

การสร้างชุดทดลองคัดแยกและประกอบชิ้นงานควบคุมด้วย Servo Motor ร่วมกับโปรแกรมเมเบลโลจิกคอนโทรลเลอร์ผ่านโปรโตคอล CC-link

Creating an Experimental Set for Sorting and Assembling Work-pieces Controlled by Servo Motors in Conjunction with Programmable Logic Controllers via CC-Link Protocol

จิรพัฒน์ ลิมทอง¹ และศิริพร ไหเมสีเขียว²

Jirapat Limthong¹ and Siriporn Maiseekhiao²

¹ สาขาวิชาเทคโนโลยีเมchatronic และหุ่นยนต์ วิทยาลัยเทคนิคครรภรรัมราช จังหวัดนครศรีธรรมราช 80000

Mechatronic and Robotic Technology, Nakhon Si Thammarat Technical College, Nakhon Si Thammarat 80000

² แผนกวิชาช่างอิเล็กทรอนิกส์ วิทยาลัยเทคนิคครรภรรัมราช จังหวัดนครศรีธรรมราช 80000

Depart of Electronic, Nakhon Si Thammarat Technical College, Nakhon Si Thammarat 80000

¹ Corresponding Author: E-mail: jirapat6262@gmail.com

Received: 24 Sep. 2024; Revised: 14 Mar. 2025; Accepted: 16 May 2025

บทคัดย่อ

การวิจัยครั้งนี้มีวัตถุประสงค์เพื่อ 1) สร้างชุดทดลองคัดแยกและประกอบชิ้นงานควบคุมด้วย Servo Motor ร่วมกับโปรแกรมเมเบลโลจิกคอนโทรลเลอร์ผ่านโปรโตคอล CC-link 2) หาประสิทธิภาพชุดทดลองคัดแยกและประกอบชิ้นงานควบคุมด้วย Servo Motor ร่วมกับโปรแกรมเมเบลโลจิกคอนโทรลเลอร์ผ่านโปรโตคอล CC-link และ 3) ศึกษาความพึงพอใจของผู้เรียนที่มีต่อชุดทดลองคัดแยกและประกอบชิ้นงานควบคุมด้วย Servo Motor ร่วมกับโปรแกรมเมเบลโลจิกคอนโทรลเลอร์ผ่านโปรโตคอล โดยมีวิธีดำเนินการกับประชากรคือนักศึกษาระดับปริญญาตรี สาขาวิชาเทคโนโลยีเมchatronic และหุ่นยนต์ จำนวนทั้งหมด 17 คน โดยเลือกแบบเจาะจง เครื่องมือที่ใช้ในการศึกษา ได้แก่ ชุดทดลองแบบวัดผลสัมฤทธิ์ และแบบสอบถามความพึงพอใจของผู้เรียน วิเคราะห์ข้อมูลโดยหาค่าเฉลี่ย และส่วนเบี่ยงเบนมาตรฐาน

ผลการวิจัย พบว่า 1) ชุดทดลองคัดแยกและประกอบชิ้นงานควบคุมด้วย Servo Motor ร่วมกับโปรแกรมเมเบลโลจิกคอนโทรลเลอร์ผ่านโปรโตคอล CC-link สามารถสร้างได้ตามแบบที่กำหนด มีการออกแบบชุดทดลองคัดแยกชิ้นงานโดยใช้กรอบกลม มีชุด Vacuum ดูดฝาชิ้นงาน ชุดเซนเซอร์ตรวจจับชิ้นงานและฝาชิ้นงาน ชุดซีอัมต่ออุปกรณ์ผ่านโปรโตคอล CC-link ชุดหลอดไฟสัญญาณ ชุดระบบอุ่นสูบคัดแยกชิ้นงาน ชุดลำเลียงชิ้นงานควบคุมด้วย Servo Motor และรางคัดแยกชิ้นงาน สามารถใช้ยนโปรแกรมควบคุมด้วยโปรแกรมเมเบลโลจิกคอนโทรลเลอร์ได้ และผลการประเมินคุณภาพของผู้เชี่ยวชาญที่มีชุดทดลองคัดแยกและประกอบชิ้นงานควบคุมด้วย Servo Motor ร่วมกับโปรแกรมเมเบลโลจิกคอนโทรลเลอร์ผ่านโปรโตคอล CC-link อยู่ในระดับมากที่สุด 2) ผลการหาประสิทธิภาพของชุดทดลองคัดแยกและ

ประกอบชิ้นงานควบคุมด้วย Servo Motor ร่วมกับโปรแกรมเมเบลโลจิกคอนโทรลและโพรโทคอล CC-link มีประสิทธิภาพ 81.88/83.23 3) ผลการประเมินความพึงพอใจของผู้เรียนที่มีต่อชุดทดลองคัดแยกและประกอบชิ้นงานควบคุมด้วย Servo Motor ร่วมกับโปรแกรมเมเบลโลจิกคอนโทรลและโพรโทคอล CC-link อยู่ในระดับมากที่สุด คำสำคัญ: ชุดทดลองคัดแยกและประกอบชิ้นงาน โปรแกรมเมเบลโลจิกคอนโทรลและโพรโทคอล CC-link

Abstract

The purposes of this research were to: 1) create an experimental set for sorting and assembling work-pieces controlled by a servo motor in conjunction with a programmable logic controller (PLC) via the CC-Link protocol, 2) evaluate the efficiency of the experimental set for sorting and assembling work-pieces controlled by a servo motor with a PLC via the CC-Link protocol, and 3) investigate the satisfaction of learners with the experimental set for sorting and assembling work-pieces controlled by a servo motor with a PLC via the CC-Link protocol. The population consisted of 17 undergraduate students majoring in Mechatronics and Robotics derived by purposive sampling method. The research instruments included the experimental set, a performance assessment test, and a satisfaction questionnaire for learners. Data were analyzed by calculating mean and standard deviation.

