made by transmitting 

the weight vector, bias and input/output data to FNNs. The 

mean squared error (MSE) criterion is calculated based on 

the ability of the neural network. Using the training data set 

through continuous iteration, the fruit fly producing the 

lowest MSE is ultimately successful, which can be 

considered as the best weights and biases of neural networks. 

The MSE criterion is given in Eq. (12), where 𝑦̂ and 𝑦 are 

the actual and the estimated values based on proposed model, 

𝑃  is the number of samples in the training dataset and C is 

the number of output neurons. 

 

𝑀𝑆𝐸 =  1

𝑃
∑ ∑ (𝑦𝑖𝑘 − 𝑦̂𝑖𝑘)2𝐶

𝑘=1
𝑃
𝑖=1                                            (12) 

 

The auto-encoder is a kind of classification problem. 

Therefore, the performance of the trained MLP can be 

evaluated as the classification rate, the higher is better. The 

classification rate is computed using Eq. (13): 

 

classification rate = 
∑ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑(𝑖)==𝑎𝑐𝑡𝑢𝑎𝑙(𝑖)𝑃

𝑖

𝑃
 × 100      (13) 

 
where predicted is the predict value obtained from MLP and 

actual is the target value of each dataset. In the parameter 

settings, the maximum iteration number (maxgen) of each 

algorithm is fixed at 250, and the population size (sizepop) at 

200. The weights and biases boundary is [-10, 10]. The mean 

value (Mean) and standard deviations (Std) over 30 

independent runs are presented for each algorithm. 

 

7.2. Training results 

 

From Table 4, MLP trained by FPA produced the lowest 

MSE, and the MLP trained by RO-FOA was next best. Since, 

the MLP is a highly nonlinear models, its classification 

ability cannot be interpreted directly from MSE. The MLP 

trained by RO-FOA can produced the highest classification 

rates for both cases. That is because the magnitude of MLP’s 

weights and biases, Eq. (11), for the auto-encoder problem 

should be small, but not be too small. FPA produced MLP 

with smaller magnitudes of weights and biases than RO-
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FOA. We extended the experiment to cover eight standard 

datasets including five classification and three function-

approximation datasets as in [59]. The conclusions were not 

changed. RO-FOA can find more proper weights and biases 

for MLP than the competitive algorithms in all kinds of 

problems tested. These results demonstrate a high level of 

accuracy in classification and approximation of the proposed 

RO-FOA trainer. 

 

Mean of Weights’ Magnitude = 
∑ |𝑤𝑖|𝐷

𝑖

𝐷
                          (14) 

 

where w is the weight vector of each MLP, 𝐷  is the number 

of weights including the biases. 

 

8. Conclusions 
 

This paper presents random walk and opposition-based 

learning - fruit fly optimization algorithm, referred to as the 

RO-FOA algorithm. It borrows the knowledge from 

biological theory and mimics the dispersion patterns found 

in the organisms’ survival tactics. 

For the implementation, the RO-FOA algorithm uses 

both random walk and opposition-based learning algorithms. 

The two new ideas are put in the proposed OBL. They are 

(i) variation of shrinking probability versus iterations, and 

(ii) control of search transition from the exploration to the 

exploitation phase through the shrinking probability. 

 The main characteristics of RO-FOA in finding the 

optimal solution can be summarized as follows: 

 The RO-FOA uses the RW algorithm as the main 

procedure. 

 The RO-FOA uses the OBL algorithm to further 

enhance the main procedure. 

 The RO-FOA generates three population patterns, 

uniform distribution, random distribution, and 

clumped distribution. 

 Together with the three population distributions, the 

RO-FOA uses the individual exploration of RW and 

OBL to enhance the diversity of populations in a 

wide area while individually exploiting RW and 

OBL to enhance the search solution in a narrow area. 

 Two types of population and dynamic distribution 

behaviors can help prevent the algorithm from 

becoming trapped at local optima whereas only one 

population behavior variant in the FOA can lead to 

that algorithm becoming trapped easily in local 

optima. The RO-FOA demonstrated its performance 

in solving unconstrained function optimization 

problems, through an enhanced search method, 

which adds diversity to its searching ability to find 

the best position.  

 By a simple programming technique, for any value 

of sizepop, only three fruit flies are required. 

 We evaluated the RO-FOA's performance using 34 well-

known standard benchmark functions. The simulation results 

clearly illustrated that the RO-FOA is capable of increasing 

the diversity of each individual fruit fly in any iteration, 

without becoming trapped at a local optima. Additionally, 

the RO-FOA outperformed both the original and variant 

FOAs in terms of convergence speed and performance 

accuracy in finding an optimal solution. The proposed 

method demonstrated enhanced exploration, exploitation, 

and solution accuracy in all functions. 

From the training of two MLPs for 5-bit and 8-bit auto-

encoder problems, the results demonstrate a high level of 

accuracy in classification of the proposed RO-FOA trainer. 

 When we compare RO-FOA with the well-known DE, 

GSA, PSO, HS, GWO, FPA, and MFPA algorithms, the 

mechanisms for generating new offspring are totally 

different. RO-FOA generates the offspring from the best 

solution only, but its search ability is good because of the 

cooperation of the random walk, opposition-based learning 

algorithms, and search radius scheduling. Each of the seven 

competitive algorithms generates new offspring using the 

whole solution vectors to create a good diversification in 

population.   

