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Abstract 

 

In this paper, the already strong McEliece cryptosystem is enhanced with a two-dimensional finite Gaussian integer. By 

substituting the one-dimensional linear code with a two-dimensional code employing a finite Gaussian integer, a new system 

simultaneously increases the key space and the errors to be correct by syndrome decoding. We compare the proposed system 

against the classic McEliece system in three aspects: the work factors performing the trial of the attacks, the computational 

complexity cost, and the empirical running time of the system. Compared to the classic McEliece cryptosystem, the enhanced 

cryptosystem achieves a higher security level against key recovering and decoding attacks. By carefully selecting parameters, 

a small code element can improve the key strength without compromising the runtime efficiency. 
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1. Introduction 

 

It has been revealing that quantum algorithms 

implemented on quantum computers are capable of breaking 

the widely used asymmetric cryptosystems. The commonly-

used cryptosystems that rely on the practical difficulty of the 

factorization of the product of two large prime numbers or 

the difficulty of inverting a discrete logarithm problem can 

be broken by Shor’s algorithm [1]. Quantum computers 

appear to be only concepts at the moment. However, it is 

expected that functioning devices will be built in the 

upcoming decades. To prepare for this inevitable future, 

cryptography that can resist a quantum-algorithm-based 

attack called post-quantum cryptography (PQC) is being 

proposed. The classic McEliece cryptography [2] is a code-

based PQC using the binary Goppa codes as an error 

correcting code. It relies on the difficulty of the syndrome 

decoding problem of a linear code. In detail, the syndrome 

decoding problem is an NP-complete problem that cannot be 

conveniently solved by quantum algorithms. The key 

advantage of the system is that both algorithms for 

encryption and decryption have low complexity. However, 

the large key size is the main weakness and the problem to 

be resolved by researchers. 

Several improvements focused on substituting the Goppa 

codes with other one-dimensional linear codes. Niederreiter 

[3] proposed a digital signature scheme based on McEliece 

using Reed-Solomon code. The scheme can reduce the key 

size, but it is broken by structural attacks [4]. Sidelnikov [5] 

proposed a Reed-Muller coding-based cryptosystem with a 

lower key length to obtain faster encryption and decryption. 

However, the system has been cryptanalyzed with an 

observation attack [6]. Monico et al. [7] replaced Goppa 

codes with low-density parity check (LDPC) code to 

decrease the key size, but the permutation matrix was unable 

to hide the secret key because of the low-density weight of 

the scheme. In another improvement on resolving the 

permutation problem, Baldi et al. [8] considered a quasi-

cyclic low-density parity check (QC-LDPC) code and 

Misoczki et al. [9] introduced a moderate density parity 

check (MDPC) code. A QC-LDPC cryptosystem is needed 

to extend the specific matrices, but the MDPC cryptosystem 

did not require any extended matrices. However, both 

cryptosystems failed during the decryption process. Shrestha 

and Kim [10] introduced a code-based cryptosystem using a 

polar code that can reduce the decryption key length. 

Furthermore, Hooshmand et al. [11] suggested a public key 

scheme based on polar codes to decrease the key pair lengths. 

Polar code-based schemes were successfully cryptanalyzed 

by Bardet et al. [12]. Hooshmand et al. [13] introduced the 

PKC-PC, the new public key cryptosystem using polar code 

that employs a random selection of subcode to prevent this 

type of cryptanalyst attack. 

The use of Gaussian integers was one of the more 

efficient approaches to increase the security level in widely 

used asymmetric cryptosystems. For example, Pradhan and 

Sharma [14] proposed a modified algorithm using Gaussian 

integers in an RSA cryptosystem. This scheme provided 

more security compared   to the classical   approach because   

it   increased   the number of chosen messages and public 

exponents that made trials more complicated.  Mohamed and 

Elkamchouchi [15]  proposed  a  new  approach  to  improve  
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Figure 1 The framework of the proposed cryptosystem 

 

security in elliptic curve cryptography. The reason to use 

Gaussian integers instead of rational integers is to acquire a 

greater number of points to increase the strength of the curve. 

In PQC, Nanda et al. [16] modified the NTRU cryptography 

algorithm using a Gaussian integer matrix. This method 

increased the security due to expansion of the key space. 

