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Dependence of the Fermi-Pasta-Ulam Model

on Inifial Conditions and
System Parameters towards Full Equipartition

of Modal Energy

Abstract

We systematically studied the dependence of the Fermi-Pasta-Ulam (FPU) model
on initial conditions and system parameters, and determine how they affected the
tendency towards full equipartition of energy among Fourier modes. We found a
critical energy density of approximately 0.1, above which the state of energy sharing
among modes became independent of initial conditions and system parameters.
Below the crifical energy density, the dissipation of energy was sensitive to initialisation
and parameters of a system. We observed that, in general, dissipation of mode energy
was more effective with larger energy densities. However, as we increased the
energy density beyond 0.1, we incomprehensively noficed a slight decline in such
effectiveness. We concluded that full equipartition of mode energy is never attained

in the FPU model.
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1. Introduction

In 1952, Enrico Fermi and his collabo-
rators (4) were interested in studying non-
linear systems through the use of electronic
computing machines. Their plan was to
start with a simple physical model and then
study ifs long-time behaviour with the expec-
tation that the calculations would provide
some hints for a future theory to explain
the energy-distribution behaviour in non-
linear systems. A one-dimensional dynami-
cal system of 64 point particles with forces
containing non-linear terms between
neighbours was chosen. This was then
stfudied numerically on the Los Alamos
computer MANIAC |. With the total energy
initially stored in the first Fourier mode,
Fermi et al. (4) anficipated that, after a
certain time, the energy would be distrib-
uted evenly among all the modes, which
would allow them to calculate the rate of
equipartitioning. The result, however, turned
out to be rather surprising because energy
equipartition never took place. Instead,
most of the energy (approximately 98%)
was trapped in the first few Fourier modes
with other modes rarely shared any signifi-
cant energy at all. In 1961, the same
problem was revisited for longer periods of
fime on more advanced machines by J.
Tuck and M. Menzel (6, p. 28). They found
that the total energy, which was initially
placed in the first mode, would be gradu-
ally distributed to a few other modes, but

after some fime, most of the initial energy
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would be drawn back to the first mode
again. This confirmed that the results
obtained by Fermi et al. were not caused
by calculational errors.

In this article, we present a brief
description of the Fermi-Pasta-Ulam (FPU)
model. After that, we proceed to look at
the dependence of dissipation of mode
energy on initial conditions and system
parameters. Our aim is to determine
1) how initial conditions and system para-
meters affect the tendency towards full
equipartition of mode energy, and 2) if
such full equipartition is ever accomplished

at all in the FPU model.

2. The Fermi-Pasta-Ulam Model
2.1 Potential and Force Functions
The FPU model represents a one-
dimensional chain of particles (See Figure
1) interacting with their nearest neighbours
via a smooth pair potential function Ui

7
defined by

i =%k(rij _’3‘19)2 +%ﬂk(rij —r;’)“,

where k is a spring constant and 8 is a

non-linear coefficient. rij ,

the instantaneous separation between

where 1 < j, is

particles i and j, and Vijo is the separation
aft equiliorium. Letting ¢; and q; respec-
tively be the displacements of particles i
and j, we can express r; - r,.j0 as g;-q;.

Let us consider the forces acting on

particle i. By definition, the force on par-



ficle i due to particle j is the negative of

the rate of change of ”ij with respect
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Figure 1 Schematic representafion of the
FPU model. Please note that the
springs shown here are only
schematic—they do not physically

exist.

to an infinitesimal change in g; while

holding particle j fixed, i.e.
ou,.

Y
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By a similar argument, the force on particle
j due to i is
ou,.
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Now, we can write the equations of motion

of particle i as

where p; is the momentum of particle i
and F,=F,_,  +F_,, .
2.2 Normal Mode Transformation

If we imagine that each particle
along a FPU chain represents a mass point
along a sting and that g; represents a
vertical displacement of each mass point,
then we can visualise the FPU system as a
string of a certain shape. Because the
shape of a string can be understood in
terms of normal (or Fourier) modes (6, p.19)
among which Fermi et al. were interested
in energy sharing, it becomes natural to
present simulation results in terms of normal
mode coordinates Qk and their time
derivatives Qk' We can fransform any
combination of particle displacements q; to

mode coordinates Qk using the relationship

2 ik
= |= sin| — | ,k=1,2,...., N —1.

Similarly, any combination of the fime
derivatives of particle displacements cji

can be transformed to the time derivatives
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of mode coordinates Qk by

: 2 ikz
=,/— 7osin| — |,k =1,2,..., N—1.