The research results indicate that: 1) the experimental set for sorting and assembling work-pieces controlled by a servo motor in conjunction with a PLC via the CC-Link protocol could be successfully constructed according to the specified design. The system includes a conveyor unit for work-piece lids using pneumatic cylinders, a vacuum unit for picking up work-piece lids, sensors for detecting work-pieces and lids, a device interface unit via the CC-Link protocol, a signal light unit, a sorting cylinder unit, a work-piece conveyor controlled by a servo motor, and a sorting rail. Additionally, the system can be programmed and controlled using a PLC. Furthermore, the experimental set for sorting and assembling work-pieces controlled by a servo motor in conjunction with a PLC via the CC-Link protocol was validated by the experts with the result of the highest quality. 2) The efficiency evaluation results of the experimental set for sorting and assembling work-pieces controlled by a servo motor in conjunction with a PLC via the CC-Link protocol showed an efficiency of 81.88/83.23. Finally, 3) the evaluation results of students' satisfaction with the experimental set for sorting and assembling work-pieces controlled by a servo motor in conjunction with a PLC via the CC-Link protocol were at the highest level.

Keywords: Experimental Set for Sorting and Assembling Work-pieces, Programmable Logic Controller, Servo Motor

1. บทนำ

สถานการณ์แรงงานโลกกำลังปรับตัวตามกระแสการเปลี่ยนแปลงของเทคโนโลยี แรงงานซึ่งเป็นที่ต้องการในโลกอนาคตจำเป็นต้องเป็น “แรงงานทักษะสูง” รองรับการทำงานที่ควบคู่ไปกับเทคโนโลยีได้ ความต้องการบุคลากรที่มีความรู้ มีทักษะแบบใหม่เข้าทำงานมีสูง แต่ก็

ประสบปัญหาในการหาแรงงานที่มีทักษะที่ตรงกับความต้องการ เพราะขาดการเรียนรู้ ขาดทักษะใหม่ จึงหลีกเลี่ยงไม่ได้ที่แรงงานจะต้องพัฒนาตัวเองต่อไปอย่างไม่หยุดยั้ง เพื่อที่จะช่วยให้การพัฒนาและยกระดับทักษะสามารถทำได้อย่างมีประสิทธิภาพก้าวทันต่อการเปลี่ยนแปลงที่รวดเร็วของเทคโนโลยี [1] ปัจจุบันเทคโนโลยีระบบ

ควบคุมอัตโนมัติ (Automation Control) ได้เข้ามา มีบทบาทสำคัญในภาคอุตสาหกรรม โดยช่วยเพิ่มประสิทธิภาพการผลิต ช่วยให้กระบวนการผลิตดำเนินไปอย่างรวดเร็วและแม่นยำ ลดความแปรปรวนและข้อผิดพลาดที่อาจเกิดขึ้นจากมนุษย์ ลดข้อผิดพลาด ลดความเสี่ยงที่เกิดจากการทำงานในสภาพแวดล้อมที่เป็นอันตราย และเพิ่มความปลอดภัยในกระบวนการผลิต ทำให้พนักงานทำงานได้อย่างปลอดภัยมากขึ้น [2]

เทคโนโลยีระบบเซอร์โวมอเตอร์ มีความสำคัญในภาคอุตสาหกรรม เชอร์โวมอเตอร์ (Servo Motor) เป็นมอเตอร์ที่มีความยืดหยุ่นในการใช้งานสูง สามารถควบคุมได้ทั้งตำแหน่ง (Position) ความเร็ว (Speed) และแรงบิด (Torque) มีการตอบสนองที่รวดเร็ว และมีความถูกต้องแม่นยำ ซึ่งจะให้เกิดประสิทธิภาพสูงสุดในการควบคุมขั้นตอน หรือกระบวนการทำงาน [3] และเทคโนโลยีเครือข่าย CC-Link เป็นเครือข่ายที่ใช้ส่งผ่านข้อมูลไปยังอุปกรณ์ต่าง ๆ ส่วนใหญ่จะใช้ในอุตสาหกรรม ที่ต้องการความถูกต้องสูง ความแม่นยำ และความเร็ว สามารถเชื่อมต่อและสื่อสารกับอุปกรณ์อื่นๆ ได้โดยตรง ทำให้สามารถลดเวลาในการติดต่อและลดความผิดพลาดที่อาจเกิดขึ้น [4]

การจัดการเรียนการสอนในหลักสูตรเทคโนโลยีบัณฑิตสาขาวิชาเทคโนโลยีมหิดล ครอบคลุมการใช้ชุดทดลองคัดแยกและประกอบชิ้นงานควบคุมด้วย Servo Motor ร่วมกับโปรแกรมเมเบลโลจิกคอนโทรลเลอร์ผ่านโปรโตคอล CC-link และ Servo Motor มาเป็นสื่อการเรียนการสอน เช่น รายวิชาการขับเคลื่อนไฟฟ้าและระบบเซอร์โว วิชาปฏิบัติระบบอัตโนมัติในการผลิต วิชาปฏิบัติการระบบควบคุมอัตโนมัติในงานอุตสาหกรรม แต่ในรายวิชาดังกล่าว ยังขาดแคลนชุดทดลองเป็นจำนวนมาก ทำให้ไม่สามารถฝึกผ่านนักศึกษาให้มีความรู้และทักษะตรงตามที่หลักสูตรกำหนด และตรงตามความต้องการของสถานประกอบการในภาคอุตสาหกรรม

จากสภาพและปัญหาดังกล่าวผู้วิจัยจึงมีแนวคิดที่จะสร้างชุดทดลองคัดแยกและประกอบชิ้นงานควบคุมด้วย Servo Motor ร่วมกับโปรแกรมเมเบลโลจิก