Prior to our study, there has been no publication on 

applying multi-dimensional error correcting code with the 

McEliece cryptosystem. In this paper, we propose a novel 

McEliece-based cryptosystem using the two-dimensional 

Mannheim code over Gaussian integer fields instead of the 

one-dimensional linear code used in the classic McEliece 

cryptosystem. The Mannheim code increases the range of 

code words and syndrome of code. Hence, it improves the 

security level of the cryptosystem.  
 

2. Methodology 
 

2.1 Codes over Gaussian integers 
 

Mannheim error correcting (MEC) codes are two-

dimensional coding systems over Gaussian integers designed 

by Huber [17-18]. MEC codes are constructed based on finite 

Gaussian integer fields (Gπ) and are corrected in accordance 

with the Mannheim distance. In detail, the Gπ are constructed 

from prime p of the form p≡1 mod 4 that p= π∙π* where π and 

π* are a complex number and its conjugate, respectively. The 

Mannheim distance shows the difference between two 

elements of Gπ which can be composed by Mannheim 

weight. 

 

2.1.1 Constructing the generator and parity-check matrices 

 

We start by designing a MEC of length n=(pr-1)/4 which 

contains elements α in Gπ of order p. Then, the parity-check 

matrix H and the corresponding generator matrix G can be 

constructed as Eq. (1) and (2), respectively: 

 

H = [1, αr, αr+1, … , α((pr-1)/4)-1] (1) 

 

G = [

-αr

-αr+1

⋮
-α((pr-1)/4)-1

1 0 …

0 1 …
⋮
0

⋮
0

⋱
…

0

0
⋮
1

] (2) 

 

For example, from [17], with a sample prime p =13, π = 

3+2i, r=1 and α = 1+i, we can construct the matrices H = [1, 

1+i, 2i] and G = [
-(1+i) 1 0

-2i 0 1
]. 

2.1.2 MEC encoding and decoding 

 

In MEC encoding, the generator matrix G encodes input 

vectors to code word vectors c = (c0, c1, …, cn-1) over Gπ. The 

code words are sent across a channel with noise, hence 

different syndromes of code words are produced by any error 

vectors. The important purpose of the decoding process is to 

correct the received vector r = c+e. The parity-check matrix 

H is used to compute the value of errors and to discover their 

location occurring in the syndromes of the received vector. 

The syndromes can be computed by s = H∙rT. Their positions 

are given by l = log
α

s mod n and the values by s∙α-l. In the 

previous example, we assume that a vector r = (1+i, i , -1+i). 

Then the syndrome s = -2 = α11, the location l = 11 mod 3 = 

2, the error value is -2∙α-2 = i, and we have the error vector e 

= (0, 0, i). Therefore, the code word is c = r-e is (1+i, i, -1). 

 

2.2 Proposed cryptosystem 

 

The proposed cryptosystem is based on McEliece using 

MEC over Gaussian integers. Briefly, the sender wants to 

transmit messages to a receiver. The receiver assigns the 

security level (SL) that variables p, r, and primitive 

polynomial g(x) will be set automatically in the cryptosystem 

for the initial state. The system generates a private key and a 

public key for encoding and decoding processes. The text 

messages are encoded to ciphertexts and sent across an 

unsecured channel. Then ciphertexts are decoded to 

plaintexts using the private key. The framework of the 

cryptography system is shown in Figure 1. 

 

2.2.1 Key generation 

 

In key generation, the security parameters n, k, d, and p 

are automatically generated from security level parameters. 

The cryptosystem constructs [n, k, dM]p MEC of primitive 

element L that are the block codes over finite Gaussian 

integer fields Gπr  with the length of n=(pr-1)/4 symbols, 

dimension of k = n-r symbols and minimum Mannheim 

distance dM. Then, the codes define the parity check matrix 

H with   corresponding   generator   matrix   G   for   

correcting syndrome codes in the decryption process and for 

generating the private key, respectively. 

