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Abstract
We systematically studied the dependence of the Fermi-Pasta-Ulam (FPU) model

on initial conditions and system parameters, and determine how they affected the

tendency towards full equipartition of energy among Fourier modes. We found a

critical energy density of approximately 0.1, above which the state of energy sharing

among modes became independent of initial conditions and system parameters.

Below the critical energy density, the dissipation of energy was sensitive to initialisation

and parameters of a system. We observed that, in general, dissipation of mode energy

was more effective with larger energy densities.  However, as we increased the

energy density beyond 0.1, we incomprehensively noticed a slight decline in such

effectiveness. We concluded that full equipartition of mode energy is never attained

in the FPU model.
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1. Introduction
In 1952, Enrico Fermi and his collabo-

rators [4] were interested in studying non-

linear systems through the use of electronic

computing machines. Their plan was to

start with a simple physical model and then

study its long-time behaviour with the expec-

tation that the calculations would provide

some hints for a future theory to explain

the energy-distribution behaviour in non-

linear systems. A one-dimensional dynami-

cal system of 64 point particles with forces

containing non-linear terms between

neighbours was chosen. This was then

studied numerically on the Los Alamos

computer MANIAC I. With the total energy

initially stored in the first Fourier mode,

Fermi et al. [4] anticipated that, after a

certain time, the energy would be distrib-

uted evenly among all the modes, which

would allow them to calculate the rate of

equipartitioning. The result, however, turned

out to be rather surprising because energy

equipartition never took place.  Instead,

most of the energy (approximately 98%)

was trapped in the first few Fourier modes

with other modes rarely shared any signifi-

cant energy at all. In 1961, the same

problem was revisited for longer periods of

time on more advanced machines by J.

Tuck and M. Menzel [6, p. 28]. They found

that the total energy, which was initially

placed in the first mode, would be gradu-

ally distributed to a few other modes, but

after some time, most of the initial energy

would be drawn back to the first mode

again. This confirmed that the results

obtained by Fermi et al. were not caused

by calculational errors.

In this article, we present a brief

description of the Fermi-Pasta-Ulam (FPU)

model. After that, we proceed to look at

the dependence of dissipation of mode

energy on initial conditions and system

parameters. Our aim is to determine

1) how initial conditions and system para-

meters affect the tendency towards full

equipartition of mode energy, and 2) if

such full equipartition is ever accomplished

at all in the FPU model.

2. The Fermi-Pasta-Ulam Model
2.1 Potential and Force Functions

The FPU model represents a one-

dimensional chain of particles (See Figure

1) interacting with their nearest neighbours

via a smooth pair potential function

defined by
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where k is a spring constant and β is a

non-linear coefficient. rij , where i < j, is

the instantaneous separation between

particles i and j, and rij
0 is the separation

at equilibrium. Letting qi and qj respec-

tively be the displacements of particles i

and j, we can express rij - rij
0 as qj-qi.

Let us consider the forces acting on

particle i. By definition, the force on par-

uij
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Figure 1 Schematic representation of the

FPU model. Please note that the

springs shown here are only

schematic›they do not physically

exist.

to an infinitesimal change in qi while

holding particle j fixed, i.e.

By a similar argument, the force on particle

j due to i is

11 +←−←
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ticle i due to particle j is the negative of

the rate of change of uij with respect

Now, we can write the equations of motion

of particle i as

where pi is the momentum of particle i

and                     .

2.2 Normal Mode Transformation

If we imagine that each particle

along a FPU chain represents a mass point

along a string and that qi represents a

vertical displacement of each mass point,

then we can visualise the FPU system as a

string of a certain shape. Because the

shape of a string can be understood in

terms of normal (or Fourier) modes [6, p.19]

among which Fermi et al. were interested

in energy sharing, it becomes natural to

present simulation results in terms of normal

mode coordinates Qk and their time

derivatives Qk. We can transform any

combination of particle displacements qi to

mode coordinates Qk using the relationship
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Similarly, any combination of the time

derivatives of particle displacements qi

can be transformed to the time derivatives

.
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of mode coordinates     by

The total mode energy EQ may be

approximated as

which is sufficiently accurate for small

values of β’s, and where

are the frequency of mode k.

2.3 Degrees of Energy Sharing among

Modes

Throughout this work, we will be mainly

interested in the degree of energy sharing

among modes. We refer to the expression

for the normalised effective number of

modes containing energy, ηQ , as defined

by [1], [2], [3] and [5], where

where ek is the normalised energy of mode

k with                     . In this work, we

define              to be full equipartition.

