

*Corresponding author. Tel.: +6681 977 2516

Email address: wirotta@gmail.com

doi: 10.14456/easr.2020.1

Engineering and Applied Science Research January – March 2020;47(1):1-26 Research Article

 Engineering and Applied Science Research

 https://www.tci-thaijo.org/index.php/easr/index

 Published by the Faculty of Engineering, Khon Kaen University, Thailand

RO-FOA: An ecosystem-inspired compact fruit fly optimization algorithm for

Box-constrained optimization

Wirote Apinantanakon*1), Khamron Sunat1) and Joel Alan Kinmond2)

1)Department of Computer Science, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
2)27 Patrick Street, Trenton, Ontario k8v 4B, Canada

Received 27 May 2019

Revised 6 August 2019

Accepted 9 August 2019

Abstract

The fruit fly optimization algorithm (FOA) was a recently proposed. FOA has a number of advantages over other nature-

inspired algorithms such as its simple structure and ease of implementation. However, the FOA’s search procedures present a

problem. FOA has a low success rate search and a slow convergence when it has to deal with complex problems. This is

because FOA generates a new position around its swarm location using a random uniform distribution. To eliminate this

drawback, our paper presents an improved fruit fly algorithm called RO-FOA. The RO-FOA technique takes knowledge of a

mutualistic relationship common in ecosystems and biological theory. Our strategy blends two popular algorithms, i.e., the

random walk (RW) and the opposition-based learning (OBL) algorithms, to establish a two-characteristic swarm for searching

procedures. RO-FOA’s structure is very compact as the implementation uses only three fruit flies. Furthermore, the advantages

of including a two-characteristic population and dynamic distribution adaptation in the evolving process can produce an

algorithm with the necessary search efficiency to find an optimal solution. A comprehensive set of 34 benchmark functions,

containing a wide range of dimensions were used to validate the capability of the proposed algorithm. The results show that

RO-FOA outperformed the existing FOA, as well as seven comparatively well-known meta-heuristic algorithms. RO-FOA

can efficiently train multi-layer perceptrons for 5-bit and 8-bit auto-encoder problems. These results demonstrate that the RO-

FOA can enhance the diversity of population distributions, solution quality and the convergence rate of the algorithm.

Keywords: Optimization algorithm, Nature-inspired algorithm, Fruit fly optimization algorithm, Meta-heuristics, Ecosystem,

Mutualistic relationship

1. Introduction

In order to solve complex optimization problems,

researchers have started adapting knowledge from natural

phenomena as tools for the development of several new

algorithms. Concepts for the creation of new computational

intelligence methods can be derived from natural

mechanisms and principles. The main concepts of the aptly

named 'nature-inspired algorithms' have been observed

within successful biological systems. Accordingly, most

nature-inspired algorithms are biologically inspired, or bio-

inspired, and mimic specific behavior in nature. Examples of

such popular nature-inspired algorithms include the particle

swarm optimization algorithm (PSO) [1], which was inspired

by the social behavior of flocking birds, or schooling fish,

the ant colony optimization algorithm (ACO) [2], which

mimics an ant colony's behavior in their search for food, the

artificial bee colony algorithm (ABC) [3], motivated by the

intelligent behavior of a honey bee swarm, the cuckoo search

algorithm (CS) [4], inspired by the parasitic bio-interactions

of a cuckoo species that lays their eggs in the nests of other

host birds, and the bat-inspired algorithm (BA) [5], which

was inspired by the echolocation behavior of bats, to name

but a few. These widely used algorithms have proven highly

efficient in solving problems in many scientific fields, such

as engineering [6-7], task scheduling [8], mechanical design

problems [9], data mining applications [10] and image

processing [11]. Each nature-inspired algorithm has different

capabilities when it comes to finding solutions, which

depend on the individual abilities of living things in nature.

Developing a successful and modern nature-inspired

algorithm is a challenging task, even today, as there is no one

particular nature-inspired algorithm capable of solving every

scientific problem. Hence, continual development of new

algorithms is required.

One of these new algorithms is the FOA, which was

proposed by Pan [12]. The FOA, a swarm intelligence

method-based stochastic optimization technique, mimics the

foraging behavior of fruit flies. The FOA is user-friendly and

because of its simplicity and shortness. FOA can be easily

understood by most researchers in this field. This also means

that it can more easily be implemented into program code,

compared with other well-known algorithms such as the

differential evolution (DE), genetic algorithms (GA) and

2 Engineering and Applied Science Research January – March 2020;47(1)

particle swarm optimization (PSO). The FOA possesses the

same processing abilities for finding solution optimizations

as the other algorithms, yet it involves fewer parameter

settings and its processes are much shorter than other swarm

algorithms [12]. The FOA has achieved success in several

applications including research into optimization problems

[13-16], neural network parameter optimization [17-18],

swarm techniques for mini-autonomous surface vehicles

(ASVs) [19], identification of dynamic protein complexes

[20], support vector regression for seasonal electricity

consumption forecasting [21], a short-term power load

forecasting model based on the generalized regression neural

network with a decreasing step fruit fly optimization

algorithm [22], and efficient truss optimization using the

contrast-based fruit fly optimization algorithm [23].

However, updating the position of a swarm of fruit flies

through iterative generations remains the most challenging

obstacle in FOA search. To seek an optimal solution, the

FOA determines the scope of the searching radius through a

random uniform distribution to update a new position. The

radius values can be in the range of [0, 1] and the range is

fixed during iterations. The drawback of this approach is that

the FOA has to deal with variations in optimization

problems. For example, if the algorithm needs to find the

optimal solution in a search space between -1000 and 1000,

the FOA generates the location of a swarm of fruit flies (in

the range of [0, 1]), which is always far from an optimal

solution in the early iterations. The search radius is too small

compared with the distance from the current swarm locations

to a promising region. In contrast, in the final iterations, a

very small radius is needed to adjust a search vector to

approach an optimal solution, but the search radius is very

large. This disadvantage, referred to as the disadvantage

ability of exploration and exploitation, has encouraged many

research efforts into variant techniques to improve the FOA

[14-16].

Several researchers continue to propose various

improved FOAs, such as the improved fruit fly optimization

algorithm for solving optimization problems (LGMS-FOA)

[24], the improved fruit fly optimization algorithm for

continuous function optimization problems (IFFO) [15], and

the novel multi-swarm fruit fly optimization algorithm

(MFOA) [16]. These FOA-based algorithms focus on the

'radius' through gradual and continuous updating (through

special parameters) in the search process. However, given

the above-mentioned disadvantage of the improved FOAs, as

search time increases within each algorithm, the radius value

of the population often converges slowly until it is unable to

change at all. When the algorithms are dealing with complex

optimization problems, they become trapped at local optima,

and are incapable of finding a final optimum solution.

In this paper, we imitated the natural phenomena of the

relationships of organisms within an ecosystem, to improve

the algorithm's searching efficiency. The proposed fruit fly

optimization algorithm is a hybrid of a random walk and

opposition-based learning algorithms. It is called fruit fly

optimization algorithm (RO-FOA), mimics the relationship

between organisms and their environment, which affects the

survival of all organisms. The random walk is a fundamental

random number generator used in several optimization

algorithms [25-28]. The first attempt to implement the OBL

concept in optimization was proposed by Rahnamayan et al.

[29-30]. As the case study, OBL is used in the DE algorithm

to improve its performance and it is called the opposition DE

(ODE). In [30], a comprehensive trial was conducted to

confirm ODE performance using a standard set of functions

consisting of 58 global optimization problems, varying the

impacts of dimension, spot differences, population size,

different strategies of mutation, and the jump rate. The

experimental results were checked, analyzed successfully

and confirmed that ODE achieved better results than DE.

Other than that, there are several recent literature reports that

proposed opposition-based learning algorithms [31-34]. We

put forth two new ideas regarding the OBL that are a

variation of shrinking probability versus the number of

iterations and the control of search transition from the

exploration to the exploitation phase through this probability.

The premise of the proposed method is based on the

relationship of organisms within the same species, or, as

named in various ecological studies, the

Intraspecific Relationship [35]. The RO-FOA achieves

better dispersion swarm locations than using the strategy of

a random walk algorithm or opposition-based learning alone.

Additionally, the main advantage of the RO-FOA algorithm

is that it generates a more diversified population distribution

than the original FOA and the existing 'improved' fruit fly

optimization algorithms we tested. Furthermore, we found

that the space complexity is very low as the implementation

requires only three vectors.

We have organized the remainder of this paper as

follows. The FOA is presented in Section 2. The concept of

the relationship of an organism within an ecosystem, and the

RO-FOA strategy are described in Section 3. Then, the

proposed random walk and opposition-based learning - fruit

fly optimization algorithm (RO-FOA) are explained in

Section 4. Section 5 explains the evaluation of algorithms

and settings. The results and discussion are summarized in

Section 6. Section 7 shows the ability of RO-FOA in multi-

layer perceptron training. Last, Section 8 concludes our

proposed approach with suggestions for future research.

2. The fruit fly optimization algorithm (FOA)

 The drosophila optimized algorithm or fruit fly

optimization algorithm (FOA), developed in 2012 by Pan

(also can called FFO [36]), determines global optimization

based on the foraging behavior of fruit flies. Compared to

other species, the fruit fly possesses a keener sense of smell

and sight in search of their food. The drosophila olfactory

organ can detect a food source as far as 40 kilometers away,

which triggers a flight reaction toward the target location.

Figure 1 illustrates the pattern of the fruit flies’ search for

food.

 As with all swarm optimization algorithms, the first

phase of the fruit flies' quest for food involves a random

search, with no specific position or direction. In the second

phase, the fruit fly with the best sense of smell, also referred

to as best fitness, within the group is determined. In the last

phase, the fruit fly with the best fitness updates a new

position for each individual fruit fly. The steps of FOA are

summarized in Algorithm 1.

2.1 Disadvantages of the FOA

The problems or disadvantages, which limit the

capability of the FOA process in solving the various

optimizations, are briefly described as follows:

Engineering and Applied Science Research January – March 2020;47(1) 3

Figure 1 The directional process of fruit fly’s search for food (Pan, 2012, p.70).

Algorithm 1: The FOA algorithm

Step 1. Initialization of FOA parameters, consisting of a random location (𝑋_𝑎𝑥𝑖𝑠, 𝑌_𝑎𝑥𝑖𝑠), population size (sizepop), and

the maximum iteration (maxgen).

Step 2. Give the random position and fly direction of an individual fruit fly in their search for food.

 𝑋𝑖 = 𝑋_𝑎𝑥𝑖𝑠 + 𝑅𝑎𝑛𝑑𝑜𝑚()

 𝑌𝑖 = 𝑌_𝑎𝑥𝑖𝑠 + 𝑅𝑎𝑛𝑑𝑜𝑚()

Step 3. Calculate the distance (Dist) to the food’s origin, as the exact position of the food’s location is not known at this

stage.

 𝐷𝑖𝑠𝑡𝑖 = √𝑥𝑖
2 + 𝑦𝑖

2.

Step 4. The smell concentration judgment value (Si) is calculated.

 𝑆𝑖 =
1

𝐷𝑖𝑠𝑡𝑖
.

Step 5. The smell concentration judgment of the individual fruit fly, obtained from Step 4, is calculated by substituting Si

into the smell concentration judgment function (also called fitness function), to find the optimal smell.

Smelli = objective function (Si).

Step 6. Determine the fruit fly with the optimal smell concentration judgment among the fruit fly group.

 [bestSmell, bestIndex] = optimal (Smell).

Step 7. Keep the best (x, y) position and the minimal concentration value; and use this position as the base point of flying

towards the next location (in step 2).

 Smellbest = bestSmell,

 X_axis = X (bestIndex),

 Y_axis = Y (bestIndex).

Step 8. Enter into iterative optimization by repeating steps 2-7, and determine whether the smell concentration is better than

the previous iterative smell concentration. If yes, go to step 7. The process will stop when the smell concentration no longer

changes, or when the iterative number reaches the maximum iteration number.

 (1) FOA cannot solve high-dimensional function

optimization problems when the set of decision variables (𝑋𝑖

and 𝑌𝑖) do not exist within Step 2.

 (2) The smell value (Si), in according to Step 4, cannot

appropriately evaluate the “objective function (Si)” when

there are negative numbers in the domain because 𝑆𝑖 =
1/𝐷𝑖𝑠𝑡𝑖 > 0 so that the function cannot determine Si as

negative.

 (3) The fixed search radius, with random uniform

distribution, Random (), within the processes, limited the

convergence of FOA in the processes of exploration and

exploitation. This point is the important disadvantage of

FOA which has inspired several improved versions of FOA.