คอนโทรลเลอร์ผ่านโปรโตคอล CC-link ขึ้น เพื่อใช้เป็นสื่อการเรียนการสอน เพื่อพัฒนาความรู้ ทักษะและความสามารถของนักศึกษา ให้ตรงตามความต้องการของภาคอุตสาหกรรมและส่งผลต่อสมรรถนะของผู้เรียนที่สอดคล้องกับหลักสูตรรายวิชา

2. วัตถุประสงค์การวิจัย

2.1 เพื่อสร้างชุดทดลองคัดแยกและประกอบชิ้นงานควบคุมด้วย Servo Motor ร่วมกับโปรแกรมเมเบลโลจิกคอนโทรลเลอร์ผ่านโปรโตคอล CC-link

2.2 เพื่อหาประสิทธิภาพชุดทดลองคัดแยกและประกอบชิ้นงานควบคุมด้วย Servo Motor ร่วมกับโปรแกรมเมเบลโลจิกคอนโทรลเลอร์ผ่านโปรโตคอล CC-link

2.3 เพื่อศึกษาความพึงพอใจของผู้เรียนที่มีต่อชุดทดลองคัดแยกและประกอบชิ้นงานควบคุมด้วย Servo Motor ร่วมกับโปรแกรมเมเบลโลจิกคอนโทรลเลอร์ผ่านโปรโตคอล CC-link

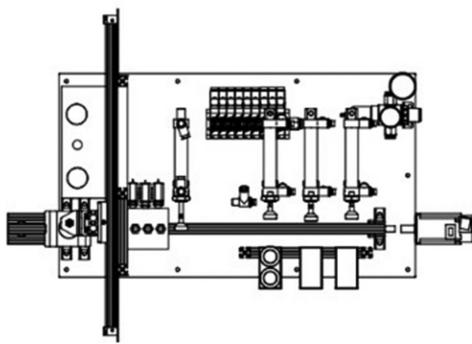
3. สมมติฐานการวิจัย

3.1 ชุดทดลองคัดแยกและประกอบชิ้นงานควบคุมด้วย Servo Motor ร่วมกับโปรแกรมเมเบลโลจิกคอนโทรลเลอร์ผ่านโปรโตคอล CC-link มีประสิทธิภาพ (E_1/E_1) ตามเกณฑ์ที่กำหนด 80/80

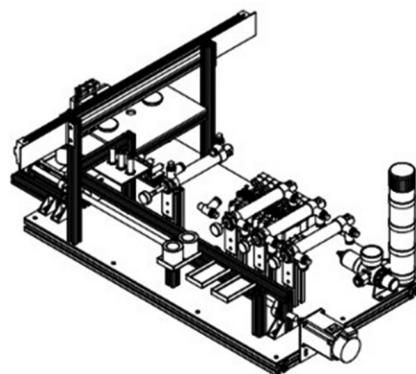
3.2 ผู้เรียนที่เรียนด้วยชุดทดลองคัดแยกและประกอบชิ้นงานควบคุมด้วย Servo Motor ร่วมกับโปรแกรมเมเบลโลจิกคอนโทรลเลอร์ผ่านโปรโตคอล CC-link มีความพึงพอใจ ไม่ต่ำกว่าระดับมาก

4. วิธีการดำเนินการวิจัย

4.1 การสร้างชุดทดลองคัดแยกและประกอบชิ้นงานควบคุมด้วย Servo Motor ร่วมกับโปรแกรมเมเบลโลจิกคอนโทรลเลอร์ผ่านโปรโตคอล CC-link มีขั้นตอนสำคัญ 5 ขั้นตอน ดังนี้


ขั้นที่ 1 การศึกษาและวิเคราะห์ข้อมูล เพื่อดำเนินการสร้างชุดทดลอง โดยการวิเคราะห์เนื้อหารายวิชาที่ต้องใช้งานชุดทดลอง ศึกษาเอกสาร แนวคิด ทฤษฎีที่เกี่ยวข้อง ประกอบด้วยเครื่องโปรแกรมเมเบลโลจิกคอนโทรลเลอร์

การกำหนดค่าพารามิเตอร์เซอร์โวโมเตอร์ การตั้งค่า IP ของอุปกรณ์ การเขียนโปรแกรมแบบควบคุมความเร็ว ทิศทาง ตำแหน่ง


ขั้นที่ 2 การออกแบบร่างชุดทดลอง ได้ศึกษาการ ออกแบบร่างชุดทดลองเพื่อให้ชุดทดลองมีขนาดที่เหมาะสม มีขั้นตอนการทำงานที่ชัดเจน รวมถึงการเลือกใช้วัสดุ

อุปกรณ์ และออกแบบใบงานการทดลอง

รายละเอียดแบบร่างชุดทดลองคัดแยกและ ประกอบชิ้นงานควบคุมด้วย Servo Motor ร่วมกับ โปรแกรมเมเบิลอจิกคอนโถรเลอร์ผ่านโปรโตคอล CC-link ดังแสดงในภาพที่ 1

ก. ภาพแบบร่างชุดทดลองมุ่งมองจากด้านบน

ข. ภาพแบบร่างชุดทดลองมุ่งมองสามมิติ

ภาพที่ 1 แบบร่างชุดทดลองคัดแยกและประกอบชิ้นงาน

ขั้นที่ 3 การสร้างและพัฒนา โดยได้ดำเนินการ สร้างและพัฒนาชุดทดลองตามแบบร่างโครงสร้าง

ขั้นที่ 4 การทดลองใช้งาน โดยได้นำชุดทดลองที่ สร้างขึ้นไปทดลองใช้ ตามใบงานการทดลองที่ได้กำหนดไว้

ขั้นที่ 5 การประเมินคุณภาพชุดทดลอง โดยได้นำ ชุดทดลองที่สร้างขึ้นไปประเมินคุณภาพโดยผู้เชี่ยวชาญ ก่อนนำไปใช้กับผู้เรียน เพื่อหาประสิทธิภาพชุดทดลอง ที่สร้างขึ้น