The private key includes the secret generator matrix G 

and two non-singular matrices, a scramble matrix S and 

permutation  matrix  P.   We  use  elements  in  Gπ  to  random 
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Table 1 Key generation algorithm 

 

Algorithm 1 Key generation 

Input: The security level SL = (p, r, g(x)) where p ≡ 1 mod 4, g(x) ∈ Gπ[x] with deg(g(x)) = r 

Output: The public key Gpub and public variables n, k, d, and p; The private key H, P, and S 

1: Construct [n, k, dM]p MEC codes L that n = (pr-1)/4) ,k = n-r  and dM = minimum Mannheim distance 

2: Generate H = [1, αr, αr+1, …, αn-1] , α ∈ L  

3: 

Generate G = [

-αr

-αr+1

⋮
-αn-1

1 0 …

0 1 …
⋮
0

⋮
0

⋱
…

0

0
⋮
1

] , GHT =0 

4: Generate a scramble S ∈ L of dimension k x k 

5: Generate a permutation P of dimension n x n 

6: Gpub = S-1GP mod π 

7: Return the public variables = (Gpub, n, k, d, p) and the private variables = (H, P, S) 

 

Table 2 Encryption algorithm 

 

Algorithm 2 Encryption 

Input: The public variables = (Gpub, n, k, d, p) and Message M 

Output: The ciphertext C 

1: Convert M to MEC block message Mπ of length k 

     Convert M to M2  

     Convert M2 to Mnumber of Lm
 by Horner algorithm 

     Map Mnumber of Lm
 to Mπ 

2: Random error vector E of length n 

3: Cπ = MπGpub + E 

4: Return the ciphertext C 

 

scramble a matrix of dimension k x k and apply a Gaussian 

elimination method to check its invertibility. For the 

construction of the permutation matrix, we rotate a row of an 

n x n identity matrix over Gaussian integer that contains a 

single element from the set {1, -1, i, -i}.  

 The public key is obtained as Gpub = S-1GP mod π for the 

encoding process. The generator matrix is randomized by 

secret scrambles and permutation matrices to make its 

structure non-systematic. Since no one knows the secret 

parameters of the public key, it is difficult to perform the 

correct decryption. Hence, the public key can be published 

to everyone, not only the sender. The key generation 

algorithm is described in Table 1. 

 

2.2.2 Encryption 

 

In the encryption procedure, the system first converts an 

original message from the sender to a k-length symbol 

message as MEC block codes. The binary vector of the 

plaintext is transformed to a corresponding representation 

vector in base number of message elements (Lm) using the 

Horner algorithm [19]. Then the system maps this vector to 

the primitive elements of MEC codes. For example, in the 

case of MEC codes Mπ that π=2+i, primitive element L = {1, 

i, -1, -i} and Lm ={0, 1, -1, i, -i, 1+i, 1-i, -1+i, -1-i}. With 9 

possible elements of Lm, the binary message vector M2 = (0, 

0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0) is transformed to M9 = (1, 0, 5, 

0) and is mapped to M2+i = (1, 0, 1+i, 0) with members in Lm, 

respectively. 

 In the next step, the public key is used to encrypt the 

plaintext to ciphertext. The system generates an arbitrary 

non-zero error vector E of Mannheim weight. This means the 

error values (±1, ±i) will be added at random positions l (0 ≤ 

l ≤ n-1). Finally, the system produces the syndrome of each 

cipher vector with different generated error vectors. The 

encryption algorithm is described in Table 2. 

2.2.3 Decryption 

 

 The decryption algorithm is described in Table 3. Each 

private parameter in the private key is used to decrypt the 

ciphertext to the original message. First, the received 

ciphertext C is multiplied by the inverse of the permutation 

matrix to remove permutations in the cipher vector. To 

decode the cipher vector, the parity check matrix is used to 

compute the error values and their locations occurring in the 

syndrome. After decoding, the cipher vector must remove the 

scrambles. The scramble matrix is multiplied by the decoded 

cipher vector and then the plaintext is given as MEC block 

codes. In order to obtain the original message, the system 

converts MEC codes Mπ to M using reversion of the 

transformation process in the encryption procedure. The 

MEC codes are mapped to the corresponding representation 

vector of Lm. Then, this vector is transformed into a binary 

vector using the Horner algorithm. Finally, the binary vector 

is reconstructed to the desired message. 