2.2 The improved version of FOA for solving

high-dimensional function optimization

Several improved FOAs has been proposed to overcome

the drawbacks of FOA [16, 36-37]. These improved FOAs

try to improve the search efficiency by proposing a dynamic

search radius. A brief summary of the improved FOAs are as

follows:

4 Engineering and Applied Science Research January – March 2020;47(1)

Figure 2 Variation of search radius versus iteration of LGMS-FOA, IFFO, and MFOA.

(1) The LGMS-FOA [24] presented some parameters to

tune the radius by adding the parameter, w, when changing

the radius. The LGMS-FOA method is: x = X_axis + w ×

rand (domain of definition), w = wo × αt, where α = 0.95, t =

current iteration, 𝑥 ∈ 𝑋 ,x = (x1, x2, …,xn), 𝑥 ∈ ℝ𝑛 and

X_axis is the best position obtained during iterations.

(2) The IFFO [36] introduced a new control parameter to

adaptively adjust the search radius. The IFFO presented the

changing search radius dynamically during iterations such

that 𝛌 = 𝛌max × exp (log (𝛌min / 𝛌max) × t / tmax), where 𝛌 is the

radius variation in each iteration, 𝛌max = (UB-LB) / 2, UB is

the upper bound and LB is the lower bound, 𝛌min = 10-5, t is

the current iteration and tmax is the maximum iteration

number.

(3) The MFOA [38] presented a multi-swarm fruit fly

that employed sub-swarms in the search space with the

behavior of simultaneously exploring the optimal solution.

Moreover, MFOA provided a shrunken exploration radius as

in equation R (t) = (UB - LB / 2) × (Gmax – G / Gmax), where

t is the current iteration, UB is the upper bound, LB is the

lower bound, G is the number of sub-swarms, Gmax is the

maximum number of sub-swarms and  = 2~6.

 (4) The MSFOA [39] presented a strategy to theoretically

analyze the convergence of the FOA and showed that its

convergence depends on the initial positions of the swarms.

MSFOA used a Gaussian mutation operator rather than the

uniform random number (as can be seen in the details of

[39]). For a flying fruit fly, MSFOA used a linear generation

mechanism, through the equation of 𝑥𝑖,𝑗
𝑡 = 𝑋𝑗

𝑡 + 𝜔 ×

𝑟𝑎𝑛𝑑(𝑅𝑚𝑖𝑛, 𝑅𝑚𝑎𝑥) , where 𝜔 = 𝜔0 × 𝛼𝑡 , 𝜔0 = 1, 𝛼 =
0.95, 𝑡 is current iteration, 𝜔 is the search coefficient, 𝛼 is

the initial weight and 𝑅𝑚𝑖𝑛, 𝑅𝑚𝑎𝑥 are obtained from the

domain boundary of the benchmarks function.

The graph in Figure 2 is generated from three improved

FOAs approaches: LGMS-FOA, IFFO and MFOA.

Parameters were set at the max-iteration number = 1000,

max-radius = 1, min-radius = 0, X-axis is the number of

iterations, and Y-axis is the search radius values. They

contain an additional parameter dependent upon the

algorithms. The search radius graph of MSFOA is similar to

that of LGMS-FOA. The graph demonstrates that the radius

will gradually decrease, depending on the iteration number.

2.3 Disadvantages of the variant FOAs

 There are, however, some disadvantages in the searching

procedures of variant FOAs such as LGMS-FOA, IFFO,

MFOA and MSFOA. They are summarized as follows:

(1) The LGMS-FOA [24], IFFO [15], MFOA [38] and

MSFOA [39] lacked the convergence speed to reach the

optimal solution. The emphasis of these proposed algorithms

was on the effect of gradually changing and adapting the

radius range along with the iteration number. For example,

the graphs in Figure 2 indicate that the search scope at the

beginning was very large, and would gradually be reduced

when the iterations increased. If the final solution is the

minimum value, these algorithms suffered from slow

convergence in their attempt to find a final solution.

(2) The LGMS-FOA, IFFO, MFOA and MSFOA

algorithms contain only one type of population that is

generated dependent on the technique of algorithms. They

have no other method or any special parameter for enhancing

the search process. As a result, it is possible for algorithms

with only one type of population to become easily trapped at

a local optimum. Owing to this disadvantage, several novel

optimization algorithms have been developed with more than

one population characteristic. This alteration has increased

these newer algorithm’s abilities in finding global solutions,

such as in [5, 40-42].

This paper presents the RO-FOA, which consists of two

types of populations for enhancing the diversity of the

population and convergence speed. The proposed method

was inspired by the characteristics of organisms in a natural

ecosystem. The details of the supporting ideas for the RO-

FOA creation are in the next section.

3. The relationship of an organism within an ecosystem

and the RO-FOA strategy

According to the ecosystem concept [35], organisms

within an ecosystem are often visible in different kinds of

dispersions, which can vary from area to area. For example,

consumers will have dispersion relationships with organisms

that are food. There are two types of relationships for

organisms. The relationship between organisms of the same

species, which is referred to as an intraspecific relationship

and the relationship between organisms of different species,

which is referred to as an interspecific relationship.

Engineering and Applied Science Research January – March 2020;47(1) 5

(a) Uniform distribution (b) Random distribution (c) Clumped distribution

Figure 3 Dispersion simulations of same-species organisms in nature.

3.1 The intraspecific relationship

The intraspecific relationships, described in basic

ecology [35] are aggregations of same-species organisms,

which leads to individual competition, communication, and

social interaction. These types of aggregation cause

dispersion of the organisms, which in turn creates three types

of population distributions.

(1) Uniform distributions are typically found in an

environment where resources are limited. The individual

organisms compete for the few available resources (spaces).

The organism occupies the resource by maximizing the

distance between its neighbors, as shown in Figure 3(a).

(2) Random distributions occurs in nature when the

environment is unvaried, and the members do not group

together. The common distribution of a random distribution

differs from uniform distribution, in that the distance

between its neighbors is unpredictable, as shown in

Figure 3(b).

 (3) Clumped distributions, found in natural settings,

occur when the environment consists of scattered resources.

In order to occupy the resource, the distance between

neighbors will be minimized, as shown in Figure 3(c).

The distribution in each population of same-species

organisms depends on the limitation of resources in each

environment. In order for the organisms to survive within the

environment, they must possess the ability to adjust

themselves fit into the environment and its available

resources in nature.

3.2 The interspecific relationship

The interspecific relationship is divided into nine

categories, neutralism, protocooperation, mutualism,

commensalisms, predation, parasitism, parasitoid,

amensalism and competition. Different species relate to each

other by transferring or passing on their energy or matter.

This kind of relationship can happen temporarily or happen

between two species that always depend on one another. The

proposed RO-FOA provides the strategy of mimicking the

behaviors of “mutualism”, which can be described as

follows.

Mutualism – Two species that live together and take

benefits from each other. If, however, they are separated,

both can still survive. Despite this ability to survive whilst

separated, living together would provide more benefits than

living alone. An example of this is lichen, which

demonstrates the relationship between fungi and

chlorophytes. Fungi receive nutrition from chlorophytes,

which can generate its own food, while chlorophytes receive

moistness from the fungi.

3.3 Concept of RO-FOA

Based on a literature review that studied several

optimization algorithms and the disadvantages of the variant

FOAs, we found that the difficulty in finding the final

solution in complex optimization problems corresponds to

the variation and complexity of the domain search space in

each problem. The search spaces in optimization problems

can be compared to those of the environmental variables

within an ecosystem.

For an optimization process, if a population lacks

diversity, an optimal solution will not be attained, just as

organisms with only one food search pattern, will find it

difficult to locate resources (food) necessary for their

survival. Therefore, the organisms within an ecosystem

survive by co-existing in order to share information, and

have diverse populations with more than one pattern. The

FOA lacks diversity of exploration. In order to update a new

position (in seeking the optimal solution), the FOA

determines the scope of the search radius using a random

uniform distribution, without change or interruption of

information from any special parameters. The variant FOAs

(Section 2.3) attempt to rectify this problem through the

application of dynamic distributions to improve their search

abilities. However, we found that the methods used in the

existing improved FOAs remain unsuitable for various

optimization problems (see the results in Section 6.6, Table

2). To overcome such disadvantages we propose the RO-

FOA, which consists of two types of fruit fly swarms and

three distribution patterns of population. The details of which

are described as follows:
 (1) The first type is the fruit fly swarms generated by the

random walk algorithm [42] with a dynamic search range.

 (2) The second type is the fruit fly swarms generated by

the opposition-based learning algorithm (OBL) [43] to find

the opposite information from (1).

 (3) Merging of the three distribution patterns (shown in

Figure 3) produces a single-procedure RO-FOA algorithm.

This process is achieved through the exploration and

exploitation activities of (1) and (2) to enhance the search

capability of the algorithm.

 The algorithmic procedures used in finding the optimal

solution are described in the following sub-sections.

3.4. The fruit fly swarms generated by the random walk

algorithm

The random walk (RW) algorithm moves positions

stochastically when searching for optimal solutions. The

main benefits of the RW algorithm are: 1) movement

within the search space is flexible, and, therefore, covers

6 Engineering and Applied Science Research January – March 2020;47(1)

Figure 4 A demonstration of points generated from the random walk algorithm of three starting points

many diverse positions, and 2) the regional radius in the

search area is not fixed. The characteristics of the population

of RW species movements are described as:

x(t) = [0, cumsum(2r(t_1) − 1), cumsum(2r(t_2) − 1),
… , 𝑐𝑢𝑚𝑠𝑢𝑚(2𝑟(𝑡_𝑛) − 1)]
 (1)

𝑟(𝑡) = {
1, 𝑖𝑓 𝑟𝑎𝑛𝑑 > 0.5
0, 𝑖𝑓 𝑟𝑎𝑛𝑑 ≤ 0.5

 ,

where t denotes the iteration that came to a halt, r(t) is a

stochastic function, n is the number of max-iterations,

cumsum is the cumulative sum, and rand is a random uniform

point between [0,1]. As in the other swarm algorithms, the

RW populations must continually update their positions, and

the process is performed through the following equation:

Randomwalk: Xi
t =

(Xi
t−ai)×(bi−ci

t)

di
t−ai

+ ci, (2)

where 𝑎𝑖 is the minimum boundary, bi is the maximum

boundary, 𝑐𝑖 is the minimum of the i-th variable at t-th

iteration and 𝑑𝑖
𝑡 indicates the maximum of the i-th variable

at the t-th iteration. As shown in Figure 4, the position of

𝑋 fluctuates dramatically within the search space. The three

movement lines, red, blue, and black, are simulated from the

first three columns of Eq. (2). Here, the X-axis represents the

iteration numbers, and the Y-axis represents the search

radius (with a boundary position between -10 and 10,

iterations = 1000).

The transition from the exploration phase to the

exploitation phase is controlled through the radius of the

walk. The radii of the swarm’s random walks are decreased

adaptively with the following equations:

𝑐𝑡 =
𝑐𝑡

𝐼
, (3)

𝑑𝑡 =
𝑑𝑡

𝐼
, (4)

where 𝑐𝑡 is the minimum of all variables at t-th iteration and

𝑑𝑡 is the the maximum of all variables at t-th iteration. I is a

special constant parameter that decreased the radius of the

swarm’s random walks with an interval ratio. For the RO-

FOA processes, 𝐼 = 10𝛼 × 𝑡/𝑇 , 𝛼 is a constant that is

defined based on the current iteration (𝛼 = 2 when 𝑡 > 0.1 ×
𝑇, 𝛼 = 3 when 𝑡 > 0.5 × 𝑇, 𝛼 = 4 when 𝑡 > 0.75 × 𝑇, 𝛼 = 5

when 𝑡 > 0.9 × 𝑇 , and 𝛼 = 6 when 𝑡 > 0.95 × 𝑇) where

𝑡 𝑎𝑛𝑑 𝑇 are the current iteration and the maximum number

of iterations, respectively. A demonstration of Eq. (3) and (4)

are presented in Figure 5.

Consequently, the behavior of the RW’s populations was

similar to that of the group of fruit flies in their search for

food within the search space. The RW algorithm generates a

diverse fruit fly position within the population through the

imagination of 𝑅𝑊_𝑋, where 𝑋𝑖
𝑡 is a matrix of populations

as expressed in Eq. (5).

RW_X = Randomwalk (Xi
t) , where 𝑅𝑊_𝑋 is the RW of

species swarms.

 (5)

3.5. The fruit fly swarms generated by opposition-based

learning

The basic premise of the OBL algorithm was inspired by

the fundamental tasks in machine intelligence [43], learning,

optimization, and search. Search and optimization

techniques start with an initial solution (population), and

obtain successive results necessary to achieve an optimal

solution. The intrinsic nature of each algorithm is inspired by

a specific biological behavior. However, for the current

solution x, the OBL premise looks for a new solution in a

given problem that is generally estimated as x . This

estimation can be based empirically upon the opposed

experience, or a random guess.