4.2 ประชากรและกลุ่มตัวอย่าง

ประชากรคือ นักศึกษาระดับปริญญาตรี หลักสูตร เทคโนโลยีบัณฑิต (ทล.บ.) สาขาเทคโนโลยีเมค้าทรอนิกส์ และหุ่นยนต์

กลุ่มตัวอย่างที่ใช้ในการวิจัยคือ นักศึกษาระดับ ปริญญาตรี หลักสูตรเทคโนโลยีบัณฑิต (ทล.บ.) สาขา เทคโนโลยีเมค้าทรอนิกส์และหุ่นยนต์ ที่ลงทะเบียนเรียน ในรายวิชา การขับเคลื่อนไฟฟ้าและระบบเซอร์โว ในภาค เรียนที่ 1 ปีการศึกษา 2567 จำนวน 17 คน โดยเป็นการ

เลือกกลุ่มตัวอย่างแบบเจาะจง

4.3 เครื่องมือที่ใช้ในงานวิจัย ประกอบด้วย

1) ชุดทดลอง มีอุปกรณ์ประกอบชุดทดลองดังนี้
(1) ชุดกรอบกลมสำหรับติดตั้ง (2) ชุด Vacuum ดูดฝ้าชิ้นงาน (3) ชุดเซนเซอร์ตรวจจับชิ้นงานและฝ้าชิ้นงาน (4) ชุดเซ็นเซอร์อุปกรณ์ที่ต่ออุปกรณ์ผ่านโปรโตคอล CC-link (5) ชุดหลอดไฟ สัญญาณ (6) ชุดระบบอุ่นสูบคัดแยกชิ้นงาน (7) ชุดสำลี เลี้ยงชิ้นงานควบคุมด้วย Servo Motor (8) รางคัดแยกชิ้นงาน

2) แบบบันทึกข้อมูล ประกอบด้วย ใบลำดับขั้น การปฏิบัติงาน ใบงานการทดลอง แบบฝึกหัดและแบบ ทดสอบวัดผลสัมฤทธิ์ จำนวน 5 ใบงาน ดังนี้

2.1) การเขียนโปรแกรมควบคุมการเคลื่อนที่ ของชุดสำลี เลี้ยงชิ้นงานควบคุมด้วย Servo Motor ผ่าน โปรแกรม MR Configuration

2.2) การเขียนโปรแกรมควบคุมความเร็วและ ตำแหน่งของชุดสำลี เลี้ยงชิ้นงานควบคุมด้วย Servo Motor โดยใช้คำสั่ง DDRVA และ DDRVI

2.3) การเขียนโปรแกรมควบคุมทำงานของตัวแหน่งอินพุตและเอาต์พุตของชุดทดลอง ผ่านโปรโตคอล CC-link IE

2.4) การเขียนโปรแกรมควบคุมชุดคัดแยกชิ้นงาน และควบคุมชุดคัดแยกชิ้นงาน

2.5) การเขียนโปรแกรมควบคุมชุดคัดแยกชิ้นงานและประกอบชิ้นงาน

3) แบบประเมินคุณภาพชุดทดลองคัดแยกและประกอบชิ้นงานควบคุมด้วย Servo Motor ร่วมกับโปรแกรมเมเบลลอกิคคอนโทรลเลอร์ผ่านโปรโตคอล CC-link โดยผู้เชี่ยวชาญที่มีต่อชุดทดลอง

4) แบบสอบถามความพึงพอใจของผู้เรียนที่มีต่อชุดทดลองคัดแยกและประกอบชิ้นงานควบคุมด้วย Servo Motor ร่วมกับโปรแกรมเมเบลลอกิคคอนโทรลเลอร์ผ่านโปรโตคอล CC-link

4.4 การเก็บรวบรวมข้อมูล

1) การเก็บรวบรวมเพื่อหาคุณภาพของชุดทดลองคัดแยกและประกอบชิ้นงานควบคุมด้วย Servo Motor ร่วมกับโปรแกรมเมเบลลอกิคคอนโทรลเลอร์ผ่านโปรโตคอล CC-link โดยการให้ผู้เชี่ยวชาญทำแบบประเมินคุณภาพ 5 ด้าน

2) การเก็บรวบรวมเพื่อหาประสิทธิภาพของชุดทดลองคัดแยกและประกอบชิ้นงานควบคุมด้วย Servo Motor ร่วมกับโปรแกรมเมเบลลอกิคคอนโทรลเลอร์ผ่านโปรโตคอล CC-link มีขั้นตอนวิธีเก็บและรวบรวมข้อมูลดังนี้ 2.1) ดำเนินการสอน คือ (1) ชี้แจงวัตถุประสงค์การเรียนรู้ให้กับผู้เรียน (2) ผู้เรียนศึกษาขั้นตอน ฝึกปฏิบัติงานจากใบคำดับขั้นการปฏิบัติงาน ตามใบงานการทดลอง (3) สังเกตพฤติกรรมของผู้เรียนระหว่างการปฏิบัติงาน และประเมินผลการปฏิบัติงาน (4) ผู้เรียนทำแบบฝึกหัด

2.2) ทำแบบทดสอบวัดผลสัมฤทธิ์

3) การเก็บรวบรวมข้อมูลเพื่อศึกษาความพึงพอใจของผู้เรียนที่มีต่อชุดทดลองคัดแยกและประกอบชิ้นงานควบคุมด้วย Servo Motor ร่วมกับโปรแกรมเมเบลลอกิคคอนโทรลเลอร์ผ่านโปรโตคอล CC-link และเก็บรวบรวมข้อมูล โดยการให้ผู้เรียนทำแบบประเมินความพึงพอใจ หลังจากจบกระบวนการเรียนรู้