 

3. Results and discussion 

 

3.1 Computational assessment 

 

In this section, we examined computation of the 

proposed cryptosystem. The computational assessment is 

divided into two sections: 1) theoretical computations, and 

2) empirical computations. 

 

3.1.1 Theoretical computation 

 

In theoretical computations, we estimate the 

computational complexity cost of key generation (ComK), 

encryption (ComE) and decryption (ComD) with regard to the  
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Table 3 Decryption algorithm 

 

Algorithm 3 Decryption 

INPUT: The private variables = (H, P, S) and The ciphertext C 

OUTPUT: The message M 

1: Y =CπP
-1      

2: Y' = Decode(H, Y) 

3: Mπ = Y'S mod π  

4: Convert Mπ to original message M 

     Map Mπ to Mnumber of Lm
 

     Convert Mnumber of Lm
to M2 by Horner algorithm 

     Convert M2 to M 

5: Return the message M 

 

Table 4 Comparison of the computational complexity costs of key generation, encryption and decryption of the proposed 

cryptosystem and original cryptosystem 

 

Cryptosystem Original  

McEliece1 [2] 

Original  

McEliece2 [20] 

Gaussian McEliece 

Key generation O(n3) O(t3(n-k)) + O((n-k)3) + 

O(k2n + n2) 

O(p(n-k)) + O(n) + O(n-k) + O(n) + 

O(k2) + O(n3) + O(k3) 

Encryption O(n2) O(kn) + O(t) O(k) + O(kn) + O(n-k) 

Decryption O(n2) O(ntm2) + O(n) + O(k2) O(n2) + O(p) + O(k2) + O(k) 

 

complexity of additions, multiplications, and modular 

operations. Following the key generation algorithm in 

Table 1, the MEC codes are constructed over Gπr. Then, the 

private and public variables are generated for further 

processes. Thus, the key generation complexity is computed 

as Eq. (3): 

 

ComK = Comcon+ Compri + Compub (3) 

 

where Comcon = O(p(n-k)) is the complexity of MEC code 

construction over Gπr . The complexity of private variables is 

Compri = O(n) + O(n-k) + O(n) + O(k2) + O(n3) + O(k3) 

consisting of the construction complexity of the parity check 

matrix H, the generator matrix G, the permutation matrix P, 

the scramble matrix S, as well as inversions of P and S. 

Public key construction is the only public variable that is 

important in the complexity. The complexity of public 

variables is Compub= O(k2n) + O(n2k). 

In encryption, the original message is converted to the 

finite Gaussian integer field Mπ. Then, the ciphertext is 

generated by multiplying Mπ with the public key Gpub and 

adding a random error vector E. The complexity cost of 

encryption can be computed as Eq. (4): 

 

ComE = Comc + Comm(MπGpub) + Coma(E) (4) 

 

where Comc = O(k) is the complexity of the k-symbol 

conversion process. Comm(MπGpub) = O(kn) is a complexity 

of multiplying the message and public key, and the final part 

is the complexity of adding the error to ciphertext as 

Coma(E) = O(n-k). 

The decryption algorithm is shown in Table 3. The 

received ciphertext is decrypted by multiplying the inverse 

of P. Then, the decoding process corrects error vectors and 

removes the scramble by multiplication of the scramble 

matrix. Finally, the message in the Gaussian integer field is 

transformed to the desired original message. The complexity 

cost of decryption can be computed as Eq. (5): 

 

ComD = Comm(CπP
-1) + Comde(Y) + Comm(Y'S) + Comc (5) 

 

where Comm(CπP
-1) = O(n2) is the complexity of multiplying 

the ciphertext by the inverse of P. The decoding complexity 

is computed as Comde(Y) = O(p). Also, Comm(Y’S) = O(k2) 

is the complexity of multiplying the k-symbol matrix by the 

inverse of S. Finally, the complexity of the k-symbol 

conversion process, Comc, has the same meaning as in 

Eq. (4). 

 Comparison of the theoretical computation of the 

processes and the computational complexity from the initial 

parameters of the original cryptosystem [2] were roughly 

estimated. The results of [20] are presented in Table 4. The 

theoretical results show that the complexity cost of the key 

generation process is the highest among the three main 

processes. The scramble matrix, permutation matrix, and 

their inversion execution are the most time-consuming steps. 