The concept of the opposite point is defined as:

Definition 1. Let 𝑥 ∈ ℝbe a real number defined on a specific

interval: 𝑥 ∈ [𝑎, 𝑏]. The opposite number 𝑥̅ is defined in the

following equation:

𝑥̅ = 𝑎 + 𝑏 − 𝑥. (6)

while, the opposite number in a multi-dimensional space

is defined as:

Engineering and Applied Science Research January – March 2020;47(1) 7

Figure 5 A demonstration of the radius of a swarm’s random walks that are adaptively decreased. The X-axis is the number

of iterations, set to 1 – 1000 and the Y-axis is the search radius, set to 0 through 6.

Definition 2. Let 𝑃 = (𝑥1, 𝑥2, … , 𝑥𝐷) be a point in

D-dimensional coordinate system, with 𝑥1, 𝑥2, … , 𝑥𝐷 ∈ ℝ

and 𝑥𝑖 ∈ [𝑎𝑖 , 𝑏𝑖]. The opposite point 𝑥̅𝑖 is defined entirely by

its coordinates as follows:

𝑥̅𝑖𝑗 = 𝑎𝑗 + 𝑏𝑗 − 𝑥𝑖𝑗; j = 1, 2, ..., D (7)

According to a review of opposition-based learning [44],

there are many swarm intelligence forms based on stochastic

optimization methods that are capable of achieving

satisfactory performance when their algorithm is embedded

with the opposition point generating scheme. In this paper, a

new concept, OBL, is proposed for an OP species generation.

The OP species is capable of finding a solution in a local

region. Additionally, this concept further enhances the

search with the faster convergence speeds required in finding

the global optimal, in various optimization problems.

In order to achieve the strategy of RO-FOA, we applied

OBL to generate the OP species population through each

equation as the following procedure.

Let 𝑈𝑏 be an upper bound to determine the max of the

best position 𝑋_𝑎𝑥𝑖𝑠,

𝐿𝑏 be a lower bound to determine the min of the best

position 𝑋_𝑎𝑥𝑖𝑠,

𝑢𝑏 be an upper bound of the domain problem,

𝑙𝑏 be a lower bound of the domain problem,

Sp (t) = t/T, a.k.a. a shrinking probability, where t is a

point in an iteration, and T is the maximum iteration.

𝑎𝑏𝑜𝑢𝑛𝑑 = {
𝑈𝑏, 𝑆𝑝(𝑡) < 𝑟𝑎𝑛𝑑

𝑢𝑏, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 , (8)

𝑏𝑏𝑜𝑢𝑛𝑑 = {
 𝐿𝑏, 𝑆𝑝(𝑡) < 𝑟𝑎𝑛𝑑
𝑙𝑏, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 , (9)

𝑂𝑃_𝑋𝑖𝑗 = (𝑎𝑏𝑜𝑢𝑛𝑑 + 𝑏𝑏𝑜𝑢𝑛𝑑) − 𝑋_𝑎𝑥𝑖𝑠𝑖𝑗 × 𝑟𝑎𝑛𝑑; i = 1, 2,

..., sizepop, j= 1, 2, ..., D,

 (10)

where 𝑂𝑃_𝑋𝑖𝑗 is an OP species population generated from

OBL, 𝑎𝑏𝑜𝑢𝑛𝑑, 𝑏𝑏𝑜𝑢𝑛𝑑 are the upper bound and lower bound

of the algorithm. 𝑋_𝑎𝑥𝑖𝑠 is the best position that can be

obtained from the initial process of the algorithm, 𝑟𝑎𝑛𝑑() is

a random number between [0,1). sizepop is the number of

populations and D is the number of variables (dimension).

 The new ideas regarding the proposed OBL are the

variation of shrinking probability Sp (t) versus iterations that

is illustrated in Figure 6 and the transition from the

exploration to the exploitation phase that is controlled

through this probability. The upper bound and lower bound

are reduced through Sp (t). From Eq. (8) and (9), the upper

and the lower bounds correspond to 𝑎𝑏𝑜𝑢𝑛𝑑 and 𝑏𝑏𝑜𝑢𝑛𝑑. 𝑢𝑏

and 𝑙𝑏 are the max and min values found in the best fruit fly

(𝑋_𝑎𝑥𝑖𝑠), respectively. 𝑈𝑏 and 𝐿𝑏 are defined from the

domain of the problem. Alternating between the two

boundaries causes a dynamic change of the radius range.

Consequently, the exploration ability could be improved.

4. The proposed random walk and opposition-based

learning - fruit fly optimization algorithm

 In order to overcome the disadvantages of the existing

FOAs, this paper presents the improved RO-FOA, consisting

of both the RW and OBL algorithms. The OBL is used to

enhance the process of the FOA to achieve a global optimum

solution through an accelerated convergence. While the

addition of the RW method employs functions designed to

enhance the ability of the FOA to create greater diversity

than the standard or variant FOAs. The steps in Algorithm 2

outline the RO-FOA procedure and the generation of new

parameters.

Regarding the distribution patterns, illustrated in

Figure 3(a-c), the RO-FOA divides the entire population into

two groups, similar to the concept of a mutualistic

relationship, the populations generated from the OBL, and

those generated from the RW. For example, when the initial

parameter of the population size (sizepop) = 50, then each

group size = 25 populations. These two groups, OBL and

RW, differ from the multi-swarm technique [16] in that the

multi-swarm method creates a random uniform distribution,

and the number of groups (or sub-swarms) depends on the

user definitions, whereas the RO-FOA has only one group

and two distribution patterns. Additionally, the

computational complexity of the problem does not increase,

compared to that of the existing FOAs (as discussed in

Section 6.1).

8 Engineering and Applied Science Research January – March 2020;47(1)

Figure 6 Variation of Sp(t) versus iterations.

Algorithm 2: The RO-FOA algorithm

//Initial procedure

Step 1. Determine the initial parameters, population size (sizepop), the maximum iteration (maxgen), number of

variables (D), upper bound (Ub) and lower bound (Lb)

Step 2. Initialize fruit fly swarm positions randomly

 𝑋𝑖 = 𝑙𝑏 + (𝑢𝑏 − 𝑙𝑏) × 𝑟𝑎𝑛𝑑, i = 1, 2, …, sizepop

Step 3. Find the best smell concentration (fitness value) by inputting each individual fruit fly’s

position into the objective function

 Smelli = Objective Function (Xi), [bestSmell, bestIndex] = min (Smell),

 Smellbest = bestSmell, X_axis = X(bestIndex)

//Main procedure

Step 4. Update ub and lb using information of X_axis

Step 5. 𝑂𝑃_𝑋𝑖𝑗 = (𝑎𝑏𝑜𝑢𝑛𝑑 + 𝑏𝑏𝑜𝑢𝑛𝑑) − 𝑋_𝑎𝑥𝑖𝑠𝑖𝑗 × 𝑟𝑎𝑛𝑑, i = 1, 2, …,sizepop/2 //Eq. (10)

Step 6. RW species populations are obtained from random walk algorithm

 𝑅𝑊_𝑋𝑖
𝑡 = 𝑅𝑎𝑛𝑑𝑜𝑚𝑤𝑎𝑙𝑘 (𝑋𝑖

𝑡), i = 1, 2, …, sizepop/2 //Eq. (5)

Step 7. Use the populations for each iteration to form X ,

 X = OP_X ∪ RW_X

Step 8. Re-evaluate the smell concentration (fitness value) of the individual fruit fly

 Smelli = Objective Function (Xi), i = 1, 2, …, sizepop

Step 9. Find the fruit fly with the least minimal smell concentration,

 [new_bestSmell, new_bestIndex] = min (Smell),

 new_Smellbest = bestSmell, new_X_axis = X (bestIndex)

Step 10. If the new smell concentration is better than the previous iterative smell concentration, then update X_axis with

the current best fruit fly.

Step 11. Enter into iterative optimization.

Repeat steps 4-10. The process will stop when the smell concentration is no longer changed, or when the iteratiion number

reaches the maximum value.

Output: the fruit fly with the best smell concentration.

The distribution discussed in Section 3.2 is generated from

the following RO-FOA steps:

 (1) Step 2 generates the pattern of populations of the

uniform distribution (Figure 3 (a)). This strategy is used in

the initial step before entering the main RO-FOA procedure.

 (2) Step 5 generates the new populations of the uniform

distribution. This step provides the new position of the

population calculated through the best position X_axis

obtained from step 3.

 (3) Step 6 generates the new populations of the random

distribution. This step provides the new position of

population calculated through the best position X_axis

obtained from step 3.

 (4) Step 7 - after a period of time, steps 5 and 6 generate

the populations of the clumped distribution.

5. The settings and evaluation of algorithms on

benchmark functions

In this section, we evaluate the performance of our

proposed method through the application of 34 standard

benchmark functions (11 uni-modal and 23 multi-modal)

Engineering and Applied Science Research January – March 2020;47(1) 9

Table 1 The 34 standard benchmark functions.

Function Type Function name Dimension Optimum

f1 unimodal Sphere model 30 0

f2 unimodal Axis parallel hyperellipsoid 30 0

f3 unimodal Schwefel’s problem 1.2 30 0

f4 multimodal Rosenbrock’s valley 30 0

f5 multimodal Rastrigin’s function 30 0

f6 multimodal Griewank’s function 30 0

f7 unimodal Sum of different power 30 0

f8 multimodal Ackley’s path function 30 0

f9 unimodal Beale function 2 0

f10 multimodal Colville function 4 0

f11 unimodal Easom function 2 -1

f12 multimodal Hartmann function 1 3 -3.86278

f13 multimodal Hartmann function 2 6 -3.32237

f14 multimodal Six Hump Camel back function 2 -1.03162

f15 multimodal Levy function 30 0

f16 unimodal Matyas function 2 0

f17 multimodal Perm function 2 0

f18 multimodal Michalewicz function 10 -9.66015

f19 multimodal Zakharov function 10 0

f20 multimodal Branins’ function 2 0.3979

f21 unimodal Schwefel’s problem 2.22 30 0

f22 unimodal Schwefel’s problem 2.21 30 0

f23 unimodal Step function 30 0

f24 multimodal Quartic function 30 0

f25 multimodal Kowalik’s function 4 0.0003075

f26 multimodal Shekel’s Family (1) 4 -10.2

f27 multimodal Shekel’s Family (2) 4 -10.4

f28 multimodal Shekel’s Family (3) 4 -10.5

f29 multimodal Tripod function 2 0

f30 unimodal De Jong’s function 4 (no noise) 2 0

f31 multimodal Alpine function 30 0

f32 multimodal Schaffer’s function 6 2 0

f33 multimodal Pathological function 30 0

F34 multimodal Inverted cosine wave function (Masters) 4 -n+1

taken from [45-48]. Each function contains different

dimension levels (see Table 2). The definition of each

benchmark function and their global optima are listed in

Appendix A. Each algorithm was coded in MATLAB.

Experiments were conducted using MATLAB 7.10.0

(2010a) on a personal computer, with a 3.2 GHz CPU, 8 GB

RAM running a Microsoft Windows 7 operating system. For

MSFOA, 15 benchmark functions used in [39] are also used

in this paper. Therefore the experimental results relating that

15 functions are taken from Tables 3 and 4 of [39] and are

used to compare with that of the proposed RO-FOA.

5.1 Parameters and settings

In the parameter settings, the maximum iteration number

(maxgen) of each algorithm was fixed at 1000, and the

population sizes (sizepop) at 50. The mean value (Mean) and

standard deviations (Std) over 30 independent runs are

presented for each algorithm.

 (1) Comparison between the RO-FOA and variant FOAs

 We compared the performance of the RO-FOA and

other variant FOAs with the same benchmark functions

(Table 2). The individual parameters of the LGMS-FOA [37]

are sizepop = 50, n = 0.005, w0 = 1, and α = 0.95. The IFFO

parameters [15] are 𝛾𝑚𝑎𝑥 = 𝑈𝐵 − 𝐿𝐵/2, and γmin = 10-5 .

Within the parameter settings of the proposed MFOA [16],

the multi swarm number, M, is set at = 5, and θ is set at values

from 2 to 6.

 (2) Comparison between the RO-FOA and the meta-

heuristic algorithms

 The parameters of the meta-heuristic algorithms

include the particle swarm optimization (PSO), where c1 =

2, c2 = 1.5, wmax = 1.3, wmin = 0.3, and vmax is limited to 20%

of the domain [49]. Differential evolution (DE) was done

with a scaling factor (F) = 0.5, and the crossover probability

constant (CR) = 0.9 [50]. Harmony search (HS) had a

harmony memory size (HMS) = sizepop. The harmony

memory consideration rate (HMCR) = 0.90, and the pitch

adjusting rate (PAR) = 0.35 [51]. The gravitational search

algorithm (GSA) [52], and the grey wolf optimizer (GWO)

[53], flower pollination algorithm (FPA) [54], and a

modified flower pollination algorithm (MFPA) [55] were

also examined. These algorithms were coded in MATLAB

and obtained from https://www.mathworks.com/

matlabcentral/fileexchange/. The default parameters of each

algorithm are shown in Appendix B.