1

The total mode energy EQ may be

approximated as

N-1 1. 1
20 ~ Z[EQ,f +5w,3g,3} ,
k=1

which is sufficiently accurate for small
values of f3’s, and where @, :25in(§—;j

are the frequency of mode k.

2.3 Degrees of Energy Sharing among
Modes
Throughout this work, we will be mainly
intferested in the degree of energy sharing
among modes. We refer to the expression
for the normalised effective number of
modes containing energy, T[Q , as defined

by (1), (2, (3) and (5), where

1 N-1
0 _
= exp| — e, Ine
n N -1 p E k k

k=1

where ¢, is the normalised energy of mode
N=1
k with ¢, = E,?/Zk:IE,? . In this work, we

define 77Q > 0.90 to be full equipartition.

2.4 Initial Conditions and System
Parameters

We conduct computer simulation of a
FPU system using two different types of
initial conditions. The first one is the Kinetic
Initial Condition (KIC) and the other is the
Potential Initial Condition (PIC). For KIC, all
particles are initially at their equilibrium
positions (g; = 0) and every particle
except particles 0 and N will be assigned a
random momentum such that the fotal
momentum of the system is zero and the
total kinetic energy equals the fotal
energy.] PIC, on the other hand, arranges
the positions of particles such that at 1 =0,
the total potential energy equals the total
energy of the system, leaving all particles
with zero momentum (p; = O)2 . PIC was
the method chosen by @) when they
conducted their computer simulation. It is
also possible to initialise a system such that
its initial momentum distribution is Gaussian.>
In this article, the symbol Y specifies the
type of initial condition : Y= 0 for KIC, ¥ = G
for KIC (Gaussian), and Y= n, where n is an
integer ranging from 1 to N — 1, for PIC
(single mode excitation).

Important system parameters are the

following. The number of particles is repre-

! For KIC, the total energy of the system and the total kinetic energy of the system are equal at t = 0

because there is no contribution from potential energy.

2 As there is no contribution from kinetic energy at t = 0, the total potential energy and the total energy

of the system are equal.

3odc|pfed from Carter’'s method available at http://www.bearcave.com/misl/misl_tech/wavelets/hurst/

random.html
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sented by N. The non-linear coefficient is
ﬁ. The energy density is denoted by €,
where €ppy; = 0.002 407 636 6639 . . . (in
reduced unifts) being the energy density
used by (4).

Newtonian equations using Gear’s a4

Numerical integration of

order predictor-corrector algorithm is con-
trolled by the number of time steps and
the size of time step. For example, 7, = 8 X
10’ @ 2.5 x 10° represents the number of
tfime steps of 8 X 107 with the size of each
step being 2.5 X 10'3 —the total simulation
time of 2 X 10°.

3. Results : Dependence of nQ on
System Parameters and Initial
Conditions

We first revisited some of the simula-
tions conducted by 4), using N = 32, € >
€ppy aNd varying Y (plofs not shown).

When B = 0, a system is said to be

harmonic (or linear) and no dissipation of

mode energy is observed regardless of
initial conditions and system parameters.

Specifically, all energy initially assigned to

certain modes is trapped only within those

modes and no sharing of energy among
them takes place. In such circumstances,
the system trajectory is trapped or con-
tained in a certain region of phase space,
and revisits parts of the region in a highly-
regular pattern. On the contrary, when
anharmonicity or non-linearity is infroduced

info a system (ﬁ > 0), the ftrajectory of a

system will eventually reach an irregular

regime of phase space, where energy

dissipation among all the modes begins to
take place more readily.

We now look at how energy is
distributed among modes whilst varying
energy densities. We choose to study FPU
systems with N = 32 and B = 1 and
conduct the simulations for 7, = 8 X 107
@0.002 5, using various values of Y. For
each system, we observe the fime evolu-
fion of T]Q and take its time average over
the last 2 X 10° time steps. We then plot
nQ versus € as shown in Figure 2. Our
choices of initial conditions include ¥ = 0
(black open circles), ¥ = 1 (red open
tfriangles), Y = 16 (blue pluses),
Y = 31 (darkgreen crosses) and Y = G
(dark-red diamonds). The error bars associ-
ated with R are also displayed. All lines
joining adjacent data points are drawn as
a guide only. The verfical line at € =
€rpU represents the energy density histori-
cally used by (4). At the lowenergy end,
single-mode excitations (Y = 1, 16 and 31)
result in relatively small values of nQ’s,
when compared against the KIC counter-
parts (Y = 0 and G). We observe that the
values of T]Q’s are not necessarily the

maximum values these systems can aftain.
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Figure 2 The sensitivity fo initial conditions