As shown in Table 4, there is O(k2n + n2) for the original 

McEliece2 and O(n) + O(k2) + O(n3) + O(k3) for the 

Gaussian McEliece. Moreover, in the proposed algorithm, 

the disadvantage is the large complexity cost of multiplying 

ciphertext with the inverse of P, that requires O(n2) of time. 

Subsequently, the optimized algorithm is presented further to 

provide a satisfactory computational complexity cost of the 

decryption process. 

 

3.1.2 Empirical computation 

 

For empirical computations, we implemented the 

proposed algorithm and calculate the runtime using a 

personal computer with the following environment: CPU 

Intel Core i5 3210M 2.5 GHz., RAM 4 GB, OS Windows 10 

64 bit, using Python 3.5 as the programing language. In our 

implementation, we use some specific libraries of Python, 

such as Numpy and Sympy, in the calculation processes of 

the cryptosystem. The elements and the primitive 

polynomial elements of MEC codes are performed by the 

polynomial class with coefficients in the form of Gaussian 

integers.  The block codes along with other variables for 

encryption and decryption are represented as matrices with 

their basic addition and multiplication operations. The 

default modular operation is also overridden for 

convenience. 
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Figure 2 The average runtime of (a) key generation, (b) encryption and (c) decryption with varying values of p 
 

Table 5 Size of keys for the value of p between 421 and 2381 
 

p 421 1013 1861 2381 

Public key 12 kB 79 kB 296 kB 529 kB 

Private key 0.12 kB 0.32 kB 0.64 kB 0.89 kB 

 

 To calculate runtime, we use a performance counter that 

provides the time in fractional seconds for the three main 

processes. First, the average runtime of key generation is 

calculated from one hundred trials of random code 

construction and key pair generation using the same initial 

parameters. This process includes all pre-computations such 

as inversion of P, symbol matching table, etc. Next, the 

average runtime of encryption and decryption are measured 

from encoding and decoding a thousand random messages 

with the same keys. 

Various values of p are used to increase the security level 

of the cryptosystem. In Figure 2 (a), the key generation steps 

with p = 421, 1013, 1861, 2381 indicate average times of 

about 0.19, 1.01, 3.51 and 14.34 seconds, respectively. The 

average encryption times are about 1.63, 3.66, 6.94 and 

20.76 milliseconds, and decryption times are about 9.32, 

46.26, 177.44 and 842.32 milliseconds for the same 

parameters p summarized in Figure 2 (b) and (c). This result 

shows that if we choose larger values of p to obtain higher 

security, the cryptosystem provides longer encoding and 

decoding times. 

 The private and public key sizes are measured as follows: 

1) the public key matrix Gpub requires a kn-symbol length and 

has p elements per symbol of the finite field Gπ. In this case, 

the required memory for storing the public key Gpub is 

approximately equal to k∙[n∙log2p] bits. 2) the private key H 

requires an n-symbol length with the same field. Therefore, 

the required memory to store the private key is 

approximately equal to n∙log2p bits. In Table 5, we compute 

the private and public key sizes with p = 421, 1013, 1861, 

2381. The key pair size increases corresponding to the higher 

value of p. This shows the trade-off between the level of 

security and the key length. 

 To compare the empirical computation of the processes, 

we summarize the existing implementations in different 

environments of the original and proposed cryptosystems in 

Table 6. Strenzke [21] presented the implementation of a 

McEliece cryptosystem with n equals 1024 and a security 

level approximately equal to 60 (estimated from the work 

factor of an ISD attack) on a smart card with two different 

platforms. For an embedded device, the encryption and 

decryption processes took 1260 ms and 980 ms, respectively 

on an Infineon SLE 76 chip. For a personal computer, Intel 

Core Duo with Linux OS, the encryption and decryption 

processes took 0.75 ms and 0.8 ms, respectively. The key 

generation process was not featured in the implementation 

because of the card’s RAM size issue. Takuya et al. [22] 

implemented a cryptosystem on a personal computer with 

AMD Phenom CPU. They reported timing for parameter n 

equals 2048 and a security level approximately equal to 80. 