6. Benchmarking results and discussion

In brief, this paper presents the RO-FOA, which consists

of both the RW and OBL algorithms. The experimental

results show that the RO-FOA improves the performance

over the original FOA in finding an optimal solution within

the optimizing function. Furthermore, the proposed method

increases search capability and diversity during exploration,

through the use of the RW to expand the population's

position, while the OBL accelerates the speed of the

10 Engineering and Applied Science Research January – March 2020;47(1)

(a) Convergence curve on Rosenbrock’s valley (f4) (b) History of indices of the best fruit fly on Rosenbrock’s

valley (f4) –uni-modal function case

(c) Convergence curve on Six Hump Camel back function

(f14)

(d) History of indices of the best fruit fly on Six Hump

Camel back function (f14) – multi-modal function case

Figure 7 Graphic of the convergence curves and indices of the best fruit fly history that were produced during two runs of

RO-FOA. The triangle was produced by the RW and the circle was produced by the OP.

exploration process and convergence in locating the

promising region.

6.1 Computational complexities of the RO-FOA and original

FOA

 The number of function calls (NFCs) determines

computational complexity, and it is the most commonly used

metric in recent literature [30, 56]. The computational

complexity of the original FOA was calculated through the

sum of the NFCs of each individual fruit fly, in each of the

two phases. The initial phase calculates the cost of a

candidate solution to establish the best initial position. The

second phase computes the updated position of each

individual fruit fly. In this paper, the computational

parameters involve a set of population sizes in the initial and

the updated phases, in which each phase = 50, and the max

iteration = 1000. In the original FOA, the resulting NFCs =

50 + (50 × 1000) = 50050. Within these same computational

settings, the proposed RO-FOA generated a population with

the best initial position = 50, similar to the initial phase of the

original FOA. The updated phase of the RO-FOA then

combined the OBL and RW characteristics of each

individual fruit fly (Step 5 and 6), resulting in a population =

50. The complexity of the RO-FOA is therefore calculated as

(50) + (25+25 × 1000), and the NFCs = 50050. In the

proposed of RO-FOA, the fruit fly's behaviors (Steps 7),

inspired from previous research [5, 40-42], proves more

capable of finding the optimal solution than with a single

characteristic. This technique can further enhance the

diversity of the population of the algorithms' exploration

capabilities, and has the potential to accelerate convergence

to quickly obtain the optimal solution. In summary, we may

conclude that the complexity of the RO-FOA is not

significantly different from that of the original FOA, as the

RO-FOA employed two populations (OBL and RW). Yet the

population size did not increase. In the next section, we

discuss the capabilities of the RO-FOA through the

evaluation of several commonly used benchmark functions,

and compare them with other meta-heuristic algorithms.

6.2 The benefit of having both RW and OBL together

 In Figure 7, each graph was generated by RO-FOA,

including both RW and OBL. The left column shows the

convergence curve while the right column shows the

historical indices of best fruit flies produced from the

Rosenbrock’s valley and Six Hump Camel back functions,

Engineering and Applied Science Research January – March 2020;47(1) 11

(a) FOA,1 to 10 iterations (b) FOA,1 to 1,000 iterations

(c) IFFO, 1 to 10 iterations (d) IFFO, 1 to 1,000 iterations

(e) LGMS, 1 to 10 iterations (f) LGMS, 1 to 1,000 iterations

Figure 8 The f5 best search routes produced by the RO-FOA and variant FOA algorithms

respectively. As can be seen in Figures 7 (a) and (c), the blue

lines show that the convergence curve tends to continue

reducing and converging quickly to the solution. In Fig. 7 (b)

and (d), the pink dots are the best positions obtained from OP

species and the blue triangles are the best positions obtained

from RW species. In Fig. 7 (b), the Rosenbrock’s valley

function is a uni-modal function. Successful exploration is

done by the OP species and successful exploitation is done

by the RW species, in the early and e latter phases,

respectively. In Fig. 7 (c), the Six Hump Camel back

function is a multi-modal function. In the early phase,

successful exploration is done by cooperation of the

12 Engineering and Applied Science Research January – March 2020;47(1)

(g) MFOA, 1 to 10 iterations (h) MFOA, 1 to 1,000 iterations

(i) RO-FOA,1 to 10 iterations (j) RO-FOA, 1 to 1,000 iterations

Figure 8 (continued) The f5 best search routes produced by the RO-FOA and variant FOA algorithms.

two species. When the algorithms evolve to the exploitation

phase, successful exploitation is done by RW species.

6.3 Enhancement of population diversity

 To show enhancement of the diversity of exploration of

the RO-FOA, the best search routes of the RO-FOA and

those of the variant FOA algorithms are presented in

Figure 8. Each graph displays the results rendered from the

multi-modal Rastrigin function (f5). The f5 details are

elaborated in Table 1 and Appendix A. The figures illustrate

the populations’ starting positions through the end of the

search processes in the original FOA, IFFO, LGMS, MFOA,

and RO-FOA algorithms. The simulation parameters were

set at population=10, the iteration numbers ran from 1 to 10

in the left column, and 1 to 1,000 in the right column, where

the X- and Y-axes represent the two dimensional position of

the population within the range of the search space

between -5.12 and 5.12. Each algorithm population began

with the same value, employing a random uniform

distribution. The optimal solution of f5= (0, 0).

 The RO-FOA algorithm significantly enhances the

diversity of exploration by spreading and moving its

population search, compared with the other variant FOAs.

The figures of the proposed RO-FOA (Figures 8 (i) and 8 (j))

show the highest population diversity and the most accurate

solution. Within the first ten iterations, shown in the left

column of Figure 8, the population diversities of the original

FOA, IFFO, LGMS, and MFOA gradually change or adapt,

depending on the iteration number. They tend to align with

one another or move in a slightly different direction. In

contrast, the RO-FOA (Figure 8 (i)) produces a dramatic

fluctuation of the population, and refracts, thereby improving

its position. When expanding the RO-FOA’s iterations to

1,000 (Figure 8 (j)), the population continues to demonstrate

a more positive refracted direction, and is able to obtain the

optimal solution.

6.4 Comparison of the adjusted radius within the RO-FOA

and the variant FOA algorithms

As discussed above, a primary disadvantage of the

variant FOAs is the way in which they adjust or change the

radius in both exploration and exploitation. The RO-FOA

strategy adjusts the radius within the course of its iterations,

through two techniques, which produce a substantial

advantage. The first technique adjusts the interval of the RW.

The second calculates probabilities through opposition based

learning, in adapting the radius within the course of

iterations. As a demonstration, the 2-D Rastrigin function

Engineering and Applied Science Research January – March 2020;47(1) 13

(a) RO-FOA (b) RO-FOA (500 iterations)

(c) FOA (d) IFFO

(e) LGMS (f) MFOA

Figure 9 The adjusted radii of the RO-FOA, FOA, IFFO, LGMS, and MFOA over the course iteration.

(f5) was selected, and solved with 50 populations, over 1,000

iterations, as depicted in Figure 9 (with the exception of

Figure 9 (b), which is enlarged to examine the RO-FOA

through 500 iterations). The X-axis represents the number of

iterations, and the Y-axis represents the boundary values. In

Figure 9 (a), the red line demonstrates the wider radius of the

RO-FOA in the first 100 iterations and an increase in the

number of shorter radii of the final process in subsequent

iterations. This behavior is a result of the RW algorithm,

Eq. (2), which provides a more advantageous exploration

and exploitation, and higher solution accuracy. Figure 9(b),

examines only 500 iterations and more closely examines

14 Engineering and Applied Science Research January – March 2020;47(1)

Table 2 Solution quality comparisons of the RO-FOA and variant FOAs within 34 benchmark functions. For the MSFOA, its

results were taken from [39]. Lower is better. N/A means no available data. Minimum Means and Stds are in bold. The h

values signify the results of the rank-sum test.

Function Criteria FFO LGMS_FOA IFFO MFOA MSFOA RO-FOA +/−/≈

f1

Mean 1.51e+02 5.77e+00 2.45e-04 4.48e-02 1.70e+00 0

Std 3.88e+01 6.07e-01 1.96e-02 1.04e-01 0

h 1 1 1 1 1 5/0/0

f2

Mean 1.42e-08 3.22e-02 9.50e-09 2.76e-02 8.98e-01 0

Std 2.73e-08 5.30e-02 1.84e-03 4.10e-02 0

h 1 1 1 1 1 5/0/0

f3

Mean 4.08e+02 2.99e+01 1.16e-01 9.89e-12 3.09e+00 0

Std 2.55e+02 3.01e+01 7.44e+00 1.77e-11 0

h 1 1 1 1 1 5/0/0

f4

Mean 9.32e+02 6.32e+02 2.81e+01 4.47e+01 2.89e+01 1.17e-06

Std 4.62e+02 7.04e+02 1.54e+00 3.37e+01 1.16e-06

h 1 1 1 1 1 5/0/0

f5

Mean 9.63e+01 2.39e+01 2.00e-02 1.47e+01 8.82e-01 0

Std 1.88e+01 8.41e+00 6.04e-01 6.88e+00 0

h 1 1 1 1 1 5/0/0

f6

Mean 1.06e+00 9.77e-03 9.73e-02 2.47e-04 9.66e-01 0

Std 1.25e-02 9.83e-03 2.74e-01 1.35e-03 0

h 1 1 1 1 1 5/0/0

f7

Mean 1.65e-03 1.70e-38 2.83e-159 8.54e-56 1.60e−09 0

Std 8.21e-03 8.52e-38 6.18e-57 4.68e-55 0

h 1 1 1 1 1 5/0/0

f8

Mean 1.01e+01 1.48e+00 6.08e-02 1.29e+00 5.92e-01 8.88e-16

Std 5.01e-01 8.51e-01 4.44e-01 1.36e+00 0

h 1 1 1 1 1 5/0/0

f9

Mean 5.34e+00 3.92e-03 6.57e-02 2.86e-01 1.30e-13

Std 4.96e+00 5.38e-03 4.70e-02 1.43e+00 N/A 1.47e-13

h 1 1 1 1 4/0/0

f10

Mean 9.32e+03 7.09e-01 1.76e+00 4.66e+01 3.33e-07

Std 1.50e+04 1.16e+00 1.12e+01 6.05e+00 N/A 5.51e-07

h 1 1 1 1 4/0/0

f11

Mean -0.19 -0.99 -0.99 -8.34e-09 -1

Std 3.34e-01 3.33e-03 2.42e-01 2.13e-08 N/A 0

h 1 1 1 1 4/0/0

f12

Mean -2.04444 -3.53052 -3.82067 -0.06797 -3.86278

Std 6.78e-01 3.14e-01 3.28e-02 0 N/A 4.52e-16

h 1 1 1 1 4/0/0

f13

Mean -1.82364 -2.39944 -2.92143 -1.33252 -3.03862

Std 2.51e-01 2.28e-01 6.81e-02 6.78e-16 N/A 1.17e-02

h 1 1 1 1 4/0/0

f14

Mean 20.9856 -0.94249 -1.0280 -0.82828 -1.0316

Std 7.11e+01 7.84e-02 1.04e-01 1.87e-01 N/A 6.78e-16

h 1 1 1 1 4/0/0

f15

Mean 8.94e+00 2.82e+01 2.47e+00 3.31e+00 2.22e-12

Std 7.34e+00 1.27e+01 1.59e-01 7.13e-02 N/A 1.83e-12

h 1 1 1 1 4/0/0

f16

Mean 3.02e+00 1.32e-03 3.20e-09 1.90e-04 0

Std 4.09e+00 1.51e-03 1.39e-04 2.57e-04 N/A 0

h 1 1 1 1 4/0/0

f17

Mean 7.93e+04 1.24e-01 9.59e+04 4.65e+04 7.30e-04

Std 2.32e+04 2.18e-01 7.03e+02 2.42e+02 N/A 6.86e-04

h 1 1 1 1 4/0/0

f18

Mean -2.61898 -2.85910 -4.94701 -1.10669 -8.87573

Std 5.79e-01 4.88e-01 3.71e-01 3.79e-01 N/A 4.16e-01

h 1 1 1 1 4/0/0

f19

Mean 2.37e+02 8.55e+07 1.88e+11 1.13e+02 8.03e-13

Std 5.30e+01 2.43e+08 2.37e-03 3.50e+02 N/A 1.87e-12

h 1 1 1 1 4/0/0

f20

Mean 11.7302 0.4520 0.3991 37.6936 0.3979

Std 1.29e+01 7.30e-02 8.84e-02 4.32e+00 N/A 2.78e-13

h 1 1 1 1 4/0/0

f21

Mean 7.48e+09 7.20e+01 1.23e-08 8.03e-10 2.46e-05 0

Std 4.08e+10 3.96e+01 1.85e-01 5.42e-10 0

h 1 1 1 1 4/0/0

f22

Mean 4.74e+00 1.61e+01 8.10e-09 7.45e-08 4.17e-01 0

Std 2.04e-01 7.33e+00 4.38e-01 9.59e-08 0

h 1 1 1 1 4/0/0

f23

Mean 2.21e+02 1.09e+01 6.47e+01 3.33e-02 0 0

Std 3.91e+01 4.73e+00 1.35e+02 1.83e-01 0

h 1 1 1 1 4/0/1

f24

Mean 1.27e+02 1.11e-01 1.54e-03 4.20e-03 7.60e−08 2.61e-09

Std 5.95e+01 2.71e-02 1.29e-02 1.55e-03 2.08e-09

h 1 1 1 1 1 5/0/0

f25

Mean 13.12 0.0054480 0.0008350 0.0012568 0.0003079

Std 2.68e+01 8.37e-03 4.60e-03 3.62e-03 N/A 5.40e-07

h 1 1 1 1 4/0/0

f26

Mean -0.2 -1.1 -6.8 -8.6 -10.2

Std 2.23e-01 6.78e-01 8.87e-01 2.37e+00 N/A 3.61e-15

h 1 1 1 1 4/0/0

Engineering and Applied Science Research January – March 2020;47(1) 15

Table 2 (continued) Solution quality comparisons of the RO-FOA and variant FOAs within 34 benchmark functions. For the

MSFOA, it results were taken from [39]. Lower is better. N/A means no available data. Minimum Means and Stds are in bold.