4.5 การวิเคราะห์ข้อมูลและสรุปผล

1) การวิเคราะห์หาประสิทธิภาพของชุดทดลองคัดแยกและประกอบชิ้นงานควบคุมด้วย Servo Motor ร่วมกับโปรแกรมเมเบลลอกิคคอนโทรลเลอร์ผ่านโปรโตคอล CC-link มีดังนี้

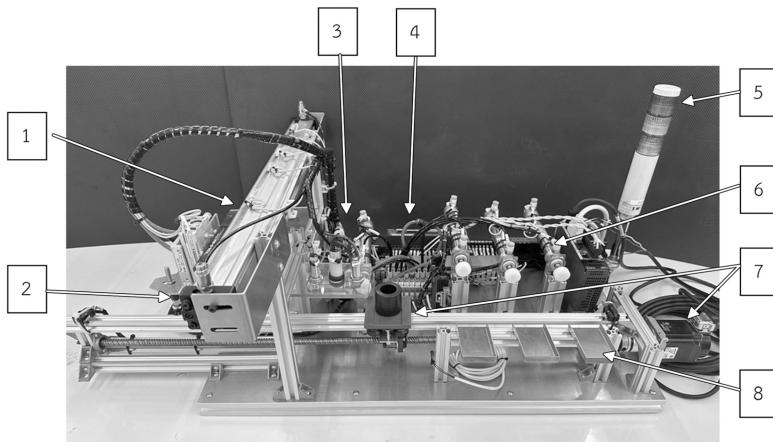
- ค่าร้อยละคะแนนเฉลี่ยของผู้เรียน ที่ได้จากการคะแนนการปฏิบัติงาน คะคะแนนแบบฝึกหัดของแต่ละใบงาน เป็นค่าประสิทธิภาพตามกระบวนการเรียนรู้ (E₁)

- ค่าร้อยละคะแนนเฉลี่ยของผู้เรียน ที่ได้จากการทดสอบหลังเรียนของแต่ละใบงานการทดลองเป็นค่าประสิทธิภาพผลสัมฤทธิ์หลังการเรียนรู้ (E₂)

2) การวิเคราะห์คุณภาพของผู้เชี่ยวชาญและระดับความพึงพอใจของผู้เรียนที่มีต่อชุดทดลองคัดแยกและประกอบชิ้นงานควบคุมด้วย Servo Motor ร่วมกับโปรแกรมเมเบลลอกิคคอนโทรลเลอร์ผ่านโปรโตคอล CC-link โดยการนำข้อมูลที่ได้จากการแบบประเมิน มาทำการวิเคราะห์ข้อมูล สถิติที่ใช้คือ ค่าเฉลี่ย และค่าส่วนเบี่ยงเบนมาตรฐาน (S.D.) และใช้เกณฑ์ในการประเมินเป็นแบบมาตราส่วนประมาณค่า (Rating Scale) ตามวิธีของลิคเดิร์ท (Likert) โดยกำหนดระดับค่าความพึงพอใจ 5 ระดับดังนี้ [5]

4.50-5.00 หมายถึง มากที่สุด

3.50-4.49 หมายถึง มาก


2.50-3.49 หมายถึง ปานกลาง

1.50-2.49 หมายถึง น้อย

1.00-1.50 หมายถึง น้อยที่สุด

5. ผลการวิจัย

5.1 ผลการสร้างชุดทดลองคัดแยกและประกอบชิ้นงานควบคุมด้วย Servo Motor ร่วมกับโปรแกรมเมเบลลอกิคคอนโทรลเลอร์ผ่านโปรโตคอล CC-link ดังภาพที่ 2

ภาพที่ 2 ชุดทดลองคัดแยกและประกอบชิ้นงานควบคุมด้วย Servo Motor
ร่วมกับโปรแกรมเมเบิลอิจิกคอนไทรอลเลอร์ผ่านโปรโตคอล CC-link

จากภาพที่ 2 ชุดทดลองคัดแยกและประกอบชิ้นงานควบคุมด้วย Servo Motor ร่วมกับโปรแกรมเมเบิลอิจิกคอนไทรอลเลอร์ผ่านโปรโตคอล CC-link ประกอบด้วย (1) ชุดประกอบกลมสำหรับจับชิ้นงาน (2) ชุด Vacuum ดูดฝ่าชิ้นงาน (3) ชุดเซนเซอร์ตรวจจับชิ้นงานและฝ่าชิ้นงาน (4) ชุดเซิร์มต่ออุปกรณ์ผ่านโปรโตคอล CC-link (5) ชุดหลอดไฟสัญญาณ (6) ชุดประกอบสูบคัดแยกชิ้นงาน (7) ชุดสำหรับจัดชิ้นงานควบคุมด้วย Servo Motor (8) รางคัดแยกชิ้นงาน โดยมีหลักการทำงานคือ ชุดสำหรับจัดชิ้นงานควบคุมด้วย Servo Motor เคลื่อนที่นำชิ้นงานไปที่ตำแหน่งที่กำหนด เพื่อรับฝ่าชิ้นงาน จากนั้นชุดประกอบกลมสำหรับจับชิ้นงาน และชุด Vacuum ดูดฝ่าชิ้นงาน จัดตำแหน่งมาวางบนตัวชิ้นงาน เมื่อวางฝ่าชิ้นงานลงบนตัวชิ้นงานเรียบร้อยแล้ว ชุดสำหรับจัดชิ้นงานจะเคลื่อนที่ผ่านชุดเซนเซอร์ตรวจจับ

ตารางที่ 1 ผลการประเมินคุณภาพชุดทดลองจากผู้เชี่ยวชาญ

รายการประเมิน	\bar{X}	S.D.	ระดับคุณภาพ
1. ชุดทดลองสอดคล้องกับการทำงานของภาคอุตสาหกรรม	4.80	.45	มากที่สุด
2. ชุดทดลองสอดคล้องเหมาะสมในการจัดการเรียนการสอน	4.60	.55	มากที่สุด
3. ชุดทดลองเสริมทักษะในการปฏิบัติงาน	4.40	.55	มาก
4. ชุดทดลองมีความเหมาะสมสมกับนักศึกษา	4.80	.45	มากที่สุด
5. ใบงานการทดลองเหมาะสมในการจัดการเรียนการสอน	4.20	.45	มาก
ค่าเฉลี่ย	4.56	.49	มากที่สุด