The key generation, encryption and decryption times are 

29.85 s, 1.06 ms, and 116.41 ms, respectively. For  
comparison, the proposed cryptosystem, with the same 

security, was implemented on an Intel Core i5.  
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Table 6 Comparison of the computational time of key generation, encryption and decryption of the proposed and original 

cryptosystems 

 

Cryptosystem Key generation Encryption Decryption Environment 

Goppa McEliece [21] 

n = 1024  

Security level ~60 

no feature 1260ms 980ms Infineon SLE76CF5120P 

controller 33 MHz 

Goppa McEliece [21] 

n = 1024 

Security level ~60 

no feature 0.75ms 0.8ms Intel core Duo T7300 2GHz, 

Linux kernel v.2.3.2.4, GCC-

4.1.3 compiler 

Goppa McEliece [22] 

n = 2048 

Security level ~80 

29.85s 1.06ms 116.41ms AMD Phenom II 1090T 

3.2GHz, Window 7, 

Visual C++ 2010 compiler 

Gaussian McEliece 

n = 1013  

Security level ~60 

1.01s 3.66ms 77.58ms Intel Core i5 3210M 2.5 GHz, 

Windows 10,  

Python 3.5 complier 

 

Table 7 Comparison of the number of trials for scramble and permutation matrices and public key size of the proposed and 

original cryptosystems 

 

Cryptosystem Original McEliece Gaussian McEliece 

(n, k)p (1024, 524) (105,103)421 (253, 251)1013 (465,463)1861 

Public key size 67 kB 12kB 79kB 296kB 

NS ≈2275099 ≈257757 ≈2421139 ≈21427306 

NP ≈28770 ≈2547 ≈21646 ≈23440 

NTotal ≈2283869 ≈258304 ≈2422785 ≈21430746 

 
The key generation, encryption and decryption processes 

took 1.01 s, 3.66 ms and 77.58 ms, respectively. Although 

the computation time in Gaussian McEliece is rather long in 

the encryption and decryption processes, the key generation 

is an efficient process for modern cryptosystems using a 

short-term key. 

 

3.2 Security assessment 

 

In this section, we discuss the security of proposed 

cryptosystem against two types of practical attacks. The 

security assessment is divided into two sections: key 

recovering attack and decoding attack. The former tries to 

randomly guess the secret matrices for recovering the proper 

private key. The latter tries to decode the ciphertext to an 

original message without knowledge of the private key. 

 

3.2.1 Key recovering attack 

 
A key recovering attack aims to recover the private key 

from public variables of the cryptosystem. A brute force 

attack is one in which the adversary tries to randomly search 

for a probable key until the actual key is detected. In a brute 

force attack, we assess the security of the proposed 

cryptosystem by estimating the complexity of random 

guessing of two secret matrices of the private key, the 

scrambled and permutation matrices. First, the scrambled 

matrix is generated by selecting an element from Gπ of order 

p. The matrix has dimension k x k and is non-singular, thus 

the rows of the matrix must be linearly independent. 

Therefore, the number of trials for the scrambled matrix is 

given as Eq. (6). For further simplification, we use the 

following inequality in [10] as Eq. (7). Additionally, the 

permutation matrix has dimensions n x n and can be selected 

as a single element from the set {1, -1, i, -i}. Thus, the 

number of possible permutation matrices is 4n!. For the 

factorial function, we use Stirling’s approximation [23] 

yielding a more precise formula. Therefore, the number of 

trials for the permutation matrix is given as Eq. (8). 

NS = ∏ (pk - pi)k-1
i=0  (6) 

 

NS ≤ pk(k+1)-1 (7) 

 

Np ≈ 4√2πn nne-n (8) 

 

 In Table 7, we compare the number of trials for 

scrambled and permutation matrices and public key size to 

the original McEliece cryptosystem. In order to gain 

computational performance, we use the optimal number of 

elements in the finite field to construct the scrambled matrix. 

As indicated in the table, for Gπ with p = 1013, the proposed 

cryptosystem can provide a massive increase in the total 

number of trials Ntotal with a bit larger key size compared to 

the original cryptosystem. Hence, the number of trials is 

increased by a vast increment and can reach a maximum 

number according to the suitable hardware in various aspects 

without extending the key size. 