The h values signify the results of the rank-sum test.

Function Criteria FFO LGMS_FOA IFFO MFOA MSFOA RO-FOA +/−/≈

f27

Mean -0.2 -1.4 -6.2 -9.5 -10.4

Std 1.55e-01 8.58e-01 7.87e-01 2.01e+00 N/A 0

h 1 1 1 1 4/0/0

f28

Mean -0.3 -2.0 -5.8 -9.9 -10.5

Std 1.39e-01 1.62e+00 6.61e-01 1.65e+00 N/A 3.71e-10

h 1 1 1 1 4/0/0

f29

Mean 7.91e+00 8.00e-01 4.42e+00 6.33e-01 6.80e-06

Std 1.12e+01 8.47e-01 4.70e-01 6.69e-01 N/A 3.12e-06

h 1 1 1 1 4/0/0

f30

Mean 1.59e-18 1.25e-99 0 2.83e-81 0

Std 3.92e-18 6.05e-99 3.11e-13 8.12e-81 N/A 0

h 1 1 1 1 4/0/0

f31

Mean 5.70e+01 6.83e+00 1.19e-09 5.16e-03 5.36e-02 0

Std 1.88e+01 2.04e+00 8.49e-02 1.42e-02 0

h 1 1 1 1 1 5/0/0

f32

Mean 4.25e-01 2.82e-02 1.57e-02 1.02e-02 0

Std 1.21e-01 2.80e-02 2.43e-02 1.99e-02 N/A 0

h 1 1 1 1 4/0/0

f33

Mean 1.51e-02 3.60e-06 5.74e-09 -4.81e-17 4.46e+00 0

Std 1.69e-02 1.05e-05 7.40e-04 1.06e-15 0

h 1 1 1 1 1 4/0/0

f34

Mean -20.70 -23.13 -23.89 -13.72 -28.92 -28.93

Std 6.61e-01 5.03e-01 1.12e-01 4.49e-01 2.33e-01

h 1 1 1 1 4/0/0

Total 146/0/1

Table 3 Solution quality comparisons of the RO-FOA with seven meta-heuristic algorithms on 34 benchmark functions. Lower

is better. Minimum Means and Stds are in bold. The right most column is the results from the rank-sum test. The h values

signify the results of the rank-sum test.

Function Criteria PSO HS GSA DE GWO FPA MFPA RO-FOA +/−/≈

f1

Mean 1.86e-12 1.42e+01 2.00e-17 6.67e-17 5.87e-73 2.47e+01 1.20e-04 0

Std 8.64e-12 2.95e+00 6.44e-18 8.82e-17 1.30e-72 3.38e+00 4.53e-04 0

h 1 1 1 1 1 1 1 7/0/0

f2

Mean 5.94e-77 3.68e-05 7.19e-122 0 0 1.66e-02 3.17e-110 0

Std 2.38e-76 4.81e-05 3.90e-121 0 0 3.92e-02 1.65e-109 0

h 1 1 1 0 0 1 1 5/0/2

f3

Mean 1.83e-03 1.06e+04 1.81e+01 1.14e-03 1.47e-29 4.02e+01 8.70e+00 0

Std 3.69e-03 1.65e+03 8.62e+00 4.82e-03 7.21e-29 1.34e+01 1.04e+01 0

h 1 1 1 1 1 1 1 7/0/0

f4

Mean 2.03e+01 4.91e+02 2.61e+01 2.51e+01 2.67e+01 5.48e+03 7.39e+01 1.17e-06

Std 1.89e+00 1.03e+02 1.82e+01 1.28e+00 7.83e-01 1.56e+03 6.28e+01 1.16e-06

h 1 1 1 1 1 1 1 7/0/0

f5

Mean 9.42e+00 1.08e+01 3.02e+00 1.02e+01 0 1.84e+02 5.76e+01 0

Std 4.57e+00 2.70e+00 1.72e+00 7.55e+00 0 1.78e+01 1.22e+01 0

h 1 1 1 1 0 1 1 6/0/1

f6

Mean 5.07e-02 5.39e+01 4.45e+00 2.79e-03 3.67e-03 6.81e-01 2.20e-02 0

Std 1.31e-01 1.14e+01 2.11e+00 5.63e-03 7.44e-03 5.37e-02 3.19e-02 0

h 1 1 1 1 1 1 1 7/0/0

f7

Mean 0 1.33e-72 0 0 0 8.94e-41 0 0

Std 0 7.27e-72 0 0 0 3.25e-40 0 0

h 0 1 0 0 0 1 0 2/0/5

f8

Mean 1.42e+00 1.35e+01 3.51e-09 3.10e-02 1.36e-14 4.78e+00 3.95e+00 8.88e-16

Std 1.07e+00 8.32e-01 4.92e-10 1.70e-01 2.75e-15 2.85e-01 2.14e+00 0

h 1 1 1 1 1 1 1 7/0/0

f9

Mean 5.08e-02 1.30e-02 7.27e-21 0 2.46e-08 8.33e-01 0 1.30e-13

Std 1.93e-01 2.72e-02 7.24e-21 0 2.32e-08 3.52e-01 0 1.47e-13

h 1 1 1 -1 1 1 -1 5/2/0

f10

Mean 3.16e-05 4.42e+01 1.18e+00 2.68e-05 6.02e-01 2.47e+01 4.00e-24 3.33e-07

Std 3.60e-05 7.04e+01 1.58e+00 1.47e-04 1.34e+00 2.09e+01 1.20e-23 5.51e-07

h 1 1 1 1 1 1 -1 6/1/0

f11

Mean -1 -0.18 -0.95 -1 -1 -0.01 -1 -1

Std 6.60e-02 3.64e-01 1.97e-01 0 6.68e-08 5.68e-03 0 0

h 1 1 1 0 1 1 0 5/0/2

f12

Mean -3.86202 -3.86202 -3.86278 -3.86278 -3.86176 -1.96715 -3.86278 -3.86278

Std 1.90e-04 7.90e-04 3.16e-15 3.12e-15 2.60e-03 9.23e-01 3.16e-15 4.52e-16

h 1 1 1 1 1 1 0 6/1/0

f13

Mean -3.01636 -3.01636 -3.01246 -2.99125 -3.01995 -1.37914 -3.02812 -3.04862

Std 3.10e-02 1.65e-02 1.36e-15 2.33e-02 3.36e-02 9.95e-02 2.64e-02 1.17e-02

h 1 1 1 1 1 1 1 7/0/0

f14

Mean -1.0316 -1.0315 -1.0316 -1.0316 -1.0316 -0.8917 -1.0316 -1.0316

Std 4.52e-16 1.37e-04 4.52e-16 4.52e-16 2.23e-09 1.44e-01 4.52e-16 6.78e-16

h 0 1 0 0 1 1 0 3/0/4

f15

Mean 4.42e-02 4.42e-02 1.35e-31 1.79e-01 7.91e-08 2.27e-01 1.35e-31 2.22e-12

Std 6.53e-01 8.95e-02 6.68e-47 4.59e-01 7.61e-08 1.68e-01 6.68e-47 1.83e-12

h 1 1 0 1 1 1 0 5/0/2

16 Engineering and Applied Science Research January – March 2020;47(1)

Table 3 (continued) Solution quality comparisons of the RO-FOA with seven meta-heuristic algorithms on 34 benchmark

functions. Lower is better. Minimum Means and Stds are in bold. The right most column is the results from the rank-sum test.

The h values signify the results of the rank-sum test.