 In future work, we intend to apply the proposed RO-FOA 

approach in the machine learning related problems, such as 

multi-layer perceptron training, support vector machine 

training, and clustering algorithms. Furthermore, we found 

that the idea of generating the new offspring from a single 

best vector is very interesting because the resulting algorithm 

is very compact. This idea came from the era before swarm 

intelligent algorithms. However, we have compared 

RO-FOA using several random search algorithms with the 

benchmark functions in this paper and found that the 

algorithms of that kind hardly solved them. From our 

experience, an algorithm that generates new offspring from 

a single solution requires at least two clever components (i) 

a proper search radius scheduling, and (ii) a proper random 

walk generator. These two things must be further 

investigated. 
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Descriptions of test problems 

 

1. Sphere model  
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3. Schwefel problem 1.2 
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4. Rosenbrock's valley 
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5. Rastrigin function 
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7. Sum of different power 
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8. Ackley's path function 
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9. Beale function 
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10. Colville function 
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11. Easom function 
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12. Hartman function 1 

 
 

.86278.3)852547.0,555649.0,114614.0()min(

10,exp)(

1212

3

1

2
4

1

12

















 



ff

xwithPxAxf i

j

ijjij

i

i
 

 where  2.332.11  

 





















35101.0

30103

35101.0

30103

A  

 





















88280.057430.003815.0

55470.087320.010910.0

74700.043870.046990.0

26730.011700.036890.0

P  

13. Hartman function 2 
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14. Six Hump Camel back function 
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15. Levy function 
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16. Matyas function 
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17. Perm function 
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18. Michalewicz function 
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19. Zakharov function 
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20. Branin function 
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21. Schwefel problem 2.22 
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22. Schwefel problem 2.21 
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23. Step function 
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24. Quartic function 
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25. Kowalik's function 
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26-28. Shekel's Family 
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29. Tripod function 
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30. De Jong function 4 (no noise) 
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31. Alpine function 
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32. Schaffer function 6 
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33. Pathological function 
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34. Inverted cosine wave function (Masters) 
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Appendix B 
 

The initial parameters of algorithms 
 

Algorithm Parameter Value 

RO-FOA Population size 

Maximum iteration number (maxgen) 

50 for function optimization, 200 for MLP 

1000 for function optimization, 250 for MLP 

FFO  

[60] 

Population size 

Maximum iteration number (maxgen) 

50 for function optimization, 200 for MLP 

1000 for function optimization, 250 for MLP 

LGMS  

[14] 

Population size 

Maximum iteration number (maxgen)  

The searching coefficient (n) 

The initial weight (w0 ) 

The weight coefficient (𝛼) 

50 for function optimization, 200 for MLP 

1000 for function optimization, 250 for MLP 

0.005 

1 

0.95 

IFFO  

[15] 

Population size 

Maximum iteration number (maxgen) 

The maximum radius (𝛾𝑚𝑎𝑥) 

The minimum radius (γmin) 

50 for function optimization, 200 for MLP 

1000 for function optimization, 250 for MLP 

𝑈𝐵 − 𝐿𝐵/2 

10−5 

MFOA  

[16] 

Population size 

Maximum iteration number (maxgen) 

The sub-swarms number (M) 

The fine-tuning of solution vectors (𝜃) 

50 for function optimization, 200 for MLP 

1000 for function optimization, 250 for MLP 

5 

2  

MSFOA  

[39] 

Population size 

Maximum iteration number (maxgen) 

The search coefficient (n) 

The initial weight (w0 ) 

The weight coefficient (𝛼) 

The scale number (M) 

50 for function optimization, 200 for MLP 

1000 for function optimization, 250 for MLP 

0.005 

1 

0.95 

5 

PSO  

[49] 

Population size 

Maximum iteration number (maxgen) 

The particle’s confidence (c1, c2) 

The inertia weight (wmax , wmin) 

The velocity parameter (vmax) 

50 for function optimization, 200 for MLP 

1000 for function optimization, 250 for MLP 

2, 1.5 

1.3, 0.3 

limited to 20% of the domain 

DE  

[61] 

Population size 

Maximum iteration number (maxgen) 

The scaling factor (F) 

The crossover probability constant (CR) 

50 for function optimization, 200 for MLP 

1000 for function optimization, 250 for MLP 

0.5 

0.9 

HS  

[51] 

Population size 

Maximum iteration number (maxgen) 

The harmony memory size (HMS)  

The harmony memory consideration rate (HMCR) 

The pitch adjusting rate (PAR) 

50 for function optimization, 200 for MLP 

1000 for function optimization, 250 for MLP 

sizepop 

0.90 

0.35 

GSA  

[52] 

Population size 

Maximum iteration number (maxgen) 

The initial gravitational constant (G0) 

The constant descending coefficient (𝛼) 

The constant (β) 

50 for function optimization, 200 for MLP 

1000 for function optimization, 250 for MLP 

1 

1 

10 

GWO  

[53] 

Population size 

Maximum iteration number (maxgen) 

50 for function optimization, 200 for MLP 

1000 for function optimization, 250 for MLP 

FPA  

[54] 

Population size 

Maximum iteration number (maxgen) 

The switch probability (P) 

The step size scaling factor (γ) 

The Levy flight (λ) 

50 for function optimization, 200 for MLP 

1000 for function optimization, 250 for MLP 

0.8 

0.01 

1.5 

MFPA  

[55] 

Population size 

Maximum iteration number (maxgen) 

The switch probability (P) 

The step size scaling factor (γ1, γ2) 

The Levy flight (λ) 

The cloning array 

50 for function optimization, 200 for MLP 

1000 for function optimization, 250 for MLP 

0.8 

1, 3 

1.5 

[9, 8, 7, 6, 5, 4, 3, 2, 1, 1, 1, 1, 1, 1] 

 