of nQ at varying energy densities.
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They are, as dalready mentioned, the
averages over the last 2 X 10° computo-
tional steps. For some systems, the value
T[Q displays a slowly-increasing trend when
the simulation is terminated. Let us now go
back to discuss other features of the figure.
One of the most obvious featfures is the
similarity between nio and n%@l
especially when &€ > Eppy For all initial
conditions, a sudden rise in T]Q occurs
approximately within the range Eppy < €
< 0.1. Furthermore, above € = 0.1, all T]Q’s
converge to the same value, regardless of
the inifial conditions. Within the range &gpyy
< € < 0.1, the dependence of T]Q on &
varies according to the initial conditions. It
can be seen that, within this range, the
systems with mode 16 initially excited show
the strongest insensitivity to the change
in & until at 108FPU where T]Q%m abruptly
jumps fromm around 0.03 to just above 0.6
over a relatively small range of energy
densities. We are unable to identify any
predictable pattern of how T]Q(e)'s
behave for systems with different initially-
excited modes within this energy-density
range. For the systems with KIC, T]%O and
T[%G show a tendency to converge as €
becomes larger. Above €= 0.1, the choice
of initial conditions has no effect, and all
T[Q’s converge to the same value. There is
a noficeable decreasing trend in the
normalised effective number of modes
containing energy as € confinues to in-

crease above 0.1.
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Our initial conditions can be divided
info fwo groups. The first group is those with
KIC, which include ¥ =0 and G. The other
group is those with PIC, namely, ¥ =1, 16
and 31. For the KIC systems, the total
energy is initially given to the motion of
particles, as opposed to the configuration
of particles for the PIC systems. According
to Figure 2, when € < SFPU , a distinction
can be readily identified between the two
groups of initial conditions. The KIC systems
exhibit a higher degree of energy sharing
than the PIC counterparts. Again, we must
emphasise that the systems have been
observed for t,, = 8 X 10’@0.002 5 due to
our limitation of CPU resources. Longer
observation times could have led fo differ-
ent results. One must keep this in mind
when interpreting our results. Within the
range Egpy < € < 0.1, the PIC systems
reveal a sudden increase in the normalised
effective number of modes containing
enenergy. Then, nl?IC s reach a common
plateau at approximately 0.65. Similarly for
the KIC systems, a less dramatic rise Tl%c
in is observed as € becomes greater than
S Noticeably, the mode-energy
sharing indices of the KIC systems reach
the 0.65 plateau at a smaller value of
energy density (€ = 4€ppy). compared fo
the PIC systems. From these observations,
we can divide our energy density into
three ranges, according to the sensitivity fo
the initial conditions (KIC or PIC) of energy

sharing among the modes. As shown in



the figure, the first range is when 0 < €
< Eppy and is marked ‘SENSITIVE". This is
where a distinction can be easily made
between the KIC and PIC systems. The
second range is when Egpyy < € < 0.1 and
is marked ‘INTERMEDIATE’. This is where a
clear distinction cannot be easily identified
between the two groups of initial condi-
fions, and where T]Q's begin to reach a
common plateau at around 0.65. The third
and last range is when € 2 0.1 and is marked
‘NON-SENSITIVE’. Here, it does not matter
how the systems are inifialised; they all
exhibit the same degrees of energy sharing
among the modes. The most common
feature of these figures is that, as &
increases, the normalised effective number
of modes containing energy also increases
until it reaches a common plateau. The
time required to reach the plateau is
inversely proportional to the energy density,

as illustrated in Figure 3. Moreover,
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Figure 3 Time required for nQ to reach a

plateau as a function of &

tfrapping times” tend to be extensively long
in low energy systems (€ < Eppy). Os their
tfrajectories are likely trapped in a regular
regime of phase space, similar to those of
harmonic systems (those with 8 = 0). Once
a system trajectory has escaped from the
regular regime and moved into an irregular
regime, energy sharing among the modes
starts to take place more effectively. An
escape to the irregular regime tends to
occur sooner in a more energetic system,
hence a shorter tfrapping time. For all the
systems which we studied, full equipartition
of mode energy is never redlised, and
there is no tendency for T]Q to rise above
the plateau of 0.65. One might argue that
sufficientlylonger simulations could prove
otherwise. We are inclined to believe,
nevertheless, that the FPU model cannot
support any higher degree of energy shar-
ing among the modes no matter how long
we conduct our simulations for, judging
from the asymptotic behaviour of T]Q ® ot

high energies (plots not shown).