Function Criteria PSO HS GSA DE GWO FPA MFPA RO-FOA +/−/≈

f16

Mean 1.26e-65 9.36e-03 6.32e-89 2.29e-23 2.20e-28 4.54e-03 1.33e-55 0

Std 6.77e-65 1.42e-02 1.71e-88 0 0 4.76e-03 7.14e-55 0

h 1 1 1 1 1 1 1 7/0/0

f17

Mean 8.87e+04 8.54e+04 9.16e+04 4.43e-02 5.93e-01 9.33e+04 9.47e-04 7.30e-04

Std 2.80e+03 5.13e+02 4.57e+03 1.22e-01 6.89e-01 4.91e+03 8.77e-04 6.86e-04

h 1 1 1 1 1 1 0 6/0/1

f18

Mean -7.93635 -8.00890 -8.62540 -5.13600 -7.65460 -8.54994 -8.57597 -8.87573

Std 7.86e-01 4.34e-01 5.07e-01 1.38e+00 8.92e-01 2.61e+00 5.03e-01 4.16e-01

h 1 1 1 1 1 1 1 7/0/0

f19

Mean 1.10e+01 3.64e+02 5.18e+01 1.23e+00 2.14e-27 8.33e+00 2.64e-10 8.03e-13

Std 2.37e+01 5.40e+01 1.09e+01 1.03e+00 3.33e-27 1.09e+00 6.68e-10 1.87e-12

h 1 1 1 1 -1 1 1 6/1/0

f20

Mean 0.3979 0.3980 0.3979 0.3979 0.3979 8.3250 0.3978 0.3979

Std 0 9.95e-05 0 3.71e-02 5.86e-05 1.09e+00 0 2.78e-13

h 0 1 0 0 0 1 0 2/0/5

f21

Mean 7.07e-02 1.85e+01 2.18e-08 5.78e-08 4.08e-41 2.14e+01 8.28e-02 0

Std 1.83e-01 2.40e+00 3.17e-09 5.14e-08 4.50e-41 2.24e+00 3.87e-01 0

h 1 1 1 1 1 1 1 7/0/0

f22

Mean 6.01e-01 5.87e+01 3.74e-02 1.26e+01 2.79e-17 1.70e+00 2.07e+01 0

Std 4.29e-01 5.95e+00 2.05e-01 6.17e+00 6.01e-17 9.47e-02 5.49e+00 0

h 1 1 1 1 1 1 1 7/0/0

f23

Mean 6.57e+00 5.15e+03 0 1.33e-01 0 2.37e+01 1.47e+00 0

Std 9.84e+00 8.44e+02 0 3.46e-01 0 4.68e+00 6.20e+00 0

h 1 1 0 1 0 1 1 5/0/2

f24

Mean 1.32e-02 3.31e+00 2.07e-02 4.18e-02 5.33e-04 5.84e+02 9.62e-02 2.61e-05

Std 6.75e-03 1.03e+00 8.90e-03 9.42e-03 2.96e-04 1.84e+02 3.79e-02 2.08e-05

h 1 1 1 1 1 1 1 7/0/0

f25

Mean 0.000499 0.003529 0.002330 0.000374 0.002405 0.035233 0.0003074 0.0003079

Std 4.29e-04 5.24e-03 1.16e-03 2.33e-04 6.09e-03 3.36e-02 1.83e-19 5.40e-07

h 1 1 1 1 1 1 0 6/0/1

f26

Mean -4.6 -5.7 -7.0 -9.8 -9.6 -1.5 -10.1 -10.2

Std 2.75e+00 3.51e+00 3.63e+00 1.28e+00 1.55e+00 8.62e-01 6.45e-15 3.61e-15

h 1 1 1 1 1 1 1 7/0/0

f27

Mean -7.0 -6.2 -10.4 -10.4 -10.4 -1.3 -10.4 -10.4

Std 3.69e+00 3.60e+00 7.38e-16 0 1.87e-04 7.76e-01 5.71e-16 0

 1 1 0 0 1 1 1 5/0/2

f28

Mean -5.0 -5.5 -5.0 -10.3 -10.3 -1.38 -10.5 -10.5

Std 3.15e+00 2.86e+00 1.40e+00 1.18e+00 1.14e+00 7.42e-01 3.83e-15 3.71e-10

h 1 1 1 1 1 1 0 6/0/1

f29

Mean 5.00e-01 2.21e+00 5.33e-01 1.0e-181 7.38e-01 4.82e+01 3.26e-41 6.80e-06

Std 6.30e-01 1.38e+00 7.30e-01 0 7.39e-01 1.85e-01 5.96e-41 3.12e-06

h 1 1 1 -1 1 1 -1 5/2/0

f30

Mean 1.3e-161 4.66e-12 2.80e-51 0 0 4.85e-06 9.0e-199 0

Std 0 1.14e-11 1.33e-50 0 0 2.06e-05 0 0

h 1 1 1 0 0 1 0 4/0/3

f31

Mean 4.24e-03 1.03e+01 2.11e-09 3.56e-04 6.41e-05 1.62e+01 2.44e-02 0

Std 1.16e-02 2.06e+00 2.99e-10 9.39e-04 1.62e-04 2.93e+00 9.23e-02 0

 1 1 1 1 1 1 1 7/0/0

f32

Mean 0 1.37e-01 8.19e-03 0 0 4.76e-02 7.83e-03 0

Std 0 1.12e-01 8.74e-03 0 0 3.56e-02 4.29e-02 0

 0 1 1 0 0 1 1 4/0/3

f33

Mean -2.6e-16 1.6e-02 2.0e-03 -1.1e-15 1.2e-05 1.6e-03 4.3e-05 0

Std 2.92e-16 2.03e-02 4.17e-03 8.52e-16 1.89e-05 1.19e-03 9.38e-05 0

h 1 1 1 1 1 1 1 7/0/0

f34

Mean -3.19 -3.07 -3.00 -3.50 -3.41 -2.42 -2.75 -3.53

Std 3.00e-01 2.60e-01 1.51e-01 1.81e-15 2.56e-01 2.41e-01 1.42e-01 2.33e-01

h 1 1 1 1 1 1 1 7/0/0

Total 197/5/26

the adjusted radii created through the opposition algorithm

(black dots), Eq. (7), where the radius is shorter than that

from the RW algorithm. Based on these two radii, the RO-

FOA produces a superior search solution to the variant FOAs

that possess only a single technique to adjust the radius.

Figures 9 (c-f) illustrate the adjusted radii through the course

of any iteration produced by the variant FOAs. In Figure 9

(d-f), the radii illustrate continuously decreasing boundaries,

each of which is generated by only one mechanism.

6.5 The solution quality comparisons of the RO-FOA and the

variant FOA algorithms

The solution quality of each algorithm’s search (and

success) in locating the global optimum in each of the 34

benchmark functions is presented in Table 1. The final

objective values produced from each algorithm are

represented by their mean value (Mean) and standard

deviation (Std). The h values signify the results of the rank-

sum test in which an h value equal to 1 or -1, represented by

the symbols (+) and (-), respectively, are given in the last

column of Tables 2 and 3. The RO-FOA may therefore be

viewed as being significantly better or worse, than the

competing algorithms. The best results in each function are

highlighted in bold. However, a comparison of two

algorithms in which the h value is equal to zero (≈), would

indicate that the algorithms are not statistically different.

From Table 2, the RO-FOA outperformed each of the

five algorithms, as evidenced by its lowest average final

Means and Stds. For example, in function f1, the mean

final objective values attained by the FFO (1.51E+02),

Engineering and Applied Science Research January – March 2020;47(1) 17

Figure 10 Convergence curve graphs that compare FFO, LGMS, IFFO, MFOA and RO-FOA

LGMS_FOA (5.77E+00), IFFO (2.45E-04), MFOA

(4.48E-02), and MSFOA (1.70E+00) were out performed by

the proposed RO-FOA, which obtained the best solution,

with the optimum value of f1 = 0. The rank-sum test

statistically confirmed this claim.

6.6 The solution quality comparisons of the RO-FOA and

meta-heuristic algorithms

 In order to better evaluate the performance of the

proposed RO-FOA, we compared the final fitness values

produced by seven widely used meta-heuristics algorithms,

PSO, HS, GSA, DE, GWO, FPA, and MFPA (shown in

Table 3). The 'winning' algorithms in any case are

highlighted in bold. While the RO-FOA's final fitness value

was not superior in all functions, the summary values of the

rank-sum tests did find the RO-FOA superior in performance

to all of the competing algorithms. The RO-FOA won 197

out of 238 cases. The rank-sum test statistically supports our

claim.

18 Engineering and Applied Science Research January – March 2020;47(1)

Figure 11 Convergence curve graphs that compare DE, GSA, PSO, HS, GWO, FPA, MFPA and RO-FOA.

6.7 Examples of the convergence graphs of the RO-FOA

results and the comparative algorithms.

The advantage of incorporation of the opposition (OBL)

and the random walk algorithms within the RO-FOA is that

the new algorithm can quickly find the promising region of

the search space, depending on the best solution index in any

iteration. Unlike the variant FOAs, the boundary or radius in

the search phase depends upon the convergence of the time

interval when the radius must be changed, which is very time

consuming. The RO-FOA renders a faster time in locating

the best solution, compared to all of the competing

algorithms (Figures 10 and 11). Graph histories are displayed

in two sections. The first section, shown in Figure 10, depicts

a convergence graph that compares the RO-FOA and variant

FOAs. The second section, shown in Figure 11, depicts a

convergence graph that compares the RO-FOA with seven

meta-heuristic algorithms. The graph is presented in a log-

log scale plot, where the X-axis is the number of iterations,

and the Y-axis is the average fitness values obtained at that

the corresponding iterations from the algorithms.

Engineering and Applied Science Research January – March 2020;47(1) 19

Table 4 Experimental results for the 5-bit and 8-bit auto-encoder datasets

Algorithm

5-bit auto-encoder 8-bit auto-encoder

MSE (AVE ± STD)
Classification

Rate (%)

Mean of

Weights’

Magnitude

MSE (AVE ± STD)
Classification

Rate (%)

Mean of

Weights’

Magnitude

RO-FOA 5.80e-01 ± 1.06e-02 47.18 2.772 6.22e-01 ± 7.59e-02 24.11 2.204

MFPA 7.02e-01 ± 1.46e-01 40.20 7.120 1.76e+00 ± 1.04e-01 21.70 7.465

FPA 3.65e-01 ± 3.72e-02 25.41 1.149 2.56e-01 ± 2.27e-02 20.58 1.131
MVO 6.44e-01 ± 1.39e-01 41.35 4.793 6.39e-01± 1.66e-01 20.15 4.784

GWO 5.98e-01 ± 9.14e-02 40.72 3.002 6.29e-01 ± 1.09e-01 18.48 2.693

PSO-GSA 7.68e-01 ± 1.49e-01 39.68 6.091 7.89e-01 ± 1.38e-01 17.96 6.432
FFO 1.57e+00 ± 1.89e-01 28.43 4.773 1.61e+00 ± 1.51e-01 16.87 4.894

LGMS 1.62e+00 ± 8.61e-02 24.06 4.813 1.68e+00 ± 1.22e-01 18.75 4.912

IFFO 6.62e-01 ± 1.32e-01 39.62 13.112 8.08e-01 ± 140e-01 22.34 11.738
MSFOA 1.84e+00 ± 2.65e-01 27.50 4.5611 2.05e+00 ± 1.79e-01 21.66 5.283

 As can be seen in Figure 10, the RO-FOA, represented

by a red line, has a faster convergence and is capable of

finding a solution faster than the variant FOAs, in all of the

example functions (f2, f4, f6, f8, f10 and f13).The RO-FOA

further demonstrates the ability to converge faster and find a

better solution than the seven well-known meta-heuristic

algorithms, DE, GSA, PSO, HS, GWO, FPA, and MFPA, as

can be seen in Figure 11.

 We conclude from the above results, that the proposed

RO-FOA outperforms all variant FOAs and competitive

meta-heuristic algorithms in finding solutions to

unconstrained function optimization problems.

7. How effective is the RO-FOA in training auto-encoder

multi-layer perceptrons?

The multi-layer perceptron [57] is one of most successful

tools for expert systems or intelligent systems applications.

This section employs the proposed RO-FOA for training

Multi-Layer Perceptron (MLP) for the first time. The

structure of the MLPs has been fixed, while all the weights

and biases are simultaneously determined by the training

algorithms to reduce the MLP's overall error. The RO-FOA

training methodology begins with collection, normalization

and feeding of the data set. Each layer of the network is ready

for training if the network is structured for a specific

application, including the required neuron number settings.

7.1 Settings

The sigmoid function is selected as the activation

function of a MLP. The MLP structure is defined by the

number of layers and number of neurons in the layer. The

greater number of hidden layers and nodes, the more

complex the network. The number of incoming and outgoing

neurons in the MLP network depends on the problem. When

using RO-FOA to optimize the weight and bias in a network

with one hidden layer, a vector encoding method is utilized.

Therefore, the dimension of each fruit fly, D, is computed

using Eq. (11):

𝐷 = (𝐼 × 𝐻) + (𝐻 × 𝐶) + 𝐻𝑏𝑖𝑎𝑠 + 𝐶𝑏𝑖𝑎𝑠 (11)

where 𝐼, 𝐻, and 𝐶 refer to the number of input, hidden, and

output neurons of a MLP, respectively. Also, 𝐻𝑏𝑖𝑎𝑠

and 𝐶𝑏𝑖𝑎𝑠 are the number of biases in the hidden and output

layers, respectively.

Two datasets including 5-bit auto-encoder and 8-bit

auto-encoder datasets are utilized to benchmark the

performance of the proposed RO-FOA. The first dataset

contains 32 patterns of 5-bit binary input/output data, the

second dataset contains 256 patterns of 8-bit binary

input/output data. As it is the auto-encoder problem, the input

pattern and the output pattern are the same. For verification,

the results are compared with Multi-Verse Optimizer (MVO)

[58], MFPA, FPA, GWO, PSO-GSA, FOA, LGMS, IFFO,

and MSFOA algorithms. For these two problems, the number

of hidden nodes (H) is set to three. Therefore, the dimension

of a fruit fly for 5-bit auto-encoder is 38, and the dimension

of a fruit fly for 5-bit auto-encoder is 50.

For each algorithm, all individual solutions are evaluated

for their qualities. This assessment is made by transmitting

the weight vector, bias and input/output data to FNNs. The

mean squared error (MSE) criterion is calculated based on

the ability of the neural network. Using the training data set

through continuous iteration, the fruit fly producing the

lowest MSE is ultimately successful, which can be

considered as the best weights and biases of neural networks.

The MSE criterion is given in Eq. (12), where 𝑦̂ and 𝑦 are

the actual and the estimated values based on proposed model,

𝑃 is the number of samples in the training dataset and C is

the number of output neurons.

𝑀𝑆𝐸 = 1

𝑃
∑ ∑ (𝑦𝑖𝑘 − 𝑦̂𝑖𝑘)2𝐶

𝑘=1
𝑃
𝑖=1 (12)

The auto-encoder is a kind of classification problem.

Therefore, the performance of the trained MLP can be

evaluated as the classification rate, the higher is better. The

classification rate is computed using Eq. (13):

classification rate =
∑ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑(𝑖)==𝑎𝑐𝑡𝑢𝑎𝑙(𝑖)𝑃

𝑖

𝑃
 × 100 (13)

where predicted is the predict value obtained from MLP and

actual is the target value of each dataset. In the parameter

settings, the maximum iteration number (maxgen) of each

algorithm is fixed at 250, and the population size (sizepop) at

200. The weights and biases boundary is [-10, 10]. The mean

value (Mean) and standard deviations (Std) over 30

independent runs are presented for each algorithm.

7.2. Training results

From Table 4, MLP trained by FPA produced the lowest

MSE, and the MLP trained by RO-FOA was next best. Since,

the MLP is a highly nonlinear models, its classification

ability cannot be interpreted directly from MSE. The MLP

trained by RO-FOA can produced the highest classification

rates for both cases. That is because the magnitude of MLP’s

weights and biases, Eq. (11), for the auto-encoder problem

should be small, but not be too small. FPA produced MLP

with smaller magnitudes of weights and biases than RO-

20 Engineering and Applied Science Research January – March 2020;47(1)

FOA. We extended the experiment to cover eight standard

datasets including five classification and three function-

approximation datasets as in [59]. The conclusions were not

changed. RO-FOA can find more proper weights and biases

for MLP than the competitive algorithms in all kinds of

problems tested. These results demonstrate a high level of

accuracy in classification and approximation of the proposed

RO-FOA trainer.