2.4 Initial Conditions and System

Parameters

We conduct computer simulation of a

FPU system using two different types of

initial conditions. The first one is the Kinetic

Initial Condition (KIC) and the other is the

Potential Initial Condition (PIC). For KIC, all

particles are initially at their equilibrium

positions (qi = 0) and every particle

except particles 0 and N will be assigned a

random momentum such that the total

momentum of the system is zero and the

total kinetic energy equals the total

energy.1 PIC, on the other hand, arranges

the positions of particles such that at t = 0,

the total potential energy equals the total

energy of the system, leaving all particles

with zero momentum (pi = 0)2 . PIC was

the method chosen by [4] when they

conducted their computer simulation. It is

also possible to initialise a system such that

its initial momentum distribution is Gaussian.3

In this article, the symbol γ specifies the
type of initial condition : γ = 0 for KIC, γ = G
for KIC (Gaussian), and γ = n, where n is an

integer ranging from 1 to N – 1, for PIC

(single mode excitation).

Important system parameters are the

following. The number of particles is repre-
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1 For KIC, the total energy of the system and the total kinetic energy of the system are equal at t = 0

because there is no contribution from potential energy.
2 As there is no contribution from kinetic energy at t = 0, the total potential energy and the total energy
of the system are equal.

3 adapted from Carterûs method available at http://www.bearcave.com/misl/misl_tech/wavelets/hurst/
random.html
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Figure 2 The sensitivity to initial conditions

of ηQ at varying energy densities.

sented by N. The non-linear coefficient is

β. The energy density is denoted by ε,
where εFPU = 0.002 407 636 663 9 . . . (in

reduced units) being the energy density

used by [4]. Numerical integration of

Newtonian equations using Gearûs 4th -

order predictor-corrector algorithm is con-

trolled by the number of time steps and

the size of time step. For example, ttot = 8 ×
107 @ 2.5 × 10-3 represents the number of

time steps of 8 × 107 with the size of each

step being 2.5 × 10-3 ›the total simulation

time of 2 × 105.

3. Results : Dependence of ηQ on
System Parameters and Initial
Conditions
We first revisited some of the simula-

tions conducted by [4], using N = 32, ε ≥
εFPU and varying γ (plots not shown).

When β = 0, a system is said to be

harmonic (or linear) and no dissipation of

mode energy is observed regardless of

initial conditions and system parameters.

Specifically, all energy initially assigned to

certain modes is trapped only within those

modes and no sharing of energy among

them takes place. In such circumstances,

the system trajectory is trapped or con-

tained in a certain region of phase space,

and revisits parts of the region in a highly-

regular pattern. On the contrary, when

anharmonicity or non-linearity is introduced

into a system (β > 0), the trajectory of a

system will eventually reach an irregular

regime of phase space, where energy

dissipation among all the modes begins to
take place more readily.

We now look at how energy is
distributed among modes whilst varying
energy densities. We choose to study FPU
systems with N = 32 and β = 1 and
conduct the simulations for ttot = 8 × 107

@0.002 5, using various values of γ. For
each system, we observe the time evolu-
tion of ηQ and take its time average over
the last 2 × 105 time steps. We then plot
ηQ versus ε as shown in Figure 2. Our
choices of initial conditions include γ = 0
(black open circles), γ = 1 (red open
tr iangles) , γ = 16 (b lue pluses) ,
γ = 31 (darkgreen crosses) and γ = G
(dark-red diamonds). The error bars associ-
ated with ηQ are also displayed. All lines
joining adjacent data points are drawn as
a guide only.  The vertical line at ε =
εFPU represents the energy density histori-
cally used by [4]. At the lowenergy end,
single-mode excitations (γ = 1, 16 and 31)
result in relatively small values of ηQûs,
when compared against the KIC counter-
parts (γ = 0 and G). We observe that the
values of ηQûs are not necessarily the
maximum values these systems can attain.
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γ=G

They are, as already mentioned, the

averages over the last 2 × 105 computa-

tional steps. For some systems, the value

ηQ displays a slowly-increasing trend when

the simulation is terminated. Let us now go

back to discuss other features of the figure.