จากตารางที่ 1 พบว่า ผลการประเมินคุณภาพของชุดทดลองคัดแยกและประกอบชิ้นงานควบคุมด้วย Servo Motor ร่วมกับโปรแกรมเมเบลลอจิกคอนโทรลเลอร์ผ่านโปรโตคอล CC-link จากผู้เชี่ยวชาญ โดยรวมอยู่ในระดับมากที่สุด เมื่อพิจารณาเป็นรายด้านพบว่า ด้านชุดทดลองสอดคล้องกับการทำงานของภาคอุตสาหกรรม ด้านชุดทดลองสอดคล้องเหมาะสมในการจัดการเรียนการสอน และด้านชุดทดลองมีความเหมาะสมสมกับนักศึกษา มีค่า

คะแนนเฉลี่ยอยู่ในระดับมากที่สุด รองลงมาคือด้านชุดทดลอง เสริมทักษะในการปฏิบัติงาน และใบงานการทดลอง เหมาะสมในการจัดการเรียนการสอน มีค่าคะแนนเฉลี่ยอยู่ในระดับมาก

5.2 ผลการหาประสิทธิภาพของชุดทดลองคัดแยก และประกอบชิ้นงานควบคุมด้วย Servo Motor ร่วมกับโปรแกรมเมเบลลอจิกคอนโทรลเลอร์ผ่านโปรโตคอล CC-link จากผู้เรียน 17 คน ปรากฏดังตารางที่ 2

ตารางที่ 2 ผลการหาประสิทธิภาพของชุดทดลอง

รายการประเมิน	คะแนนเต็ม	เฉลี่ย	ร้อยละ
1. คะแนนจากการทำใบงาน 5 ใบงาน (E_1)	50	40.94	81.88
2. คะแนนจากการทำแบบวัดผลสัมฤทธิ์ทางการเรียน (E_2)	20	16.64	83.23

จากตารางที่ 2 พบว่า ชุดทดลองคัดแยกและประกอบชิ้นงานควบคุมด้วย Servo Motor ร่วมกับโปรแกรมเมเบลลอจิกคอนโทรลเลอร์ผ่านโปรโตคอล CC-link ที่สร้างขึ้น มีประสิทธิภาพ 81.88/83.23 ซึ่งเป็นไปตาม สมมติฐานที่กำหนดไว้เท่ากับ 80/80

5.3 ผลการประเมินความพึงพอใจของผู้เรียนที่มีต่อชุดทดลองคัดแยกและประกอบชิ้นงานควบคุมด้วย Servo Motor ร่วมกับโปรแกรมเมเบลลอจิกคอนโทรลเลอร์ผ่านโปรโตคอล CC-link ปรากฏดังตารางที่ 3

ตารางที่ 3 การวิเคราะห์ความพึงพอใจของผู้เรียนที่มีต่อชุดทดลอง

รายการประเมิน	\bar{X}	S.D.	ระดับความพึงพอใจ
1. ชุดทดลองมีประสิทธิภาพในการใช้งานตรงตามวัตถุประสงค์	4.82	.39	มากที่สุด
2. ขนาดของชุดทดลองมีความเหมาะสม ในการฝึกปฏิบัติ	4.58	.51	มากที่สุด
3. รูปทรงและลักษณะของชุดทดลอง เหมาะสม สวยงาม	4.76	.44	มากที่สุด
4. วัสดุที่ใช้งาน มีความแข็งแรง ทนทานต่อการฝึกปฏิบัติ	4.70	.47	มากที่สุด
5. ชุดทดลองมีความปลอดภัยในการใช้งาน	4.58	.51	มากที่สุด
รวม	4.69	.46	มากที่สุด

จากตารางที่ 3 พบว่า ผู้เรียนมีความพึงพอใจต่อชุดทดลองคัดแยกและประกอบชิ้นงานควบคุมด้วย Servo Motor ร่วมกับโปรแกรมเมเบลลอจิกคอนโทรลเลอร์ผ่านโปรโตคอล CC-link อยู่ในระดับมากที่สุด และความพึงพอใจของผู้เรียนที่มีต่อชุดทดลองอยู่ในระดับมากที่สุด ทุกรายการประเมิน

6. สรุปผล อภิปรายผลและข้อเสนอแนะ

6.1 สรุปผล

1) ชุดทดลองคัดแยกและประกอบชิ้นงานควบคุมด้วย Servo Motor ร่วมกับโปรแกรมเมเบลลอจิกคอนโทรลเลอร์ผ่านโปรโตคอล CC-link สามารถสร้างได้ตามแบบที่กำหนด มีการออกแบบชุดลำเลียงฝาชิ้นงาน โดยใช้กระบอกลม มีชุด Vacuum ดูดฝาชิ้นงาน ชุดเช่นเชอร์ ตรวจจับชิ้นงานและฝาชิ้นงาน ชุดเชื่อมต่ออุปกรณ์ผ่าน