Mean of Weights’ Magnitude =
∑ |𝑤𝑖|𝐷

𝑖

𝐷
 (14)

where w is the weight vector of each MLP, 𝐷 is the number

of weights including the biases.

8. Conclusions

This paper presents random walk and opposition-based

learning - fruit fly optimization algorithm, referred to as the

RO-FOA algorithm. It borrows the knowledge from

biological theory and mimics the dispersion patterns found

in the organisms’ survival tactics.

For the implementation, the RO-FOA algorithm uses

both random walk and opposition-based learning algorithms.

The two new ideas are put in the proposed OBL. They are

(i) variation of shrinking probability versus iterations, and

(ii) control of search transition from the exploration to the

exploitation phase through the shrinking probability.

 The main characteristics of RO-FOA in finding the

optimal solution can be summarized as follows:

 The RO-FOA uses the RW algorithm as the main

procedure.

 The RO-FOA uses the OBL algorithm to further

enhance the main procedure.

 The RO-FOA generates three population patterns,

uniform distribution, random distribution, and

clumped distribution.

 Together with the three population distributions, the

RO-FOA uses the individual exploration of RW and

OBL to enhance the diversity of populations in a

wide area while individually exploiting RW and

OBL to enhance the search solution in a narrow area.

 Two types of population and dynamic distribution

behaviors can help prevent the algorithm from

becoming trapped at local optima whereas only one

population behavior variant in the FOA can lead to

that algorithm becoming trapped easily in local

optima. The RO-FOA demonstrated its performance

in solving unconstrained function optimization

problems, through an enhanced search method,

which adds diversity to its searching ability to find

the best position.

 By a simple programming technique, for any value

of sizepop, only three fruit flies are required.

 We evaluated the RO-FOA's performance using 34 well-

known standard benchmark functions. The simulation results

clearly illustrated that the RO-FOA is capable of increasing

the diversity of each individual fruit fly in any iteration,

without becoming trapped at a local optima. Additionally,

the RO-FOA outperformed both the original and variant

FOAs in terms of convergence speed and performance

accuracy in finding an optimal solution. The proposed

method demonstrated enhanced exploration, exploitation,

and solution accuracy in all functions.

From the training of two MLPs for 5-bit and 8-bit auto-

encoder problems, the results demonstrate a high level of

accuracy in classification of the proposed RO-FOA trainer.

 When we compare RO-FOA with the well-known DE,

GSA, PSO, HS, GWO, FPA, and MFPA algorithms, the

mechanisms for generating new offspring are totally

different. RO-FOA generates the offspring from the best

solution only, but its search ability is good because of the

cooperation of the random walk, opposition-based learning

algorithms, and search radius scheduling. Each of the seven

competitive algorithms generates new offspring using the

whole solution vectors to create a good diversification in

population.

 In future work, we intend to apply the proposed RO-FOA

approach in the machine learning related problems, such as

multi-layer perceptron training, support vector machine

training, and clustering algorithms. Furthermore, we found

that the idea of generating the new offspring from a single

best vector is very interesting because the resulting algorithm

is very compact. This idea came from the era before swarm

intelligent algorithms. However, we have compared

RO-FOA using several random search algorithms with the

benchmark functions in this paper and found that the

algorithms of that kind hardly solved them. From our

experience, an algorithm that generates new offspring from

a single solution requires at least two clever components (i)

a proper search radius scheduling, and (ii) a proper random

walk generator. These two things must be further

investigated.

9. References

[1] Kennedy J, Eberhart R. Particle swarm optimization.

International Conference on Neural Networks; 1995

Nov 27 - Dec 1; Perth, Australia. USA: IEEE; 1995.

p. 1942-8.

[2] Dorigo M, Maniezzo V, Colorni A. Ant system:

optimization by a colony of cooperating agents. IEEE

Trans Syst Man Cybern B Cybern. 1996;26(1):29-41.

[3] Karaboga D, Akay B. A comparative study of artificial

bee colony algorithm. Appl Math Comput. 2009;

214(1):108-32.

[4] Yang X, Suash D. Cuckoo Search via Lévy flights.

2009 World Congress on Nature & Biologically

Inspired Computing (NaBIC); 2009 Dec 9-11;
Coimbatore, India. USA: IEEE; 2009. p. 210-4.

[5] Yang XS. A new metaheuristic bat-inspired algorithm.

In: González J, Pelta D, Cruz C, Terrazas G, Krasnogor

N, editors. Nature Inspired Cooperative Strategies for

Optimization (NICSO 2010): Studies in

Computational Intelligence. Berlin: Springer; 2010.

p. 65-74.

[6] Behera S, Sahoo S, Pati BB. A review on optimization

algorithms and application to wind energy integration

to grid. Renew Sustain Energ Rev. 2015;48:214-27.

[7] Su Z, Wang H. A novel robust hybrid gravitational

search algorithm for reusable launch vehicle approach

and landing trajectory optimization. Neurocomputing.

2015;162:116-27.

[8] Kim H, Kang S. Communication-aware task

scheduling and voltage selection for total energy

minimization in a multiprocessor system using ant

colony optimization. Inform Sci. 2011;181(18):3995-

4008.

[9] Rao RV, Savsani VJ, Vakharia DP. Teaching–

learning-based optimization: A novel method for

constrained mechanical design optimization problems.

Comput Aided Des. 2011;43(3):303-15.

Engineering and Applied Science Research January – March 2020;47(1) 21

[10] Chen Y, Wong ML, Li H. Applying ant colony

optimization to configuring stacking ensembles for

data mining. Expert Syst Appl. 2014;41(6):2688-702.

[11] Mylonas SK, Stavrakoudis DG, Theocharis JB.

GeneSIS: A GA-based fuzzy segmentation algorithm

for remote sensing images. Knowl Base Syst. 2013;54:

86-102.

[12] Pan WT. A new fruit fly optimization algorithm: taking

the financial distress model as an example. Knowl

Base Syst. 2012;26:69-74.

[13] Pan WT. Using modified fruit fly optimisation

algorithm to perform the function test and case studies.

Connect Sci. 2013;25(2-3):151-60.

[14] Shan D, Cao G, Dong H. LGMS-FOA: an improved

fruit fly optimization algorithm for solving

optimization problems. Math Probl Eng. 2013;2013:ID

108768.

[15] Pan QK, Sang HY, Duan JH, Gao L. An improved fruit

fly optimization algorithm for continuous function

optimization problems. Knowl Base Syst. 2014;62:69-

83.

[16] Yuan X, Dai X, Zhao J, He Q. On a novel multi-swarm

fruit fly optimization algorithm and its application.

Appl Math Comput. 2014;233:260-71.

[17] Ding S, Zhang X, Yu J. Twin support vector machines

based on fruit fly optimization algorithm. Int J Mach

Learn Cyber. 2016;7:193-203.

[18] Li HZ, Guo S, Li CJ, Sun JQ. A hybrid annual power

load forecasting model based on generalized

regression neural network with fruit fly optimization

algorithm. Knowl Base Syst. 2013;37:378-87.

[19] Abidin ZZ, Arshad MR, Ngah UK. A simulation based

fly optimization algorithm for swarms of mini

autonomous surface vehicles application. Indian J Mar

Sci. 2011;40:250-66.

[20] Lei X, Ding Y, Fujita H, Zhang A. Identification of

dynamic protein complexes based on fruit fly

optimization algorithm. Knowl Base Syst. 2016;105:

270-7.

[21] Cao G, Wu L. Support vector regression with fruit fly

optimization algorithm for seasonal electricity

consumption forecasting. Energy. 2016;115:734-45.

[22] Hu R, Wen S, Zeng Z, Huang T. A short-term power

load forecasting model based on the generalized

regression neural network with decreasing step fruit fly

optimization algorithm. Neurocomputing. 2017;221:

24-31.

[23] Kanarachos S, Griffin J, Fitzpatrick ME. Efficient truss

optimization using the contrast-based fruit fly

optimization algorithm. Comput Struct. 2017;

182:137-48.

[24] Hongde D, Guorong Z, Jianhua L, Shaowu D.

Comment and improvement on "A new Fruit Fly

Optimization Algorithm: Taking the financial distress

model as an example". Knowl Base Syst. 2014;59:

159-160

[25] Cupertino TH, Guimarães Carneiro M, Zheng Q,

Zhang J, Zhao L. A scheme for high level data

classification using random walk and network

measures. Expert Syst Appl. 2018;92:289-303.

[26] Faragallah OS, Abdel-Aziz G, Kelash HM. Efficient

cardiac segmentation using random walk with pre-

computation and intensity prior model. Appl Soft

Comput. 2017;61:427-46.

[27] Lang J, Prehl J. An embarrassingly parallel algorithm

for random walk simulations on random fractal

structures. J Comput Sci. 2017;19:1-10.

[28] Li W, Xie J, Xin M, Mo J. An overlapping network

community partition algorithm based on semi-

supervised matrix factorization and random walk.

Expert Syst Appl. 2018;91:277-85.

[29] Rahnamayan S, Tizhoosh HR, Salama MMA. A novel

population initialization method for accelerating

evolutionary algorithms. Comput Math Appl.

2007;53(10):1605-14.

[30] Rahnamayan S, Tizhoosh HR, Salama MMA.

Opposition-based differential evolution. evolutionary

computation. IEEE Trans Evol Comput.

2008;12(1):64-79.

[31] Niknamfar AH, Niaki STA, Niaki SAA. Opposition-

based learning for competitive hub location: a bi-

objective biogeography-based optimization algorithm.

Knowl Base Syst. 2017;128:1-19.

[32] Sharma TK, Pant M. Opposition based learning

ingrained shuffled frog-leaping algorithm. J Comput

Sci. 2017;21:307-15.

[33] Ahandani MA. Opposition-based learning in the

shuffled bidirectional differential evolution algorithm.

Swarm Evol Comput. 2016;26:64-85.

[34] Chen X, Yu K, Du W, Zhao W, Liu G. Parameters

identification of solar cell models using generalized

oppositional teaching learning based optimization.

Energy. 2016;99:170-80.

[35] Odum EP. Basic Ecology. Philadelphia: Saunders

College Publishing; 1983.

[36] Lianghong W, Cili Z, Hongqiang Z. A cloud model

based fruit fly optimization algorithm. Knowl Base

Syst. 2015;89: 603-617.

[37] Marko M, Najdan V, Milica P, Zoran M. Chaotic fruit

fly optimization algorithm. Knowl Base Syst. 2015;89:

446-458.

[38] Jinwei N, Cili Z, Weimin Z, Yi L, Na L, Feng Q. Fruit

fly optimization algorithm based on differential

evolution and its application on gasification process

operation optimization. Knowl Base Syst. 2015;88:

253-263.
[39] Zhang Y, Cui G, Wu J, Pan WT, He Q. A novel multi-

scale cooperative mutation fruit fly optimization

algorithm. Knowl Base Syst. 2016;114:24-35.

[40] Eskandar H, Sadollah A, Bahreininejad A, Hamdi M.

Water cycle algorithm – a novel metaheuristic

optimization method for solving constrained

engineering optimization problems. Comput Struct.

2012;110-111:151-66.

[41] Yu JJQ, Li VOK. A social spider algorithm for global

optimization. Appl Soft Comput. 2015;30:614-27.

[42] Mirjalili S. The ant lion optimizer. Adv Eng Software.

2015;83:80-98.

[43] Tizhoosh HR. Opposition-based learning: a new

scheme for machine intelligence. International

Conference on Computational Intelligence for

Modelling, Control and Automation and International

Conference on Intelligent Agents, Web Technologies

and Internet Commerce; 2005 Nov 28-30; Vienna,

Austria. USA: IEEE; 2005. p. 695-701.

[44] Xu Q, Wang L, Wang N, Hei X, Zhao L. A review of

opposition-based learning from 2005 to 2012. Eng

Appl Artif Intell. 2014;29:1-12.

[45] Yao X, Liu Y, Lin G. Evolutionary programming made

faster. IEEE Trans Evol Comput. 1999;3(2):82-102.

[46] Beyer HG, Schwefel HP, Wegener I. How to analyse

evolutionary algorithms. Theor Comput Sci. 2002;

287(1):101-30.

22 Engineering and Applied Science Research January – March 2020;47(1)

[47] Yelghi A, Köse C. A modified firefly algorithm for

global minimum optimization. Appl Soft Comput.

2018;62:29-44.