One of the most obvious features is the

similarity between ηQ  and ηQ
  ,

especially when ε > εFPU. For all initial

conditions, a sudden rise in ηQ occurs

approximately within the range εFPU < ε
< 0.1. Furthermore, above ε = 0.1, all ηQûs

converge to the same value, regardless of

the initial conditions. Within the range εFPU

< ε < 0.1, the dependence of ηQ on ε
varies according to the initial conditions. It

can be seen that, within this range, the

systems with mode 16 initially excited show

the strongest insensitivity to the change

in ε until at 10εFPU ,where ηQ
γ=16 abruptly

jumps from around 0.03 to just above 0.6

over a relatively small range of energy

densities. We are unable to identify any

predictable pattern of how ηQ(ε)ûs
behave for systems with different initially-

excited modes within this energy-density

range. For the systems with KIC, ηQ
    and

ηQ
    show a tendency to converge as ε

becomes larger. Above ε ≈ 0.1, the choice

of initial conditions has no effect, and all

ηQûs converge to the same value. There is

a noticeable decreasing trend in the

normalised effective number of modes

containing energy as ε continues to in-

crease above 0.1.

Our initial conditions can be divided

into two groups. The first group is those with

KIC, which include γ = 0 and G. The other

group is those with PIC, namely, γ = 1, 16
and 31. For the KIC systems, the total

energy is initially given to the motion of

particles, as opposed to the configuration

of particles for the PIC systems. According

to Figure 2, when ε ≤ εFPU , a distinction
can be readily identified between the two

groups of initial conditions. The KIC systems

exhibit a higher degree of energy sharing

than the PIC counterparts. Again, we must

emphasise that the systems have been

observed for ttot = 8 × 107@0.002 5 due to

our limitation of CPU resources. Longer

observation times could have led to differ-

ent results. One must keep this in mind

when interpreting our results. Within the

range εFPU < ε < 0.1, the PIC systems

reveal a sudden increase in the normalised

effective number of modes containing

enenergy. Then,       ’s reach a common

plateau at approximately 0.65. Similarly for

the KIC systems, a less dramatic rise

in is observed as ε becomes greater than

εFPU . Noticeably, the mode-energy

sharing indices of the KIC systems reach

the 0.65 plateau at a smaller value of

energy density  (ε ≈ 4εFPU), compared to

the PIC systems. From these observations,

we can divide our energy density into

three ranges, according to the sensitivity to

the initial conditions  (KIC or PIC) of energy

sharing among the modes. As shown in

γ=0

γ=0

γ=G

η Q

PIC

η Q

KIC
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the figure, the first range is when 0 < ε
≤ εFPU and is marked ùSENSITIVEû. This is

where a distinction can be easily made

between the KIC and PIC systems. The

second range is when εFPU < ε < 0.1 and
is marked  ùINTERMEDIATEû. This is where a

clear distinction cannot be easily identified

between the two groups of initial condi-

tions, and where ηQûs begin to reach a

common plateau at around 0.65. The third

and last range is when ε ≥ 0.1 and is marked

ùNON-SENSITIVEû. Here, it does not matter

how the systems are initialised; they all

exhibit the same degrees of energy sharing

among the modes. The most common

feature of these figures is that, as ε
increases, the normalised effective number

of modes containing energy also increases

until it reaches a common plateau.  The

time required to reach the plateau is

inversely proportional to the energy density,

as illustrated in Figure 3. Moreover,

trapping times4 tend to be extensively long

in low energy systems (ε ≤ εFPU), as their

trajectories are likely trapped in a regular

regime of phase space, similar to those of

harmonic systems (those with β = 0). Once

a system trajectory has escaped from the

regular regime and moved into an irregular

regime, energy sharing among the modes

starts to take place more effectively. An

escape to the irregular regime tends to

occur sooner in a more energetic system,

hence a shorter trapping time.  For all the

systems which we studied, full equipartition

of mode energy is never realised, and

there is no tendency for ηQ to rise above

the plateau of 0.65. One might argue that

sufficientlylonger simulations could prove

otherwise. We are inclined to believe,

nevertheless, that the FPU model cannot

support any higher degree of energy shar-

ing among the modes no matter how long

we conduct our simulations for, judging

from the asymptotic behaviour of ηQ (t) at

high energies (plots not shown).

4 We must emphasise that the term ùtrapping timeû

has a different meaning from ùtime to reach a

plateauû. Trapping time refers to the time a system

trajectory spends in a regular regime of phase space.

Once such trapping ceases, energy sharing starts to

take place and usually ηQ has a tendency to

increase with time until it reaches a plateau and

fluctuates around that value. We refer to such a point

in time as the time to reach a plateau. For a

harmonic system (β = 0), trapping time is infinite;

therefore, time to reach a plateau is not defined.