 

3.2.2 Decoding attack 

 

In a decoding attack, the adversary attempts to decode 

the ciphertext without knowing the private key. An 

exhaustive decoding attack is a brute force approach based 

on comparison of the received ciphertext Cπ with each 

generated ciphertext Cgen that is defined by multiplying all 

possible messages to the public key. In order to find the 

closest generated ciphertext, we determine the distance 

between each Cgen and Cπ which is less than Mannheim 

distance dM of code. Thus, the work factor of exhaustive 

decoding as WFED is obtained as Eq. (9). 

 

WFED =2n log
2

p (9) 

 

A syndrome decoding attack is an efficient approach 

introduced by Jochemsz [24]. In this attack, the cryptanalyst 

calculates the parity matrix Hpub corresponding to Gpub. 
Gpub∙(Hpub)T = 0, which is the right syndrome of the 

transmitted   ciphertext   Cπ   is   computed   as   Cπ∙(Hpub)T =  
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Table 8 The work factor of decoding attack of proposed cryptosystem and original cryptosystem 

 

Cryptosystem Original McEliece Gaussian McEliece 

(n, k) (1024, 524) (105,103)421 (253, 251)1013 (465,463)1861 

Public key size 67 kB 12kB 79kB 296kB 

WFED 2524 2945 22530 25115 

WFSD ≈2284 ≈2125 ≈2164 ≈2201 

WFISD ≈264.2 ≈255.6 ≈262.6 ≈268.6 

 
(MπGpub)(Hpub)T + E(Hpub)T = E(Hpub)T. The attacker tries to 

generate all possible error vectors of length n with the weight 

t ≤ dM. Therefore, the work factor of trails of the possible 

error vectors and success in achieving the correct syndrome 

as WFSD is obtained as Eq. (10): 

 

WFSD =∑ (
n log

2
p

i log
2

p
)t

i=0  (10) 

 

Another type of decoding attack is an information set 

decoding attack (ISD). It represents a powerful method to 

search the error vector in ciphertext without exploiting the 

secret code structure. The idea is to use restriction of 

generator matrix to find a set of information vectors that 

contain no errors in any position. Then, the ciphertext is 

multiplied by the inverse of submatrix to decrypt the original 

plaintext. In this paper, we use the original algorithm 

introduced by Prange [25] to analyze the complexity of the 

proposed cryptosystem against an ISD attack. By Prange’s 

approach, the work factor of an ISD attack as WFISD is 

obtained as Eq. (11). 

 

WFISD ≈ k
3
(1-

t

n
)
-k

 (11) 

 

 In Table 8, we calculate the work factor of all decoding 

attacks of both the original and the proposed cryptosystems. 

The results of Table 8 show that the wide range of code over 

Gaussian integer provides enormous workload for an 

exhaustive decoding attack. With p=421, the smallest key 

size parameter, we can increase the work factor from 2524 to 

2945 compared to the original cryptosystem. However, in 

cryptanalyzed decoding attacks, the increase of code range 

yields less benefit than the exhaustive method. The proposed 

cryptosystem has a lower work factor in a syndrome 

decoding attack, but a larger work factor in the information 

set decoding attack compared to the original cryptography. 

For instance, with p=1861 we obtain a 2201 workload for a 

syndrome decoding attack and a 268.6 workload for an 

information set decoding attack. This shows a limitation of 

codes when the expanded range of code syndrome is not 

efficient enough. 

 

4. Conclusions 

 

This paper enhanced a very strong post-quantum code-

based cryptography the McEliece asymmetric key 

cryptosystem using Gaussian integers. We show that larger 

keyspace and error syndrome ranges seem to offer more 

security against ordinary attacks compared to a traditional 

cryptosystem. Furthermore, there is an interesting 

observation from implementation our work. The optimal 

parameters and the trade-off between the strength of a 

cryptosystem and its performance are seen. The limitation of 

the proposed cryptosystem is the greater field of original 

code over Gaussian integers, which can slightly increase the 

work factor of particular decoding attacks. In the future, the 

specific structure of the code might be applied in such a way 

to obtain better security efficiency of cryptographic schemes. 
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