โปรโตคอล CC-link ชุดทดลองไฟสัญญาณ ชุด控制系统 คัดแยกชิ้นงาน ชุดลำเลียงชิ้นงานควบคุมด้วย Servo Motor และรังคัดแยกชิ้นงาน สามารถเขียนโปรแกรมควบคุมด้วยโปรแกรมเมเบิลอจิกคอนโทรลเลอร์ได้ และผลการประเมินคุณภาพของชุดทดลองคัดแยกและประกอบชิ้นงานควบคุมด้วย Servo Motor ร่วมกับโปรแกรมเมเบิลอจิกคอนโทรลเลอร์ผ่านโปรโตคอล CC-link จากผู้เชี่ยวชาญ ภาพรวมอยู่ในระดับมากที่สุด เมื่อพิจารณา เป็นรายด้านพบว่า ด้านชุดทดลองสอดคล้องกับการทำงานของภาคอุตสาหกรรม ด้านชุดทดลองสอดคล้องเหมาะสมในการจัดการเรียนการสอน และด้านชุดทดลองมีความเหมาะสมสมกับนักศึกษา มีค่าคะแนนเฉลี่ยอยู่ในระดับมากที่สุด รองลงมาคือ ด้านชุดทดลองเสริมทักษะในการปฏิบัติงาน และในงานการทดลองเหมาะสมสมในการจัดการเรียนการสอน มีค่าคะแนนเฉลี่ยอยู่ในระดับมาก

2) ผลการหาระสิทธิภาพของชุดทดลองคัดแยก และประกอบชิ้นงานควบคุมด้วย Servo Motor ร่วมกับโปรแกรมเมเบิลอจิกคอนโทรลเลอร์ผ่านโปรโตคอล CC-link มีประสิทธิภาพ 81.88/83.23 ซึ่งเป็นไปตามเกณฑ์ที่กำหนด 80/80 แสดงว่าชุดทดลองคัดแยกและประกอบชิ้นงานควบคุมด้วย Servo Motor ร่วมกับโปรแกรมเมเบิลอจิกคอนโทรลเลอร์ผ่านโปรโตคอล CC-link ที่ได้จัดสร้างขึ้นนั้นมีประสิทธิภาพที่จะสามารถนำไปใช้ในการสอนได้ เป็นไปตามสมมติฐานที่คาดหวังไว้

3) ผลการประเมินความพึงพอใจของผู้เรียนที่มีต่อชุดทดลองคัดแยกและประกอบชิ้นงานควบคุมด้วย Servo Motor ร่วมกับโปรแกรมเมเบิลอจิกคอนโทรลเลอร์ผ่านโปรโตคอล CC-link ในภาพรวมอยู่ในระดับมากที่สุด

6.2 อภิปรายผล

ผลการวิจัยชุดทดลองคัดแยกและประกอบชิ้นงานควบคุมด้วย Servo Motor ร่วมกับโปรแกรมเมเบิลอจิกคอนโทรลเลอร์ผ่านโปรโตคอล CC-link ที่ผู้วิจัยสร้างขึ้น เป็นไปตามสมมติฐานการศึกษาดังนี้

1) จากรายงานการวิจัยชุดทดลองคัดแยกและประกอบชิ้นงานควบคุมด้วย Servo Motor ร่วมกับโปรแกรมเมเบิลอจิกคอนโทรลเลอร์ผ่านโปรโตคอล CC-link ที่ผู้วิจัยสร้างขึ้น เป็นไปตามสมมติฐานของ

การวิจัย โดยประสิทธิภาพตัวแปรได้มาจากคะแนนการปฏิบัติงาน คะแนนแบบฝึกหัดของแต่ละใบงาน มีค่าเฉลี่ยร้อยละ 81.88 สูงกว่าเกณฑ์ที่กำหนดร้อยละ 80 และประสิทธิภาพตัวหลังได้มาจากคะแนนการทำแบบทดสอบวัดผลสัมฤทธิ์หลังเรียน มีค่าเฉลี่ยร้อยละ 83.23 สูงกว่าเกณฑ์ที่กำหนดร้อยละ 80 เช่นเดียวกัน ซึ่งเป็นไปตามเกณฑ์ที่กำหนดและยอมรับว่ามีประสิทธิภาพ อย่างไรก็ได้ดังนี้ การสอนโดยใช้ชุดทดลองคัดแยกและประกอบชิ้นงานควบคุมด้วย Servo Motor ร่วมกับโปรแกรมเมเบิลอจิกคอนโทรลเลอร์ผ่านโปรโตคอล CC-link ทำให้ผู้เรียนเกิดการเรียนรู้ตามวัตถุประสงค์ ส่งผลทำให้ผู้เรียนมีผลสัมฤทธิ์ทางการเรียนสูงขึ้น มีประสิทธิภาพสูงกว่าเกณฑ์ที่กำหนด ทั้งนี้ เพราะว่าชุดทดลองที่ผู้วิจัยสร้างขึ้น มีความทันสมัย เป็นชุดทดลองที่เป็นเทคโนโลยีในภาคอุตสาหกรรมในงาน และใบสำคัญต้องการปฏิบัติงาน มีเนื้อหาที่ชัดเจนและเข้าใจง่าย รวมถึงผู้เรียนได้รับคำแนะนำขั้นตอนต่าง ๆ อย่างละเอียดทีละขั้นตอนโดยครุผู้สอนทำให้สามารถเรียนรู้ได้อย่างเข้าใจ สอดคล้องกับจรรัส และคณะ [6] ทำการวิจัยเรื่องการสร้างและทำประสิทธิภาพชุดทดลองกระบวนการผลิตในงานอุตสาหกรรมควบคุมด้วยโปรแกรมเมเบิลอจิกคอนโทรลเลอร์ ผลการวิจัยพบว่าการเรียนการสอนด้วยชุดทดลองมีประสิทธิภาพ 80.86/81.6 ซึ่งสูงกว่าเกณฑ์ 80/80 และสอดคล้องกับปรากฏการ [7] ทำการวิจัยเรื่องการสร้างและทำประสิทธิภาพชุดทดลองวิชางานนิเวศติกส์ และไฮดรอลิกส์เบื้องต้น รหัสวิชา 2100-1008 ผลการวิจัยพบว่าชุดทดลอง มีประสิทธิภาพ 82.02/83.33