4 We must emphasise that the term ‘trapping time’

has a different meaning from ‘time fo reach a
plateau’. Trapping time refers to the time a system
frajectory spends in a regular regime of phase space.
Once such trapping ceases, energy sharing starts to
take place and usually nQ has a fendency to
increase with time until it reaches a plateau and
fluctuates around that value. We refer to such a point
in time aos the time to reach a plateau. For a
harmonic system (ﬁ = 0), frapping time is infinite;

therefore, time to reach a plateau is not defined.

Journal of the Faculty Senate, CRMA, Vol. 6 (2008) 133



Another important question requires
our attention. What happens to the
dissipation of mode energy in the thermo-
dynamic limit, where N — o0? We can
seek answers to the following more specific
questions of large-N behaviour: (i) keeping
the excitation amplitude constant, what
happens to nQ(e) as N increases, and
(i) for kinetic initial conditions, how T]Q(S)
behaves as N increases. To answer the first
question, we vary N and Y systematically
such that the rafio Y/N is kept at 1/16,
ensuring a constant excitation amplitude.
Specifically, our choices of Y/N are 1/16
(black open circles in Figure 4), 2/32 (red
open ftriangles), 4/64 (blue pluses) and 8/
128 (dark-green crosses). For generdlity, we

use B =1

T
B=1, troc=8x107€2.5x107°
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Figure 4 The thermodynamic-limit behaviour
of T]Q (&) at a fixed excitation

amplitude and 8 = 1.

and 7, = 8 X 10’ @0.002 5. At low energy
densities (€ < 8FPU)' smaller systems ftend

to have slightly more rapid dissipation of
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energy among the modes. As € increases,
the frend reverses, and large systems have
higher values of nQ’s, and faster increases
of T[Q’s as a function of & When &
reaches 0.1 and above, all mode-energy
sharing indices become saturated at
approximately 0.65 and gradually start to
decrease as € increases. To answer the
second question, we study KIC systems with
Y =0,

varying the number of particles. The results

B =1 and the same 1, while

are reported in Figure 5 for N = 16 (black
open circles), 32 (red open triangles) and

64 (blue pluses). At low energy densities

T T
7=0,B=1, troe=8x107€2.5x107°
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Figure 5 The thermodynamic-limit behaviour
of NQ (&) for KIC systems with ¥ =
Oand B =1.

(€ < gFPU)' the systems with N = 16 show
the smallest degrees of energy sharing
among the modes at around T]Q = 0.35,
whilst those with N = 32 and 64 have
essentially similar values that lie between
0.50 and 0.53 Within the infermediate
energy range, the dissipation of mode

energy becomes noticeably better for all



N ‘s as € increases and eventually reach a
common plateau at approximately 0.65,
with larger systems generally being the first
to reach the plateau. Again, there is an
obvious convergence of all nSIC 's when
€ 2 0.1, with a slight decline in the values
at increasing €.

From our results, it is obvious that,
above € = 0.1, there is a saturation effect
in the dissipation of energy among the
modes. Regardless of the values of N, ¥, 3
or € , the normalised effective number of
modes containing energy never exceeds
0.65. Incomprehensibly, there is a slight, yet
noticeable, decline in nQ as € increases
beyond 0.1, We further deduce that it is
most appropriate to study the thermody-
namic-limit behaviour of the FPU model at
€ > 0.1, as we know that the dissipation of
mode energy in systems at such energy
densities will be essentially independent of
initial conditions and system parameters.
(4) had €= 0.0024 and a simulation time
that was too short for the frue behaviour of
energy dissipation among the modes to be
revealed. They, however, were not incor-
rect in concluding that the full equipartition

of mode energy was never realised.

4. Summary

Let us recapitulate what we have
done in this article. Earlier, we gave a brief
history of the FPU model. We then studied
the dependence of T]Q on initial conditions
and system parameters. We found that
anharmonicity was a crucial ingredient for
a system frajectory to eventually reach an
iregular regime of phase space, where
energy dissipation occurred more readily,
albeit after a long time. We believed that
Fermi and his collaborators did not observe
their systems for sufficiently-long times to be
able to identify the fermination of the
quasi-periodicity in their systems. Then, by
studying the dependence of nQ on the
energy density, we were able to identify
the critical energy density of approximately
0.1, above which nQ became indepen-
dent of N, ¥, . and €. We also identified
what seemed to be the upper limit of the
state ofenergy dissipation among the modes
at approximately T]Q = 0.65, verifying that
Fermi and his collaborators were not incor-
rect when concluding that the full
equipartition of mode energy was never
attained. We cannot explain the slight
decline in nQ as € increases beyond 0.1.
For future work, we plan tfo conduct
simulations with a mixture of kinefic and
potential initialisation, instead of pure
kinetic and pure potential initial conditions

as we did in this work.
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