Figure 3 Time required for ηQ  to reach a

plateau as a function of ε.
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Another important question requires

our attention. What happens to the

dissipation of mode energy in the thermo-

dynamic limit, where N ➝ ∞? We can

seek answers to the following more specific

questions of large-N behaviour: (i) keeping

the excitation amplitude constant, what

happens to ηQ(ε) as N increases, and

(ii) for kinetic initial conditions, how ηQ(ε)
behaves as N increases. To answer the first

question, we vary N and γ systematically

such that the ratio γ/N is kept at 1/16,
ensuring a constant excitation amplitude.

Specifically, our choices of γ/N are 1/16
(black open circles in Figure 4), 2/32 (red

open triangles), 4/64 (blue pluses) and 8/

128 (dark-green crosses). For generality, we

use β  = 1

Figure 4 The thermodynamic-limit behaviour

of ηQ (ε) at a fixed excitation
amplitude and β = 1.

and ttot = 8 × 107 @0.002 5. At low energy

densities (ε ≤ εFPU), smaller systems tend

to have slightly more rapid dissipation of

energy among the modes. As ε increases,
the trend reverses, and large systems have

higher values of ηQûs, and faster increases

of ηQûs as a function of ε. When ε
reaches 0.1 and above, all mode-energy

sharing indices become saturated at

approximately 0.65 and gradually start to

decrease as ε increases. To answer the

second question, we study KIC systems with

γ = 0,  β  = 1 and the same ttot, while

varying the number of particles. The results

are reported in Figure 5 for N = 16 (black

open circles), 32 (red open triangles) and

64 (blue pluses). At low energy densities

Figure 5 The thermodynamic-limit behaviour

of ηQ (ε ) for KIC systems with γ =
0 and β = 1.

(ε ≤  εFPU), the systems with N = 16 show

the smallest degrees of energy sharing

among the modes at around  ηQ  = 0.35,

whilst those with N = 32 and 64 have

essentially similar values that lie between

0.50 and 0.53 Within the intermediate

energy range, the dissipation of mode

energy becomes noticeably better for all
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η Q

PIC

N ûs as ε increases and eventually reach a
common plateau at approximately 0.65,

with larger systems generally being the first

to reach the plateau. Again, there is an

obvious convergence of all        ùs when

ε ≥ 0.1, with a slight decline in the values

at increasing ε.
From our results, it is obvious that,

above ε = 0.1, there is a saturation effect
in the dissipation of energy among the

modes. Regardless of the values of N , γ, β
or ε , the normalised effective number of

modes containing energy never exceeds

0.65. Incomprehensibly, there is a slight, yet

noticeable, decline in ηQ as ε increases
beyond 0.1, We further deduce that it is

most appropriate to study the thermody-

namic-limit behaviour of the FPU model at

ε ≥ 0.1, as we know that the dissipation of

mode energy in systems at such energy

densities will be essentially independent of

initial conditions and system parameters.

[4] had ε ≈ 0.0024 and a simulation time

that was too short for the true behaviour of

energy dissipation among the modes to be

revealed. They, however, were not incor-

rect in concluding that the full equipartition

of mode energy was never realised.

4. Summary
Let us recapitulate what we have

done in this article. Earlier, we gave a brief

history of the FPU model. We then studied

the dependence of ηQ on initial conditions

and system parameters. We found that

anharmonicity was a crucial ingredient for

a system trajectory to eventually reach an

irregular regime of phase space, where

energy dissipation occurred more readily,

albeit after a long time.  We believed that

Fermi and his collaborators did not observe

their systems for sufficiently-long times to be

able to identify the termination of the

quasi-periodicity in their systems. Then, by

studying the dependence of ηQ on the

energy density, we were able to identify

the critical energy density of approximately

0.1, above which ηQ became indepen-

dent of N , γ , β , and ε. We also identified

what seemed to be the upper limit of the

state ofenergy dissipation among the modes

at approximately ηQ = 0.65, verifying that

Fermi and his collaborators were not incor-

rect when concluding that the full

equipartition of mode energy was never

attained. We cannot explain the slight

decline in ηQ as ε increases beyond 0.1.
For future work, we plan to conduct

simulations with a mixture of kinetic and

potential initialisation, instead of pure

kinetic and pure potential initial conditions

as we did in this work.
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