2) ผลการประเมินความพึงพอใจของผู้เรียนที่มีต่อชุดทดลองคัดแยกและประกอบชิ้นงานควบคุมด้วย Servo Motor ร่วมกับโปรแกรมเมเบิลอจิกคอนโทรลเลอร์ผ่านโปรโตคอล CC-link โดยภาพรวมพบว่า ผู้เรียนมีความพึงพอใจในระดับมากที่สุด ซึ่งเป็นไปตามสมมติฐานข้อ 2 สอดคล้องกับพงษ์ศักดิ์ [8] รายงานผลการวิจัยการสร้างและทำประสิทธิภาพการจัดการเรียนการสอน วิชาชีลสกрин และวงจรพิมพ์ รหัสวิชา 2104-2223 ผลการวิจัยพบว่า นักเรียนมีความพึงพอใจต่อการจัดการเรียนการสอนโดยใช้เอกสารประกอบการสอนอยู่ในระดับมาก ทั้งนี้เนื่องมาจากชุดทดลองที่ผู้วิจัยสร้างโดยมีแนวคิดมาจาก

ความต้องการให้ผู้เรียนศึกษา ทำความเข้าใจบทเรียน และปฏิบัติกรรมการเรียนส่งผลให้ความพึงพอใจของผู้เรียนมีสีต่อชุดทดลองโดยภาพรวมพบว่ามีความพึงพอใจในระดับมาก

6.3 ข้อเสนอแนะ

จากการวิจัยเพื่อสร้างชุดทดลองคัดแยกและประกอบชิ้นงานควบคุมด้วย Servo Motor ร่วมกับโปรแกรมเมเบลลอกิจคอนໂโทรลเลอร์ผ่านໂປຣໂຕຄອລ CC-link ผู้วิจัยมีข้อเสนอแนะในด้านต่าง ๆ ดังนี้

ข้อเสนอแนะจากผลการวิจัย ก่อนการใช้งาน ชุดทดลอง ผู้ใช้งานควรจะต้องศึกษาคู่มือการใช้งาน ขั้นตอน การตั้งค่าชุดเซิร์ฟ์ต่ออุปกรณ์ผ่านໂປຣໂຕຄອລ CC-link และ การตั้งค่าพารามิเตอร์ของเซอร์วิโมเตอร์ เพื่อทดสอบ การทำงานของอุปกรณ์ ก่อนการจัดการเรียนการสอน

ข้อเสนอแนะเพื่อการวิจัยต่อไป

1) ควรปรับพื้นที่การวางอุปกรณ์บนชุดทดลอง ให้มีพื้นที่ในการติดตั้งร่าง Wire duct ในการเก็บสายไฟต่าง ๆ ลงในรางให้เรียบร้อย

2) ควรติดตั้งเซนเซอร์วิดสิวิท์บนระบบอกรสูบเรียกน้ำที่ใช้ในการเคลื่อนที่เพื่อลำเลียงชิ้นงาน ให้สามารถเคลื่อน ปรับระยะได้

เอกสารอ้างอิง

- [1] สถาบันเพิ่มผลผลิตแห่งชาติ. (2019). [ออนไลน์]. Skills for the Future. [สืบค้นเมื่อวันที่ 9 สิงหาคม 2567]. จาก <https://www.ftpi.or.th/en/2019/31376>.
- [2] เพทໂໂຣ-ອິນສຕຽມເນທ. (2023). [ออนไลน์]. ระบบ Automation Control ຍຸດໃໝ່ແທ່ງອຸຕສາຫກຮົມ. [ສืบค้นเมื่อวันที่ 9 สิงหาคม 2567]. จาก <https://pico.co.th/automation-control/>.
- [3] สุนทร ก้องสินธุ, และณัฐวิชช์ สุขสง. (2566). การสร้างชุดการสอนเรื่องการควบคุมเซอร์วิโมเตอร์ด้วยพีແອລຊື່. วารสารวิชาการครุศาสตร์อຸຕສາຫກຮົມແລະ ວິສະກະຮົມສຶກສາ, 14(2), 16-29.
- [4] Bansal, R., & Anil, K. D. (2024). Communication Protocols used for Industrial Automation. Computational Intelligence in the Industry 4.0.

Boca Raton, Florida: CRC Press.

[5] บุญชุม ศรีสะอด. (2554). การวิจัยเบื้องต้น (ພິມທີສ່ວນທີ 9). กรุงเทพมหานคร: ສູວິຍາສາສົນ.

[6] ຈັສ ຈຸນເດືອນ, ກຸຖົມ ໂພຕິພັນຮົງ, ແລະໄພໂຮຈົນ ທ່ວຍນຸກລ. (2560). การสร้างและหาประสิทธิภาพชุดทดลอง กระบวนการผลิตในงานอຸຕສາຫກຮົມควบคุมດ້ວຍໂປຣແກຣມມີເບີລຄອນໂທຣລເລອຣ. ວິສະກະຮົມແລະ ນວັດການການອ້າວີສຶກສາ, 1(1), 78-85.

[7] ປະກາດ ພັດສູນທຣ. (2551). ຮາຍງານການສ້າງແລະ ທ່າປະສິທິກາພຂອງ ທຸດທະລອງ ວິຊາງານນິວມະຕຒກສີແລະ ໄຂດຮອລິກສີເບື້ອງຕັ້ນ ຮັບສົວີ່ຈາກ 2100-1008. ຂອນແກ່ນ: ມາວິທາລ້າຍຂອນແກ່ນ.

[8] ພົງໝໍສັກດີ ອຳນວຍພລ. (2558). ຮາຍງານຜົນການວິຈัย ການສ້າງແລະຫາປະສິທິກາພການຈັດການຮັບຮັດການຮັບຮັດ ວິຊາຊື່ລສກວິນແລະວິຊາພິມພ ຮັບສົວີ່ຈາກ 2104-2223. ນຸກເກີດ: ວິທາລ້າຍເຕັກນິກຸກເກີດ.