[48] Wang CF, Song WX. A novel firefly algorithm based

on gender difference and its convergence. Appl Soft

Comput. 2019;80:107-24.

[49] Shi Y, Eberhart RC. Empirical study of particle swarm

optimization. Proceedings of the 1999 Congress on

Evolutionary Computation-CEC99; 1999 Jul 6-9;
Washington, USA. USA: IEEE; 1999. p. 1945-50.

[50] Vesterstrom J, Thomsen R. A comparative study of

differential evolution, particle swarm optimization,

and evolutionary algorithms on numerical benchmark

problems. Proceedings of the 2004 Congress on

Evolutionary Computation; 2004 Jun 19-23; Portland,

USA. USA: IEEE; 2004. p. 1980-7.

[51] Lee KS, Geem ZW. A new meta-heuristic algorithm

for continuous engineering optimization: harmony

search theory and practice. Comput Meth Appl Mech

Eng. 2005;194(36-38):3902-33.

[52] Rashedi E, Nezamabadi-pour H, Saryazdi S. GSA: a

gravitational search algorithm. Inform Sci.

2009;179(13): 2232-48.

[53] Mirjalili S, Mirjalili SM, Lewis A. Grey wolf

optimizer. Adv Eng Software. 2014;69:46-61.
[54] Yang XS. Flower pollination algorithm for global

optimization. In: Durand-Lose J, Jonoska N, editors.

International Conference on Unconventional

Computing and Natural Computation; 2012 Sep 3-7;

Orléan, France. Berlin: Springer; 2012. p. 240-9.

[55] Nabil E. A modified flower pollination algorithm for

global optimization. Expert Syst Appl. 2016;57:192-

203.

[56] Hrstka O, Kučerová A. Improvements of real coded

genetic algorithms based on differential operators

preventing premature convergence. Adv Eng Software.

2004;35(3-4):237-46.

[57] Hornik K, Stinchcombe M, White H. Multilayer

feedforward networks are universal approximators.

Neural Network. 1989;2(5):359-66.

[58] Faris H, Aljarah I, Mirjalili S. Training feedforward

neural networks using multi-verse optimizer for binary

classification problems. Appl Intell. 2016;45:322-32.

[59] Mirjalili S. How effective is the grey wolf optimizer in

training multi-layer perceptrons. Appl Intell. 2015;

43:150-61.

Appendix A

Descriptions of test problems

1. Sphere model

.0)0,...,0()min(

12.512.5,)(

11

1

2
1






ff

xwithxxf

n

i

ii

2. Axis parallel hyperellipsoid

.0)0,...,0()min(

12.512.5,)(

22

1

2
2






ff

xwithixxf

n

i

ii

3. Schwefel problem 1.2

.0)0,...,0()min(

6565,)(

33

1

2

1

3

















 

 

ff

xwithxxf

n

i

i

i

j

j

4. Rosenbrock's valley

   

.0)1,...,1()min(

22,1100)(

44

1

1

222
14









 






ff

xwithxxxxf

n

i

iiii

5. Rastrigin function

  

.0)0,...,0()min(

12.512.5,2cos1010)(

55

1

2
5



 


ff

xwithxxnxf

n

i

iii 

6. Griewangk function

.0)0,...,0()min(

600600,1cos
4000

)(

66

1 1

2

6













 

 

ff

xwith
i

xx
xf

n

i

i

n

i

ii

Engineering and Applied Science Research January – March 2020;47(1) 23

7. Sum of different power

.0)0,...,0()min(

11,)(

77

1

1

7








ff

xwithxxf

n

i

i

i

i

8. Ackley's path function

 

.0)0,...,0()min(

3232,20
2cos

exp2.0exp20)(

88

11

2

8









































 

ff

xwithe
n

x

n

x
xf i

n

i
i

n

i
i 

9. Beale function

        

.0)5.0,3()min(

5.45.4,1625.2125.215.1)(

99

23
21

22
21

2
219





ff

xwithxxxxxxxf i

10. Colville function

               

.0)1,1,1,1()min(

1010

,118.19111.101901100)(

1010

42
2

4
2

2
2

3

22
34

2
1

22
1210







ff

xwith

xxxxxxxxxxxf

i

11. Easom function

          
.1),()min(

100100,expcoscos)(

1111

2
2

2
12111









ff

xwithxxxxxf i

12. Hartman function 1

 

.86278.3)852547.0,555649.0,114614.0()min(

10,exp)(

1212

3

1

2
4

1

12

















 



ff

xwithPxAxf i

j

ijjij

i

i

 where  2.332.11





















35101.0

30103

35101.0

30103

A





















88280.057430.003815.0

55470.087320.010910.0

74700.043870.046990.0

26730.011700.036890.0

P

13. Hartman function 2

   

    32237.36573.0,311652.0,275332.0,476874.0,150011.0,20169.0min

10,exp

1313

4

1

6

1

2
13

















  

 

ff

xwithQxBxf

i

i

j

ijjiji

 where  2.332.11





















141.01005.0817

817107.15.33

1481.0171005.0

87.105.317310

B

Engineering and Applied Science Research January – March 2020;47(1) 23





















0381.01091.05743.08732.08828.04047.0

6650.03047.02883.03522.01451.02348.0

9991.01004.03736.08307.04135.02329.0

5886.08283.00124.05569.01696.01312.0

Q

14. Six Hump Camel back function

 

      .0316.17126.0,0898.0/7126.0,0898.0min

55,44
3

1
1.24

1414

4

2

2

221

6

1

4

1

2

114





ff

xwithxxxxxxxxf i

15. Levy function

             

    .01,...,1min

1010,2sin113sin113sin

1515

1

1

2
1

22
1

2
15



 






ff

xwithxxxxxxf i

n

i

nnii 

16. Matyas function

    
    .00,0min

1010,48.026.0

1616

21
2
2

2
116





ff

xwithxxxxxf i

17. Perm function

   

    .0...,,3,2,1min

,1
1

5.0

1717

1

2

1

17








































 

 

nff

nxnwithx
i

ixf

n

k

i

n

i

k

i
k

18. Michalewicz function

    

 
  .66015.9min

,687658.4min

,8013.1)min(

10,0,/sinsin)(

)10(18

)5(18

)2(18

1

22
18



















n

n

n

i

n

i

m

ii

f

f

f

mxwithixxxf 

19. Zakharov function

 

    .00...,,0min

105,5.05.0

1919

1

4

1

2

1

2
19
































 

 

ff

xwithixixxxf

n

i

i

n

i

i

n

i

ii

20. Branin function

       

   
      .3979.0475.2,42478.9/275.12,min

8/1,10,6,/5,4/1.5,1

150,105,cos1

2020

2

21

2

1
2
1220













ff

fedcbwhere

xxwithexfedcxbxxxf i

21. Schwefel problem 2.22

 

    .00...,,0min

10,

2121

1 1

21



 
 

ff

xwithxxxf

n

i

i

n

i

ii

22. Schwefel problem 2.21

   

    .00...,,0min

100100,1,max

2222

22





ff

xwithnixxf ii
i

23. Step function

    

    .05.05.0min

100100,5.0

2323

1

2
23






i

i

n

i

i

xff

xwithxxf

24. Quartic function

24 Engineering and Applied Science Research January – March 2020;47(1)

   

    .00...,,0min

28.128.1,1,0

2424

1

4
24






ff

xwithrandomixxf i

n

i

i

25. Kowalik's function

 
 

   

 

 16141210864215.025.0

0246.00235.00323.00342.00456.00627.00844.01600.01735.01947.01957.0

0003075.014.0,12.0,19.0,19.0min

55,

1

2525

11

1

2

43
2

2
2

1
25































b

where

ff

xwith
xxbb

xbbx
xf i

i ii

ii
i





26-28. Shekel's Family

   

     

 
   
   

.

5.0

5.0

7.0

3.0

6.0

4.0

4.0

2.0

2.0

1.0

,

6.376.37

2626

1818

3355

9292

7373

6666

8888

1111

4444

.5.104,4,4,4min

,4.104,4,4,4min

,2.104,4,4,4)min(

,100,,,,

10,7,5,)(

2828

2727

2626

282726

1

1

























































































 





c

where

ff

ff

ff

xlyrespectivexfandxfxffor

andmwithcxxxf

j

m

i

i
T

iiii





29. Tripod function

                

   

    .0,,01

050,0min

100100,215021501

2929

221211229







xpotherwisexforxp

where

ff

xwithxpxxpxpxxpxpxf i

30. De Jong function 4 (no noise)

 

    .00...,,0min

28.128.1,

3030

1

4
30






ff

xwithixxf i

n

i

i

31. Alpine function

   

    .00...,,0min

1010,1.0sin

3131

1

31






ff

xwithxxxxf i

n

i

iii

32. Schaffer function 6

Engineering and Applied Science Research January – March 2020;47(1) 25

 

 
 

    .00,0min

1010,

01.01

5.0sin
5.0

3232

22
2

2

2
2

22

32










ff

xwith

xx

xx
xf i

i

i

33. Pathological function

 

 
 

    .00,...,0min

100100,

2001.01

5.0100sin
5.0

3333

1

1
22

11
2

2
1

22

33

























 



ff

xwith

xxxx

xx
xf i

n

i iiii

ii

34. Inverted cosine wave function (Masters)

 

 

    .10...,,0min

55,5.04cos
8

5.0
exp

3434

1

1

1
2

1
21

2
1

2

34
























 












 
 








nff

xwithxxxx
xxxx

xf i

n

i

iiii
iiii

Appendix B

The initial parameters of algorithms

Algorithm Parameter Value

RO-FOA Population size

Maximum iteration number (maxgen)

50 for function optimization, 200 for MLP

1000 for function optimization, 250 for MLP

FFO

[60]

Population size

Maximum iteration number (maxgen)

50 for function optimization, 200 for MLP

1000 for function optimization, 250 for MLP

LGMS

[14]

Population size

Maximum iteration number (maxgen)

The searching coefficient (n)

The initial weight (w0)

The weight coefficient (𝛼)

50 for function optimization, 200 for MLP

1000 for function optimization, 250 for MLP

0.005

1

0.95

IFFO

[15]

Population size

Maximum iteration number (maxgen)

The maximum radius (𝛾𝑚𝑎𝑥)

The minimum radius (γmin)

50 for function optimization, 200 for MLP

1000 for function optimization, 250 for MLP

𝑈𝐵 − 𝐿𝐵/2

10−5

MFOA

[16]

Population size

Maximum iteration number (maxgen)

The sub-swarms number (M)

The fine-tuning of solution vectors (𝜃)

50 for function optimization, 200 for MLP

1000 for function optimization, 250 for MLP

5

2

MSFOA

[39]

Population size

Maximum iteration number (maxgen)

The search coefficient (n)

The initial weight (w0)

The weight coefficient (𝛼)

The scale number (M)

50 for function optimization, 200 for MLP

1000 for function optimization, 250 for MLP

0.005

1

0.95

5

PSO

[49]

Population size

Maximum iteration number (maxgen)

The particle’s confidence (c1, c2)

The inertia weight (wmax , wmin)

The velocity parameter (vmax)

50 for function optimization, 200 for MLP

1000 for function optimization, 250 for MLP

2, 1.5

1.3, 0.3

limited to 20% of the domain

DE

[61]

Population size

Maximum iteration number (maxgen)

The scaling factor (F)

The crossover probability constant (CR)

50 for function optimization, 200 for MLP

1000 for function optimization, 250 for MLP

0.5

0.9

HS

[51]

Population size

Maximum iteration number (maxgen)

The harmony memory size (HMS)

The harmony memory consideration rate (HMCR)

The pitch adjusting rate (PAR)

50 for function optimization, 200 for MLP

1000 for function optimization, 250 for MLP

sizepop

0.90

0.35

GSA

[52]

Population size

Maximum iteration number (maxgen)

The initial gravitational constant (G0)

The constant descending coefficient (𝛼)

The constant (β)

50 for function optimization, 200 for MLP

1000 for function optimization, 250 for MLP

1

1

10

GWO

[53]

Population size

Maximum iteration number (maxgen)

50 for function optimization, 200 for MLP

1000 for function optimization, 250 for MLP

FPA

[54]

Population size

Maximum iteration number (maxgen)

The switch probability (P)

The step size scaling factor (γ)

The Levy flight (λ)

50 for function optimization, 200 for MLP

1000 for function optimization, 250 for MLP

0.8

0.01

1.5

MFPA

[55]

Population size

Maximum iteration number (maxgen)

The switch probability (P)

The step size scaling factor (γ1, γ2)

The Levy flight (λ)

The cloning array

50 for function optimization, 200 for MLP

1000 for function optimization, 250 for MLP

0.8

1, 3

1.5

[9, 8, 7, 6, 5, 4, 3, 2, 1, 1, 1, 1, 1, 1]

